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Abstract
Since performance improvements of computers are stagnating,
new technologies and computer paradigms are hot research topics.
Memristor-based In-Memory Computing is one of the promising
candidates for the post-CMOS era, which comes in many flavors.
Processing In memory Array (PIA) or using memory, is on of them
which is a relatively new approach, and substantially different
than traditional CMOS-based logic design. Consequently, there
is a lack of publicly available CAD tools for memristive PIA de-
sign and evaluation. Here, we present ATOMIC: an Automatic
Tool for Memristive IMPLY-based Circuit-level Simulation and
Validation. Using our tool, a large portion of the simulation, eval-
uation, and validation process can be performed automatically,
drastically reducing the development time for memristive PIA sys-
tems, in particular those using IMPLY logic. The code is available
at https://github.com/fabianseiler/ATOMIC. 1
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1 Motivation
With the stagnating computer performance, there is a rising em-
phasis on new computing technology and paradigms such as In-
memory Computing (IMC) with memristors and the approximation
of calculations or Approximate Computing (AxC). Memristor-based
In-Memory Computing is one of the promising candidates for the
post-CMOS era, which comes in many flavors. Processing In mem-
ory Array (PIA) or using memory, is on of themwhich is a relatively
new approach, and substantially different than traditional CMOS-
based logic design. Consequently, there is a lack of publicly available
CAD tools for memristive PIA design and evaluation. We illustrated
the typical development process for (approximated) algorithms for
IMPLY, a common logic form for memristive computing, in Figure 1.
When carried out manually, the process can take multiple hours to
days, even for experienced researchers. [1]

Since there is a lack of available tools that help automate the de-
velopment we propose ATOMIC, an automated Python tool based
on the PyLTSpice framework. With this tool, a large portion of
the validation, simulation, and evaluation process, as well as the
processing and illustration of the data, is now completely auto-
mated. Since real-world memristors experience non-idealities such

1This manuscript was written as a technical document corresponding to the ATOMIC
project. This project was submitted and presented at the Embedded System Software
Competition (ESSC) 2024 at ESWEEK. This project was developed for two recent
papers [1, 2]. It was made public to present the community with a useful tool for
memristive PIA design. If you have found this project useful or included it in another
project please refer to this manuscript and the papers it was developed for.
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Figure 1: Design process for (exact and approximated) algo-
rithms in memristive IMPLY logic. The blocks in green are
fully, and the blocks in orange are partially automated in
this project.

as variation, studying their effect is an important topic. The devia-
tion of the memristor’s resistive state is one of the most important
variations that is often disregarded in many State of the Art (SoA)
papers. Therefore, we placed a strong emphasis on this topic to
facilitate simulation and evaluation of memristive circuits under
such variations. We approached this project in a generic fashion
to allow compatibility with exact and approximated algorithms in
various topologies and provide an environment that can be easily
expanded to beyond what is presented here.
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Figure 2: Overview of the ATOMIC pipeline and dataflow.

2 Overview of ATOMIC
In this section, we will give an overview of the project structure and
briefly explain the functions of the individual classes. The project
was written in Python and consists of four classes: Functional Val-
idation, Control Logic Generator, Simulator, and Plotter. We also
implemented a logger in a singleton design pattern that is embedded
in all classes to store information vital for debugging. An overview
of the information and process flow is illustrated in Figure 2.

2.1 Files
2.1.1 Inputs Files. For this project, two files have to be configured
beforehand. The first one is the “config” file where the essential
information of the algorithm, used topology, required memristors,
and expected outputs are stored in JSON format. The exact sequence
of the algorithm has to be stored in an additional plain-text file.
The specific format for each of the implemented topologies will be
explained in more detail in Section 3.

2.1.2 Pre-configured Files. We stored important information such
as the memristors, switches, and corresponding control voltages for
each implemented topology in JSON files. Since the simulations are
based on SPICE, we prepared circuit (.asc) and netlist (.net) files for
each topology. The IMPLY-specific parameters are configured with
values commonly used in the SoA. They can be adjusted quickly
in the “IMPLY_parameters.json” file. All of the pre-configured files
can be found in the “Structures” folder.

2.1.3 Outputs Files. Since ATOMIC automatically evaluates many
steps in the design process we store intermediate and final results
to allow for easy debugging. All intermediate and final results are
stored in sub-folders of the “outputs” folder. More details on the
individual result files can be found in the class description that
creates them.

2.2 Classes
2.2.1 Functional Validation. The first class in the pipeline is re-
sponsible for the creation of a state model and the validation of
the functionality for the given algorithm. From the configuration
file, the number of inputs and outputs are extracted, and logic vec-
tors that represent each input combination are initialized. With the
method calc_algorithm, each line of the algorithm files is read
and processed. Depending on the topology, this method extracts
information from each line and creates either IMPLY or FALSE
operations. These operations are then applied to the state model
in a vectorized fashion via imply_op and false_op. The operation
and updated state model are stored in the “State_History.txt” file
for later examination. At the end of the algorithm, the equivalence
of the expected and simulated logic vectors is checked.

2.2.2 Control Logic Generator. This class is responsible for generat-
ing control logic in the form of PWM signals, that are then applied
in the SPICE simulation. When initialized the class creates “.csv” for
each memristor and switch that is used in the given algorithm and
stores them in the “PWM_output” folder. The method eval_algo
iterates over every step in the algorithm file and stores time steps
for each memristor and switch individually. The parameters like cy-
cle time and control voltages for different operations are read from
the “IMPLY_parameters.json” file. After the last step the complete
PWM signal is written in the previously created files.

2.2.3 Simulator. The simulator class is responsible for manipulat-
ing netlists, simulations with LT-SPICE, and calculating the energy
consumption. When initialized, the parameters of the configura-
tion and the topology file are extracted, and the netlist is selected
with the SpiceEditor class from the PyLTSpice framework. With
the set_parameters method, a list of parameters in the format
param_values:= list(memristor values, R_on, R_off) is ac-
cepted as an input and the netlist is manipulated accordingly. But in-
stead of changing our preset netlist, we store the intermediate netlist
and the other manipulated simulation files in a temporary folder
to allow for better debugging. With the method run_simulation
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a transient (as configured) simulation with SPICE is started. The
resulting waveforms can be extracted with read_raw and saved as
a file with save_raw. The energy consumption is calculated with
calculate_energy. With the method evaluate_deviation we
automated resistive deviation experiments that calculate different
input combinations. For each input, the state deviation of memris-
tors is varied, and the results are stored in the “Waveforms” folder.
Since we are interested in the state of the memristors at the end
of the algorithm, we store the resulting logic states of the output
memristors in the “deviation_results” folder. This is also done with
different combinations of resistive deviation.

2.2.4 Plotter. This class is responsible for post-processing the
simulation data and illustrating the results. The state of individ-
ual memristors in an IMPLY algorithm can vary depending on
the resistive state and its deviation. To visualize the impact of
these deviations on the algorithm we implemented the method
plot_waveforms_with_deviation that extracts the range of the
waveforms and plots the result. An example is shown in Figure 3,
where the deviation range is illustrated as the shaded area around
the exact waveform. To analyze the functionality of algorithms
with increasing deviation, the method plot_deviation_scatter
was implemented. An example plot is shown in Figure 4, where the
incorrect output states are colored red. plot_deviation_range
calculates the range of the different outputs and compares them
over increasing deviation. An example is shown in Figure 5. The
resulting figures are stored in the folder “Images”. To compare
with other algorithms the output state ranges are stored in the file
“deviation_range.txt”.

3 How to use ATOMIC
3.1 Requirements
This project was developed for Python 3.12, LT-SPICE version
17.1.6.0, and PyLTSpice version 5.3.1. The required Python packages
are summarized in the “requirement.txt” to allow for a fast setup.

3.2 Setup algorithm file
Since there is no uniform way of writing down IMPLY-based al-
gorithms, we propose a simple and easily extendable format for
storing algorithms in various topologies. Our framework is cur-
rently compatible with the serial, semi-serial, and semi-parallel
topologies but can be extended quite easily. Each section (depend-
ing on the topology) that can compute operations must be set to
either FALSE, IMPLY, or NOP (No Operation) and the sections have
to be separated by the “|” symbol. The FALSE operation can reset
up to three different memristors, which is written in the form F 𝑗
F 𝑗, 𝑘 or F 𝑗, 𝑘, 𝑙 where 𝑗 , 𝑘 , and 𝑙 correspond to the number each
used memristor is given. The IMPLY operation is written as I 𝑗, 𝑘 ,
which is equal to the operation𝑀′

𝑘
= 𝑀𝑗 → 𝑀𝑘 where memristor 𝑗

implies memristor 𝑘 . The memristor number resembles an enumer-
ation of a list of used memristors (e.g. ["a", "b", "c", "w1"] have the
numbers [0, 1, 2, 3] so the operation “I0,2” is equal to 𝑐′ = 𝑎 → 𝑐).
We implemented a few SoA IMPLY algorithms to give the user a
reference on how the algorithms can be written in each topology.

3.3 Setup config file
The configuration file has to be created separately for each algo-
rithm. It contains information on the algorithm’s intended behavior
and declares the use case of each memristor. Additionally, the ex-
pected output states have to be declared to allow for validation of
the algorithm’s functionality via the state model or on circuit-level.
We kept this configuration as general as possible to also allow ap-
proximated algorithms in various forms. We prepared a template
here and in the project files to speed up the preparation. The unfilled
template can be seen here:

{
"topology": "",
"algorithm": "",
"memristors": ["", "", "", ""],
"inputs": ["", "", ""],
"work": [""],
"outputs": ["", ""],
"switches": ["", "", "", ""],
"steps": ,
"output_states": {"": [0,0,0,0,0,0,0,0],

"": [1,1,1,1,1,1,1,1]}
}

The topology name must be either be “Serial”, “Semi-Serial”, or
“Semi-Parallel” and the algorithm should be the name of the pre-
pared algorithm file. In “memristors” the name of all used memris-
tors must be declared. If they are used as input, work, or output
they have to be declared in the corresponding place. We note here
that memristors can be used for both input and output, as well as
work and output, as this is a common design property of SoA IMPLY
algorithms. In “switches” each used switch has to be declared, as
they can vary between algorithms. More information on the avail-
able switches and memristors for each topology can be found in
the “Structures” folder. “output_states” is a dictionary that includes
the name of the outputs and the expected bit vectors. The number
of outputs is variable to allow for a more flexible design, which
is necessary in this design space. More information and example
algorithms can be found in the project.

3.4 Run the pipeline
We implemented two variants on how an algorithm can be evalu-
ated. The first one is a Jupyter Notebook (Pipeline.ipynb) where
each step of the pipeline can be executed individually. We suggest
this method for the initial stages of the development so possible
mistakes can be better detected. When only parts of the project are
required we refer the reader to Section 2.2 for more information
on the implemented classes. To run the whole pipeline (algorithm
validation, simulation, deviation experiments, and illustration) we
prepared the command:

python Pipeline.py – config_file=CONFIG_FILENAME.json
We configured additional flags so the user can customize various
settings, which can be seen in the project. We implemented a few
SoA algorithms and corresponding configuration files, to give some
examples. To evaluate all the implemented algorithms at once, run
the command: python evalute_soa.py



ESSC’24, September 29 – October 4 2024, Raleigh, NC, USA,
Trovato et al.

Figure 3: Example waveform with a deviation of ±20% illustrated as the shaded area.

Figure 4: Scatter plot of output states with increasing deviation range. The markers in red are marked as incorrect results.

Figure 5: Range of the resulting states for each output over
increasing deviation.

4 How to extend this project
4.1 Appending topologies or other structures
We built this project in a highly modular fashion to allow for easy
extensibility. As interest in this area of research is increasing we
also expect many new topologies and algorithms to be published.
We marked areas where new topologies can be added in all imple-
mented classes. It is also required to create a new circuit with the
used naming convention for all circuit elements and to parameterize
them like the implemented topologies. To append new topologies
or other memristive structures to the functional validation module,
add a new branch in FunctionalValidation.calc_algorithm()
that converts the algorithm to IMPLY and FALSE commands. Since
the control logic can differ drastically between topologies, the cre-
ation of PWM signals is highly specific. We recommend that a new
method: ControlLogicGenerator.write_timestep_TOPOLOGY

is created and the specifics are handled there. We again marked
the spaces where branches should be added in all methods. As the
simulator only manipulates the netlist and runs SPICE commands,
not much change is required for new topologies. We note here that
the calculate_energy() and evaluate_deviation functions are
limited to three inputs by design since we only evaluated adder
circuits. To run simulations with arbitrary inputs first prepare a
list of parameter values and then utilize the run_simulation and
save_raw methods to simulate certain inputs and store the result-
ing waveforms. In the plotter module all methods are generalized
for an arbitrary number of output states. We note here that the
figure size may have to be adjusted.

4.2 Other logic forms and memristor model
There exist various forms of logic for memristive circuits. To add
other logic forms, the operational functions of the Functional Vali-
dation class must be extended to subject to the new logic. As the
Control Logic Generator class is designed for IMPLY, another class
that handles the generation of PWM signals would be the best
option. The Simulator and Plotter can handle arbitrary logic forms.

To utilize another model for memristors, the sub-module in the
selected topology has to be exchanged. As thesemodels use different
parameters, themethod Simulator.set_parameters() and all the
dependent methods must also be updated accordingly. [1]
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