Computational SRAM: Towards Efficient Near-Memory
Computing through Tightly Coupled HW/SW Design

J.-P. Noel, T. Bricout, H.-P. Charles, L. De La Fuente, B. Giraud, M. Kooli, B. Lacour, M. Pezzin, M. Ramirez Corrales, E. Valea
Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

jean-philippe.noel@cea.fr

Context & objective

The growing number of sensor-based embedded systems harvesting large amounts of data, coupled with a strong demand for
processing them with Al algorithms, Is pushing energy-efficient computing architectures to be as energy-efficient as possible.
By separating processing units from storage units, traditional Von-Neumann architectures face severe latency and energy Issues,
limiting the performance of data-intensive applications. Therefore, as processors became faster and memories denser, a
processor/memory performance gap has emerged (a.k.a. memory wall). To overcome this limitation, Near-Memory Computing
(NMC) Is seen as a promising alternative since it carries out computations as close as possible to the data memory. In this poster,
we present an NMC architecture based on the Computational SRAM (C-SRAM). It allows an optimized coupling between an
SRAM and a Vector Processing Unit (VPU) executing a custom Instruction Set Architecture (ISA) (grouping a subset of energy-
optimized matrix/vector operations and requiring a specific programming model). Thus, the C-SRAM can be used either as a
programmable vector co-processor driven by the host scalar processor or as a low-latency SRAM (e.qg. scratchpad or tightly
coupled memory) the rest of the time.

Computational SRAM Description

C Y . D . C-SRAM
ategory nemonic escription VB0 SRAM
copy Copy a line into another -
Memory Dbcast Broadcast 8/16/32-bit value to the whole Line Host <3E. < Memory
nswap Horizontal 32/64-bit word swap processor array
| slli, srli Shift Left or Right Logical Immediate
Logical _ _ VL i1
(n)and, (n)or, (n)xor Logical AND, OR & XOR (and negation) Pipeline ‘. > Reciid/W“te
. troll ogIc
add, sub Arithmetic 8/16/32-bit addition & subtraction — | :
Arithmetic mullo, mulhi Arithmetic 8-bit integer Multiply E I:
maclo Arithmetic 8-bit integer Multiply-Accumulate < System bus >
I Fig. 1. C-SRAM Instruction Set Architecture. I Fig. 2. Overview of the proposed C-SRAM-based system.

SW Compiler & Programming Model | Application Domains & Results

#1 Sensor data applications (Al-oriented)
int 32 1 subImage(int([] 16 8 a, int[] 16 8 b, int[] 16 8 res, int 32 1 len))
{ Algorithm Bytes per word OPS per Byte
int 32 1 i; // int 321 [RISC-V register ImageDiff g 1.0
f/ int[] 16 B = array of C-SRAM lines _
for (i =0; i <len; i =i + 1) // Control done on RISC-V ImagePixelSum 16 0.5
{ | | | Sobel Filter 16 3.0
res[i] = a[i] - b[i];: // Workload done on C-SRAM
} I Fig. 4. OpenCV benchmarks contained in HybroGen compiler.
}
return O; _ _ _
4 Data security applications (e.g. PQC)
Fig. 3. HybroGen compiler generate heterogeneous code for the control part (CPU) and the > Matrix product = Other operations
workload (C-SRAM). '
()
g 1
Open source SW compiler Open source C-SRAM emulator S 0 x0.88
El 52%
()
% 0.6
K 87%
N0.4
- x0.24
9 13%
C-SRAM as data memory C-SRAM as co-processor
HybroGen QEMU Plugin I Fig. 5 FrodoKEM-640 normalized execution times in C-SRAM
as data memory (left) and as vector co-processor (right).

Conclusion Perspectives
Close HW/SW co-design enables the implementation of a * [Implement macro instructions in C-SRAM to further
C-SRAM-based NMC architecture that can be used either as a reduce CPU workload and increase energy efficiency
vector co-processor or as a low-latency memory. The only role while limiting C-SRAM access congestion.
of the host processor Is to send specific instructions to the * Implement a specific DMA to minimize consumption
C-SRAM, which executes them through a local 6-stage pipeline. related to data transfers from/to the C-SRAM.

* Co-Iintegrate C-SRAM as a computational buffer of
Serial NVM for smart data logging applications.

1 M. Kooli et al., “Towards a Truly Integrated Vector Processing Unit for Memory-bound Applications Based on a Cost-competitive Computational SRAM Design Solution”, ACM JETC, Vol. 18, Issue 2, No. 40, 2022, pp. 1-26. S 't O r AH e
2 J.-P. Noel et al., “A 35.6 TOPS/W/mm2 3-stage pipelined computational SRAM with adjustable form factor for highly data-centric applications”, IEEE SSCL, Vol. 3, 2020, pp. 286—-289. —

This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No
4 M. Kooli et al., “Smart instruction codes for in-memory computing architectures compatible with standard SRAM interfaces”, DATE Conference., 2018, pp. 1634—1639. ;‘j&f;’(jj’j h The 10 recelves support from the
innovation program in France, Belgium, Czech
Republic, Germany, Italy, Sweden, Switzerland,
Turkey.

3 J.-P. Noel et al., “Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing”, DATE Conference, 2020, pp. 1187-1192.

