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ML Preprocessing = Third Pillar of ML

Trainers Model

Data Storage ’

Offline (GPU) Variant-1
Preprocess Online
‘ Preprocess  1raining
User - Model

N K

Trainers Model
(GPU) Variant-2

Interaction

* Focus: Online preprocessing
*  Preprocessing consumes considerable ML resources
- Large data volumes consumed by preprocessing
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ML Preprocessing Is Data-intensive

Preprocessing Operations Spectrum
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PIM for ML Preprocessing
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- Data-intensive computations
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Evaluating Criteo 1TB Click Logs Preprocessing Pipeline?
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tf.data: A Machine Learning Data Processing Framework, Murray et. al.

Understanding Data Storage and Ingestion for Large-Scale Deep Recommendation Model Training, Zhao et. al.
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/

Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, Lee et. al.
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