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Analog CIM with Non-Volatile Memories

Motivation of analog compute-in-memory (CIM) | .,

WL,

- Leverage current-summation property of po | Py L e
memory arrays for parallel computation Lt =< . e
» Accelerate multiply-and-accumulate operations : len Jezl - [on -
(MAC) in neural network inference " : : : .
Benefits of using non-volatile RRAM for CIM Bl su| Bl s oBLl s
 Very low leakage power for standby I I e
« Smaller cell size compared to SRAM 1 oG ; .
» Potentially hold all model weights on-chip s oo I\
2 21 22 2m 2

 Reduce off-chip memory access e
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Design Challenges for Analog RRAM-CIM
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Challenge 1: Process

RRAM conductance variations induce
BL current variations

Challenge 2: Temperature

RRAM conductance changes with
temperature

Challenge 3: Voltage

Lowering VDD reduces ADC sense
margin in voltage-mode CIM
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RRAM-CIM Macro Overview

Design Proposed Circuit Design
Challenges Techniques

On-chip write-verify

FEEE to tighten RRAM distributions
Temperature RRAM-based temperature- n
P independent ADC references T | 0
igita

- Modules & 5
Parallelism preserving in-situ ECC '

Voltage : :
for iso-accuracy voltage scaling
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Test chip taped-out in TSMC
40nm process with 1T1R RRAM
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.
CIM Compute Scheme

Input Weig_ht

Vegtor MSB Matrix LSB Input ContrOI
- Opening multiple WLs at once enable parallelized MAC
line operations
o) Each digital input bit asserts one WL
e Input controller activates 7 WLs for each set of computation
Il  Limited opening of rows due to small on/off ratio

COL-SELAH\ ;:1"Ar;;k‘)'g ;\;lul } Sensing

P‘éﬁ;'fell‘% Resistive divider between RRAM cells and pull-up PMOS

o " ouTol _@:_vrefm |  Converts current to vo.Itage
ADC : e BL voltage sensed by 3-bit flash ADC
B (iUT_lsl_@i%_"ffﬁl | 7-bit ADC thermometer output is encoded as 3-bit binary

Georgia | School of Electrical and

Tech | Computer Engineering



Sparsity-Aware Input Control

Input Weight
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SKIP | ongmt {10 Sparsity control scans the input vector to skip
cnt-z; T unnecessary computations with O’s
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Techniques to Address Reliability Challenges
* On-chip write-verify
« Temperature-independent ADC references
 Parallelism-preserving ECC
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On-Chip Write-Verify

OUTH ouTL
VSA VSA
THH THL

L
RRAM

OUTL =BL > THL
OUTH =BL > THH

if (OUTL=1 & OUTH=0)
Cell Sensing = Pass
else
Cell Sensing = Fail
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Dual voltage-sense amplifiers (VSAs) to program RRAM cells for CIM applications

Two thresholds (THH & THL) make up a resistance window
Smaller target window size provides better accuracy, but requires more iterations
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« Tighten LRS (logic 1) distribution and move HRS (logic 0) ideally to infinity
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Write-Verify Protocol and Measurement Result

For LRS For HRS

TH H.: threshold-high Initial Initial
TH L: threshol_d-lou_l Set Reset
i: current set iteration
j: current reset iteration v i

THL: threshold-low
j: current reset iteration

Reset
then
Set

Set

For HRS, only one VSA is needed

Reset

Goal: program LRS around y and HRS above 7

>85% cells can be in programmed in target
10° speedup compared to external equipment
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Periodic Cell Refresh

Compute mode in CIM is similar to high-stress read
« Can cause downward cell drift, especially for HRS

Use on-chip write-verify to periodically refresh drifted cells to maintain
memory window
Without Periodic HRS Refresh With Periodic HRS Refresh
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Temperature-Independent ADC References

Vg, Is dependent on temperature RRAM-based references provides self-
- LRS resistance tends to rise with tracking to temperature
temperature « Data and reference cells move
- Rigid references tuned at one together with temperature
temperature works poorly at others L-LRS R B
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Evaluation of ADC References

Measured ADC outputs for each possible partial sum at various temperatures
* Missing codes in rigid references tuned at one temperature (e.g., at 25°C)
« All codes are retained with self-tracking on-chip references

With on-chip references, simulated CIFAR-10 accuracy at 120°C can be

o o
recovered by 6% to 85.8% > 100%
©
With External References With On-chip References 5 Software qu_gl_ipg_(_Q_g._O_"/_oz____
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Effect of Voltage Scaling to CIM

Voltage scaling is a popular method to toggle between high-performance mode
and low-power mode

Lowering supply voltage is more detrimental to voltage-mode analog CIM
* 52.4% reduction in ADC sense margins when VDD is lowered from 1V to 0.7V
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MAC-ECC: In-Situ SECDED for CIM

MAC-ECC corrects digital errors based on arithmetic distance, while preserving

CIM row-parallelism
Example: (0111), and (1000),

« Hamming distance: 4; Arithmetic distance: 1

Write-Verify

MSB LSB MSB LSB

ECC Procedure

Encode off-chip { () Enecde ) mij ak+,-=<—_z di aj>mod[5

g—

Compute Obtain output vector y through asserting WLs with
In Memory input vector; y may contain one or multiple errors

@ Calculate s = (y-a) mod B

Syndrome s=B-s

During compute = | e

s =0: y is error-free
Decode . .
s = q; for j€[n): +1 error at column j

§ = q; for j€[n): -1 error at column j
s, s # q; for je[n): multiple errors

Y VvV

Data Parity
Array . Array -
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Yy VY Yy Yy Yy Y VY Y
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\J

Shift & Add with Correct <
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Accumulate
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Measurement and Simulation Results

ADC errors can be reduced after applying MAC-ECC at each tested VDD

At 0.7V, original CIFAR-10 accuracy loss of 6.3% may be recovered to 1.1% with
MAC-ECC

Before (16,10) MAC-ECC
After (16,10) MAC-ECC
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Iso-Accuracy Voltage Scaling

Least costly Energy Compute Ener Area
VDD MAC-ECC Frequency Efficiency Efficiency Overhgz d Overhead
for <1% loss (TOPS/W) | (GOPS/mm?2
: T | i 5
High ( |
I 1V No ECC 115MHz 43.0 1 M25 0% 0%
Performance | ‘e -
i 0.9V (31, 25) 100MHz 46.2 93.1 3.73% 3.1%
|
i 0.8V (25, 19) 90MHz 52.4 82.8 4.95% 4.11%
|\ T [ ~
Low Power ‘ 0.7V (16, 10) 80MHz 59.1 70.9 7.48% 6.06%
————— 4

Target is to keep accuracy loss across different VDDs below 1%

|so-accuracy toggling between high performance and low power modes through

voltage scaling and reconfigurable MAC-ECC
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Summary and Related Work
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Summary

Efficient and PV T-robust RRAM-CIM prototype chip was taped-out in TSMC N40
process

Address reliability challenges through circuit design innovations
* Process: On-chip write-verify for tightening distributions and periodic refresh
« Temperature: Temperature-independent ADC references
 Voltage: MAC-ECC for iso-accuracy voltage scaling

Enhance feasibility of analog CIM and provide strong foundation for the building
blocks of emerging CIM architecture
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