
....

Efficient & Reliable RRAM-based 
Compute-in-Memory for Edge Intelligence

iMACAW Next Gen Talk @ DAC

Wantong Li
Jul 09, 2023



....

Outline

 Overview of Compute-in-Memory
• Merits of CIM and its design challenges
• Overview of RRAM-CIM macro tape-out

 Techniques to Address Reliability Challenges
• On-chip write-verify
• Temperature-independent ADC references
• Parallelism-preserving ECC

 Summary and Related Work

2



....

Outline

 Overview of Compute-in-Memory
• Merits of CIM and its design challenges
• Overview of RRAM-CIM macro tape-out

 Techniques to Address Reliability Challenges
• On-chip write-verify
• Temperature-independent ADC references
• Parallelism-preserving ECC

 Summary and Related Work

3



....

Analog CIM with Non-Volatile Memories

 Motivation of analog compute-in-memory (CIM)
• Leverage current-summation property of 

memory arrays for parallel computation 
• Accelerate multiply-and-accumulate operations 

(MAC) in neural network inference

 Benefits of using non-volatile RRAM for CIM
• Very low leakage power for standby
• Smaller cell size compared to SRAM
• Potentially hold all model weights on-chip
• Reduce off-chip memory access
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Design Challenges for Analog RRAM-CIM

 Challenge 1: Process
RRAM conductance variations induce 
BL current variations

 Challenge 2: Temperature
RRAM conductance changes with 
temperature

 Challenge 3: Voltage
Lowering VDD reduces ADC sense 
margin in voltage-mode CIM
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RRAM-CIM Macro Overview

 Test chip taped-out in TSMC 
40nm process with 1T1R RRAM
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CIM Compute Scheme
Input Control
 Opening multiple WLs at once enable parallelized MAC 

operations
 Each digital input bit asserts one WL
 Input controller activates 7 WLs for each set of computation

• Limited opening of rows due to small on/off ratio

Sensing
 Resistive divider between RRAM cells and pull-up PMOS

• Converts current to voltage
 BL voltage sensed by 3-bit flash ADC
 7-bit ADC thermometer output is encoded as 3-bit binary
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Sparsity-Aware Input Control
 Sparsity control scans the input vector to skip 

unnecessary computations with 0’s
 Provides 2.3× higher throughput and 4.3× higher 

energy efficiency for input sparsity at ~80%
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On-Chip Write-Verify

 Dual voltage-sense amplifiers (VSAs) to program RRAM cells for CIM applications
• Tighten LRS (logic 1) distribution and move HRS (logic 0) ideally to infinity

 Two thresholds (THH & THL) make up a resistance window
 Smaller target window size provides better accuracy, but requires more iterations

10

VSA VSA

OUTH OUTL

THH THL

BL WL

RRAM

OUTL = BL > THL
OUTH = BL > THH

if  (OUTL=1 & OUTH=0)
Cell Sensing = Pass

else
Cell Sensing = Fail



....

Write-Verify Protocol and Measurement Results

 For HRS, only one VSA is needed
 Goal: program LRS around μ and HRS above 7μ
 >85% cells can be in programmed in target
 105 speedup compared to external equipment
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Periodic Cell Refresh

 Compute mode in CIM is similar to high-stress read 
• Can cause downward cell drift, especially for HRS

 Use on-chip write-verify to periodically refresh drifted cells to maintain 
memory window
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Temperature-Independent ADC References
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Evaluation of ADC References

• Measured ADC outputs for each possible partial sum at various temperatures
• Missing codes in rigid references tuned at one temperature (e.g., at 25°C)
• All codes are retained with self-tracking on-chip references

 With on-chip references, simulated CIFAR-10 accuracy at 120°C can be 
recovered by 6% to 85.8%
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Effect of Voltage Scaling to CIM

• Voltage scaling is a popular method to toggle between high-performance mode 
and low-power mode

• Lowering supply voltage is more detrimental to voltage-mode analog CIM
• 52.4% reduction in ADC sense margins when VDD is lowered from 1V to 0.7V
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MAC-ECC: In-Situ SECDED for CIM

 MAC-ECC corrects digital errors based on arithmetic distance, while preserving 
CIM row-parallelism
 Example: (0111)2 and (1000)2

• Hamming distance: 4; Arithmetic distance: 1

16

Calculate 
Syndrome

Decode

Compute
In Memory

1

2

3

4

Obtain output vector y through asserting WLs with 
input vector; y may contain one or multiple errors

= β-s

ECC Procedure

Encode
Parity

s = 0: y is error-free
s = αj for +1 error at column j

= αj for -1 error at column j
s, ≠ αj for multiple errors

Encode off-chip

During compute

Input
Vector

Data 
Array

MUX & ADC

. . .

MSB LSB MSB LSB

Parity 
Array

MAC-ECC Decode

Write-Verify

Shift & Add with Correct 

Digital

Analog

. . .

. . . . . .

. . .

. . .

. . .

. . .

Output

MUX & ADC

Accumulate



....

Measurement and Simulation Results

 ADC errors can be reduced after applying MAC-ECC at each tested VDD
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 At 0.7V, original CIFAR-10 accuracy loss of 6.3% may be recovered to 1.1% with 
MAC-ECC
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Iso-Accuracy Voltage Scaling

 Target is to keep accuracy loss across different VDDs below 1%
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Summary

 Efficient and PVT-robust RRAM-CIM prototype chip was taped-out in TSMC N40 
process

 Address reliability challenges through circuit design innovations 
• Process: On-chip write-verify for tightening distributions and periodic refresh
• Temperature: Temperature-independent ADC references
• Voltage: MAC-ECC for iso-accuracy voltage scaling

 Enhance feasibility of analog CIM and provide strong foundation for the building 
blocks of emerging CIM architecture
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