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Context & objective

The growing number of sensor-based embedded systems harvesting large amounts of data, coupled with a strong demand for
processing them with Al algorithms, Is pushing energy-efficient computing architectures to be as energy-efficient as possible.
By separating processing units from storage units, traditional Von-Neumann architectures face severe latency and energy Issues,
limiting the performance of data-intensive applications. Therefore, as processors became faster and memories denser, a
processor/memory performance gap has emerged (a.k.a. memory wall). To overcome this limitation, Near-Memory Computing
(NMC) Is seen as a promising alternative since it carries out computations as close as possible to the data memory. In this poster,
we present an NMC architecture based on the Computational SRAM (C-SRAM). It allows an optimized coupling between an
SRAM and a Vector Processing Unit (VPU) executing a custom Instruction Set Architecture (ISA) (grouping a subset of energy-
optimized matrix/vector operations and requiring a specific programming model). Thus, the C-SRAM can be used either as a
programmable vector co-processor driven by the host scalar processor or as a low-latency SRAM (e.qg. scratchpad or tightly
coupled memory) the rest of the time.

Computational SRAM Description
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#1 Sensor data applications (Al-oriented)
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4 Data security applications (e.g. PQC)
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Conclusion Perspectives
Close HW/SW co-design enables the implementation of a * [Implement macro instructions in C-SRAM to further
C-SRAM-based NMC architecture that can be used either as a reduce CPU workload and increase energy efficiency
vector co-processor or as a low-latency memory. The only role while limiting C-SRAM access congestion.
of the host processor Is to send specific instructions to the * Implement a specific DMA to minimize consumption
C-SRAM, which executes them through a local 6-stage pipeline. related to data transfers from/to the C-SRAM.

* Co-Iintegrate C-SRAM as a computational buffer of
Serial NVM for smart data logging applications.
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