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Abstract— This study introduces a novel dual-path deep
learning framework using Photoplethysmogram (PPG) sig-
nals to address key challenges in continuous, non-invasive
cuffless Blood Pressure (BP) monitoring. To this end, we
introduce -for the first time- the use of two novel deep
neural network architectures: Conformer-Transformer and
1D Swin Transformer. These architectures are adapted here
to model both the morphological structure and rhythmic dy-
namics of PPG signals. This cross-domain transfer enables
Arterial Blood Pressure (ABP) waveform reconstruction
and significantly improves the accuracy and physiological
consistency of Systolic Blood Pressure (SBP) and Diastolic
Blood Pressure (DBP) estimation. Extensive experiments
on two public datasets demonstrate that our methods con-
sistently outperform mainstream baselines across multi-
ple key metrics. Specifically, the Conformer-Transformer
achieved the lowest Mean Absolute Error (MAE) of 2.979
mmHg for systolic and 1.603 mmHg for diastolic BP, im-
proving upon previous studies by 9.6% and 8.4%, respec-
tively, while delivering the best waveform reconstruction
performance too. The Swin Transformer achieved a systolic
MAE of 3.034 mmHg and a diastolic MAE of 1.714 mmHg. All
experimental results conform to the British Hypertension
Society (BHS) grade A and Association for the Advance-
ment of Medical Instrumentation (AAMI) standards.

Index Terms— Arterial blood pressure, conformer, cuf-
fless blood pressure estimation, photoplethysmogram,
swin transformer

I. INTRODUCTION

According to the World Health Organization’s Global Report
on Hypertension, it now affects over 1.3 billion people and is
responsible for approximately 10 million deaths annually [1].
Related complications, such as cardiovascular, cerebrovascular,
ocular, metabolic, and other systemic effects, remain a leading
cause of global mortality and morbidity [2]. Thus, the need
for reliable and continuous Blood Pressure (BP) monitoring
is critical to enable early detection, timely intervention, and
effective management of hypertension-related health risks.

Compared to discrete BP estimation, continuous monitoring
can contribute to long-term BP trends detection and offer
deeper clinical insight. However, current mainstream methods
still rely on cuff-based and intermittent devices [3]. While
widely accepted, for out-of-the-lab and in-home monitoring,
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these tools face clear limitations, including user inconvenience,
sleep disruption, movement restrictions, and discomfort [4]. As
a result, both academia and industry have turned to wearable,
cuffless, and non-invasive approaches for continuous BP mon-
itoring. Among these, techniques leveraging the correlation
between Pulse Transit Time (PTT) or Pulse Arrival Time
(PAT) and BP have shown particular promise. These methods
require the acquisition of signals from two sites to estimate
vascular transit times, most commonly achieved through the
simultaneous measurement of Photoplethysmogram (PPG) and
Electrocardiography (ECG) [5]. These systems enable fine-
grained temporal tracking of BP and show promise for early
identification of pathological patterns [6]. However, obtaining
stable and low-noise ECG signals in real-world settings re-
mains a persistent technical challenge [7]. PPG offers several
advantages: it is non-invasive, easy to acquire, low-cost, and
well-suited to wearable form factors [8], making it a com-
pelling single-modality signal source for continuous, cuffless
BP estimation.

Traditional machine learning methods played an early role
in cuffless BP estimation [9]. While handcrafted feature-based
algorithms showed some promise under certain conditions,
they often struggle to model the complex and variable nature of
PPG signals, especially in capturing long-term dependencies
and nonlinear interactions. Moreover, their generalizability
across datasets remains weak. We believe that improving the
accuracy of cuffless BP estimation requires not only more
advanced model architectures but also a deeper understanding
of the two core types of information embedded in PPG: mor-
phological features and inter-cycle rhythm dynamics. However,
most existing deep learning approaches tend to focus on only
one of these aspects, and few are designed to capture both.

To address this gap, we explore the potential of cross-
domain architectural transfer for physiological signal model-
ing. Specifically, we propose a dual-pathway modeling strategy
for PPG: Conformer-Transformer architecture: By com-
bining local convolutional layers and global attention mech-
anisms, this design can jointly extract morphological and
rhythmic features. A Transformer decoder then reconstructs
the ABP waveform and estimates corresponding BP. Swin
Transformer architecture: A hierarchical window-based at-
tention mechanism is used to extract multi-scale morphological
structures from the PPG signal. Through sliding window
operations, the model performs cross-cycle modeling, enabling
ABP reconstruction and SBP/DBP estimation.
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Fig. 1. Overall framework of our proposed method.

Fig. 1 introduces the overall framework of our work. The
main contributions of our work are as follows: a) To the best
of our knowledge, this is the first work to introduce Conformer
and Swin Transformer architectures for cuffless BP estimation.
b) We propose a dual-output learning objective that enables
simultaneous ABP waveform reconstruction and SBP/DBP
value regression, thereby enhancing the clinical interpretability
of predictions. c) We analyze the representational demands of
PPG signals in terms of both morphology and rhythm, and
propose a structure-aware framework to address them jointly.
d) We provide insight into structure-task alignment, demon-
strating that the Conformer-Transformer excels in long-term
BP rhythm modeling and ABP waveform reconstruction, while
the Swin Transformer offers superior estimation accuracy and
robustness, making it suitable for lightweight deployment.

II. RELATED WORK

The following representative works on cuffless BP monitor-
ing based only on PPG signals: El-Hajj and Kyriacou used
a BiLSTM-Attention model capturing temporal patterns, it is
effective in short-term but weak in rhythm continuity [10].
Hasanzadeh et al. built a feature-based ML framework, which
is accurate but dependent on handcrafted features and lacks
scalability [11]. Haddad et al. designed a lightweight deep
model for edge use, but with limited rhythm and continuity
modeling [12]. Wang et al. applied visibility graphs with
transfer learning, which comes with extra complexity and risk
of information loss [13]. Kim et al. proposed DeepCNAP
for ABP regression that is highly accurate but sensitive to
shifts and waveform diversity [14]. Qiu et al. created a
hybrid regression–piecewise model with balanced accuracy
and efficiency, but weaker for dynamic rhythms [15]. Ma
et al. introduced KD-Informer with long-term attention for
PPG-to-ABP, improving fidelity but needing simplification
for deployment [16]. Leitner et al. used transfer learning for
personalized BP, promising in small samples but dependent
on pretraining data [17]. Panwar et al. proposed PP-Net, a
compact CRNN for joint SBP, DBP and Heart Rate (HR)
estimation from PPG, with good deployability but sensitive
to noisy input [18].

Despite progress, prior approaches share several limitations:
they often model either temporal dynamics or handcrafted

Fig. 2. Distribution of used datasets for SBP and DBP.

morphology alone. Lightweight designs improve deployability
but weaken the capture of long-term dependency. Visibility
graphs and transfer learning add complexity and risk infor-
mation loss. Many deep models achieve short-term accuracy
yet struggle with variability, noise, and generalization. Here,
we propose a dual-path framework to jointly capture fine-
grained PPG morphology and long-range rhythmic dynamics,
thereby improving waveform fidelity, BP estimation accuracy,
and robustness in a physiologically consistent manner.

III. MATERIALS AND METHODS

A. Datasets
1) UCI-BP Dataset: It is sourced from the University of

California, Irvine (UCI) Machine Learning Repository, and
originates from a curated subset of the MIMIC-II Waveform
Database [19]. It consists of 12,000 recordings, each ranging
from 8 to 592 seconds. All records include synchronized PPG,
ECG, and ABP signals sampled at 125 Hz. The ABP signals
are acquired via invasive radial arterial catheterization, which
is widely regarded as the clinical gold standard for continuous
and high-precision BP monitoring.

2) MIMIC-BP Dataset: MIMIC-BP is derived from the
MIMIC-III Waveform Database Matched Subset and is curated
for cuffless BP estimation [20]. It includes data from 1,524
Intensive Care Unit (ICU) patients, with each subject con-
tributing 30 segments of 30-second synchronized recordings.
Each segment contains ABP, PPG, ECG, and Respiration
(RESP) signals, all sampled at 125 Hz, yielding over 380
hours of physiological data in total. The latest release expands
subject diversity and measurement conditions, providing a
high-temporal-resolution benchmark. In all experiments, we
use PPG-only input; for both datasets, BP labels are derived
from invasively measured ABP waveforms, ensuring accuracy
and real-time reliability.

Fig. 2 shows the distributions of the two selected dataset.

B. Data Preprocessing
1) Dataset Preprocessing: Each dataset was split into train-

ing, validation, and test sets with an 8:1:1 ratio at the recording
level, ensuring that no segment from the same sequence
appeared across different splits. For UCI-BP, all recordings
(8–592 s) were retained without any length-based exclusion.

2) Signal Preprocessing: The UCI-BP dataset was provided
with preprocessing by the authors [19], including smoothing,
removal of blocks with abnormal BP or HR, elimination of
unresolved discontinuities, and autocorrelation filtering for
pulse-to-pulse variability. For MIMIC-BP, we applied ad-
ditional denoising: PPG signals were filtered with a 3rd-
order Butterworth band-pass (0.5–8 Hz) and smoothed with a
moving average, while ABP signals were filtered with a 2nd-
order Butterworth (0.4–12 Hz) and the same smoothing. A
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Fig. 3. Raw and preprocessed PPG of a MIMIC-BP sample.

low-pass branch was further designed to extract ABP baseline
components. The comparison of PPG signals before and after
filtering is shown in Fig. 3.

3) Alignment: For training and validation sets, ABP and
PPG signals were aligned using cross-correlation by shifting
ABP to maximize correlation with PPG. No alignment was
applied to the test set to preserve independence.

4) Segmentation: Aligned PPG and ABP signals were
segmented into fixed 2-second non-overlapping windows at
125 Hz. Fragments shorter than one window were discarded, as
a 2-second window typically covers at least one cardiac cycle
and preserves key waveform features for BP estimation [21].

5) Normalization: For PPG inputs, z-score normalization
was applied independently in training, validation, and test sets
using each segment’s mean and standard deviation, avoiding
data leakage. For ABP in the training set, per-segment z-
score normalization stabilized training and unified the dy-
namic range. During inference, predicted ABP waveforms were
rescaled to original amplitude, while ABP signals in the test
set remained unprocessed as reference labels.

C. Model Architecture

PPG is a nonlinear and non-stationary pulsatile wave-
form [22]. Accurate BP estimation therefore requires not only
capturing the morphological features but also modeling the
rhythm dynamics across cycles. We argue that effective PPG
modeling should go beyond predicting BP values alone. It
should uncover the internal structure of the signal and extract
multi-scale and multi-modal representations that reflect under-
lying physiological changes. Hence, we explore two structure-
aware deep neural architectures:

1) Conformer-Transformer Model for ABP Waveform Estima-
tion: To effectively capture both multi-scale morphological
patterns and temporal dependencies embedded in PPG sig-
nals, we propose a deep regression architecture based on a
Conformer-Transformer structure for continuous ABP wave-
form estimation. This model consists of two main components:
a Conformer-based encoder [23] and a Transformer-based
decoder. The complete model structure is shown in Fig. 4.

a) Encoder, Conformer Blocks: The Conformer block inte-
grates Multi-Head Self-Attention (MHSA) and convolutional
modules, sandwiched between two Macaron-style feed-forward
networks (FFNs). This enables joint modeling of global rhyth-
mic dependencies and local waveform features.

Fig. 4. Architecture of the Conformer-Transformer model.

The output of each Conformer block 𝑦𝑖 is:

𝑥𝑖 = 𝑥𝑖 +
1
2

FFN(𝑥𝑖) (1)

𝑥′𝑖 = 𝑥𝑖 + MHSA(𝑥𝑖) (2)
𝑥′′𝑖 = 𝑥′𝑖 + Conv(𝑥′𝑖) (3)

𝑦𝑖 = LayerNorm
(
𝑥′′𝑖 + 1

2
FFN(𝑥′′𝑖 )

)
(4)

where, MHSA captures global periodic structures with relative
position bias; The convolution module includes GLU, 1D
depthwise convolution, batch normalization, and Swish; Two
FFNs are placed before and after attention–convolution blocks
for balanced nonlinearity. This enables the encoder to extract
both local waveform morphology and long-range dynamics.

b) Decoder, Transformer Decoder: The Transformer de-
coder is composed of a stack of layers, each containing
Masked Multi-Head Self-Attention (auto-regressive modeling),
Encoder-Decoder Cross Attention (context fusion from en-
coder outputs), and Position-wise Feed Forward Network (non-
linear transformation). Each sublayer is wrapped with residual
connection and LayerNorm, i.e.,

Output = LayerNorm(𝑥 + Sublayer(𝑥)). (5)

The decoder first performs masked attention over previously
generated outputs, then applies cross-attention to integrate the
encoder-derived PPG context. Finally, each time step’s hidden
vector is passed through a sequence-wise linear projection to
yield the predicted ABP waveform.

c) Input and Output Definition: PPG sequence of length 𝑇 ,
denoted as 𝑋 ∈ R𝑇 is the input and Predicted ABP waveform
𝑌 ∈ R𝑇 is the output. The model is trained via the mean
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TABLE I
SUMMARY OF MODEL STRUCTURES AND HYPERPARAMETERS

Hyperparameter Value/Setting (Conformer) Value/Setting (Swin1D)

Optimizer / Learning Rate AdamW, lr = 3×10−4 AdamW, lr = 3×10−4

Batch Size / Epochs batch = 128, epochs = 50 batch = 128, epochs = 50
Loss Function Huber loss (𝛿 = 1.0) Huber loss (𝛿 = 1.0)
Model Scale Encoder: 4 Conformer blocks (d

= 128, heads = 8, kernel = 31);
Decoder: 4 Transformer blocks

1D Swin Transformer, 4 layers, d
= 128, heads = 8

Input Window Size 2-s segments @ 125 Hz 2-s segments @ 125 Hz

Fig. 5. Structure of Swin1D Block.

squared error (MSE) loss:

LMSE =
1
𝑇

𝑇∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2, (6)

where Y and Ŷ are the reference ABP and the predicted
waveform, respectively. Table I shows an overview of the
model structure and hyperparameters.

2) 1D Swin Transformer-Based Model for ABP Estimation:
Our second model adopts a 1D Swin Transformer archi-
tecture [24], which enables end-to-end regression from raw
PPG signals to ABP waveforms. We restructured the Swin
Transformer from its original 2D-vision design into a one-
dimensional hierarchical architecture tailored for PPG-based
blood pressure estimation. This adaptation enables effective
multi-scale temporal modeling, where short windows capture
single-beat details and long windows integrate cross-beat dy-
namics, enhanced by a shifted-window mechanism for reliable
estimation. Each Swin1D Block consists of two sub-blocks,
and its structure is shown in Fig. 5:
• 1D Window-based Multi-Head Self-Attention (W-MSA):

Performs self-attention within non-overlapping windows to
capture localized features.

• 1D Shifted Window Multi-Head Self-Attention (SW-MSA):
Shifts the window partition to enable cross-window interac-
tion and enhance global receptive fields.
Both sub-blocks follow the standard transformer module

pattern: LayerNorm (LN); Attention module (W-MSA or
SW-MSA); Residual connection; LN; Two-layer Multi-Layer
Perceptron (MLP) module; Residual connection. The final
sequence representation Z ∈ R𝑇×𝑑 from the last Swin1D Block
is projected through a Linear Projection layer to generate the
output ABP waveform Ŷ ∈ R𝑇×1, matching the original input
length.

This architecture allows the model to jointly capture the
morphological characteristics and rhythmic dynamics, pro-
viding a dual-perspective modeling strategy for the complex
structure of PPG signals. Table I shows a summary of the
model structure and hyperparameters.

D. Performance Evaluation
To comprehensively assess model performance, we em-

ployed multiple standard evaluation metrics, including the

TABLE II
BHS GRADING CRITERIA

≤5 mmHg ≤10 mmHg ≤15 mmHg Grade

BHS 60% 85% 95% A
50% 75% 90% B
40% 65% 85% C

Pearson correlation coefficient (R), Mean Error (ME), Mean
Absolute Error (MAE), Standard Deviation (SD), and Root
Mean Square Error (RMSE). To ensure clinical relevance and
compliance, we further evaluate our models based on two
authoritative standards:
• Association for the Advancement of Medical Instrumenta-

tion (AAMI) Standard [25]: Requires that the Mean Error
(ME) should be less than or equal to ±5 mmHg and the
Standard Deviation (SD) should be less than or equal to
8 mmHg, computed over at least 255 measurements.

• British Hypertension Society (BHS) Standard [26]: Clas-
sifies performance into four grades (A–D) based on the
cumulative percentage of samples whose absolute errors fall
within 5, 10, and 15 mmHg, as shown in Table II.

IV. RESULTS AND DISCUSSION

A. Overall Performance
To evaluate the BP estimation performance of the proposed

models, we conducted systematic experiments on two author-
itative public datasets (UCI-BP and MIMIC-BP), including
comparisons with classical approaches and recent literature.
The results, summarized in Tables III – VIII, cover key
metrics, performance before and after denoising and pertur-
bation, ABP reconstruction quality, and model complexity. A
comprehensive review of these results shows the following:

Superior Prediction Accuracy and Robustness: Both
models outperform published and classical methods across
metrics. On the UCI-BP dataset, the Conformer-Transformer
achieved the lowest SBP/DBP MAE (2.979/1.603 mmHg),
improving 9.6%/8.4% over [14], with the best waveform re-
construction (MAE: 3.005 mmHg, R: 0.978). On the MIMIC-
BP dataset, it reached 3.414/1.774 mmHg, while the Swin
Transformer showed comparable DBP accuracy and even lower
ME, indicating robustness to noise. As shown in Tables V,
performance remained strong on raw PPG signals and further
improved after denoising (e.g., Conformer-Transformer re-
duced SBP RMSE from 5.722 mmHg to 4.484 mmHg). These
results confirm strong accuracy and robustness, especially for
systolic prediction.

Generalization and Standards: Despite dataset differ-
ences, both models consistently achieved stable and superior
performance across test sets (Conformer-Transformer: R =
0.986, MAE = 2.979 mmHg; Swin Transformer: R = 0.975,
MAE = 3.526 mmHg), and consistently outperformed existing
methods on both SBP and DBP. All results satisfied the
BHS A-grade and AAMI standards, confirming their clinical
applicability.

Interpretability and Physiological Consistency: The mod-
els achieved superior ABP waveform reconstruction compared
to baseline methods, enhancing interpretability and clini-
cal consistency. They focused on physiologically meaningful
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Fig. 6. MIMIC-BP regression plots using Swin Transformer.

Fig. 7. Swin Transformer Bland-Altman plots on MIMIC-BP.

landmarks of the PPG waveform, but performance declined
when rhythmic continuity was disrupted, indicating reliance
on rhythm and confirming the physiological plausibility of the
learned features.

Efficiency and Complementary Strengths: The Swin
Transformer provides advantages in lightweight design, faster
convergence, and lower latency, making it suitable for real-time
deployment. In contrast, the Conformer-Transformer, while
more computationally demanding, achieves higher precision by
capturing long-term dependencies and fine-grained morpho-
logical features. Together, the two models offer complementary
strengths and provide practical solutions for diverse real-world
applications.

B. Correlation and Bias Analysis
As illustrated in Fig. 6, the results of the Swin Transformer

on the MIMIC-BP dataset demonstrate a high degree of consis-
tency between predicted and ground-truth values. Specifically,
the Pearson correlation coefficients for both SBP and DBP
exceed 0.95, indicating that the model effectively captures both
the overall trends and fluctuations in actual BP values. Fig. 7
further supports this finding by examining the distribution
of prediction bias. The majority of data points lie within an
acceptable deviation range of ±5 mmHg, and ME is −2.589
mmHg for SBP and 0.821 mmHg for DBP, respectively.
This suggests that the model does not exhibit any systematic
tendency toward overestimation or underestimation. It is worth
noting that similar patterns were consistently observed across
all experimental settings.

C. Error Distribution and Statistical Stability Analysis
Fig. 8 presents the histograms of prediction error distribu-

tions for the two proposed models across both datasets, encom-
passing four experimental configurations in total. Overall, the
error distributions for both SBP and DBP predictions exhibit
a bell-shaped, centralized pattern, indicating that the majority
of prediction errors fall within the ±5 mmHg range. On

(a) (b)

(c) (d)

Fig. 8. The mean error distribution of two datasets’ SBP and DBP
for (a) UCI-BP using Conformer-Transformer. (b) UCI-BP using Swin
Transformer. (c) MIMIC-BP using Conformer-Transformer. (d) MIMIC-BP
using Swin Transformer.

the UCI-BP dataset, the Conformer-Transformer demonstrates
a smoother error distribution, with a slightly lower SD for
SBP compared to the Swin Transformer. This suggests a
stronger capacity for modeling complex rhythmic patterns in
populations with higher signal variability. On the MIMIC-BP
dataset, although the Conformer-Transformer achieves slightly
lower mean errors, the Swin Transformer exhibits compara-
ble performance in DBP prediction and achieves competitive
standard deviations. This suggests that the Swin Transformer
provides enhanced robustness to local fluctuations and noise,
aligning well with its lightweight, window-based attention
design. These findings validate the complementary strengths
of the two model architectures across varying populations and
data conditions, highlighting the robustness and consistency
of the proposed framework in diverse real-world scenarios.

D. ABP Waveform Reconstruction Performance
Fig. 9 illustrates the ABP waveform prediction results of the

Conformer-Transformer and Swin Transformer on the UCI-BP
dataset. The following observations can be made: Both models
closely match the key morphological features of the wave-
form, such as systolic peaks, diastolic troughs, and dicrotic
notches—across multiple cardiac cycles; Even in segments
with substantial rhythmic disturbances, the models maintain
stable tracking of the primary waveform trend. In addition,
we quantitatively evaluated the reconstructed ABP waveforms
using multiple performance metrics, as summarized in Ta-
ble VI. The results indicate that both models consistently
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TABLE III
PERFORMANCE COMPARISON AND AAMI COMPLIANCE EVALUATION OF PUBLISHED METHODS FOR UCI-BP AND MIMIC-BP

Dataset Method Model SBP (mmHg) DBP (mmHg)

R ME MAE SD RMSE AAMI R ME MAE SD RMSE AAMI

[13] Visibility Graph+CNN+Ridge Regression 0.880 0.000 6.170 8.460 8.460 Fail 0.840 0.040 3.660 5.360 5.360 Pass
[14] CNN+Transformer 0.964 1.230 3.400 5.400 5.490 Pass 0.949 -0.530 1.750 2.810 2.820 Pass
[27] RDAE – 1.648 5.424 6.640 – Pass – -1.280 3.144 3.740 – Pass

UCI-BP [28] LSTM-based Autoencoder – 4.050 4.050 4.600 5.250 Pass – 2.410 2.410 3.110 3.170 Pass
Ours Conformer-Transformer 0.986 -2.034 2.979 3.791 4.303 Pass 0.979 0.426 1.603 2.354 2.362 Pass
Ours Swin Transformer 0.982 -1.394 3.034 4.236 4.459 Pass 0.978 0.465 1.714 2.482 2.525 Pass

CNN 0.957 -6.686 7.015 5.319 8.544 Fail 0.962 6.494 6.544 3.103 7.198 Fail
InceptionTime 0.939 -8.553 8.985 6.270 10.605 Fail 0.949 0.980 3.205 4.072 4.188 Pass

MIMIC-BP TCN 0.942 -7.410 7.861 6.171 9.643 Fail 0.971 0.052 2.369 3.167 9.643 Pass
Ours Conformer-Transformer 0.978 -2.587 3.414 3.652 4.484 Pass 0.985 0.654 1.774 2.318 2.419 Pass
Ours Swin Transformer 0.975 -2.589 3.526 3.925 4.707 Pass 0.985 0.821 1.843 2.353 2.496 Pass

TABLE IV
COMPARISON WITH THE BHS STANDARD ON TWO DATASETS

Dataset Method Model SBP (%) DBP (%)

≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg BHS-Grade ≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg BHS-Grade

[13] Visibility Graph+CNN+Ridge Regression 53.46 81.15 92.43 B 75.72 95.04 98.56 A
[14] CNN+Transformer 80.69 94.56 97.57 A 94.07 98.70 99.65 A
[27] RDAE 58.50 85.60 95.00 B 81.50 96.40 99.00 A

UCI-BP [28] LSTM-based Autoencoder 70.60 94.10 98.60 A 91.10 99.10 99.80 A
Ours Conformer-Transformer 83.10 96.50 99.10 A 96.30 99.50 99.90 A
Ours Swin Transformer 82.40 95.90 98.70 A 95.70 99.50 99.80 A

CNN 39.10 75.70 94.40 D 29.10 88.60 99.60 D
InceptionTime 26.60 61.40 85.60 D 80.90 97.20 99.60 A

MIMIC-BP TCN 35.40 71.00 88.60 D 90.20 99.10 99.80 A
Ours Conformer-Transformer 77.10 96.60 99.50 A 96.40 99.60 99.90 A
Ours Swin Transformer 76.00 95.60 99.30 A 95.90 99.60 99.90 A

TABLE V
PERFORMANCE COMPARISON ON THE MIMIC-BP DATASET BEFORE

AND AFTER SIGNAL PREPROCESSING

Method Model SBP (mmHg) DBP (mmHg)

MAE RMSE MAE RMSE

Raw signal Conformer-Transformer 4.399 5.722 1.909 2.542
Denoised Conformer-Transformer 3.414↓ 4.484↓ 1.774↓ 2.419↓

Raw signal Swin Transformer 4.471 5.865 1.940 2.548
Denoised Swin Transformer 3.526↓ 4.707↓ 1.843↓ 2.496↓

outperform baseline models on both the UCI-BP and MIMIC-
BP datasets. Notably, the Conformer architecture demonstrates
superior performance in segments with pronounced systolic
pressure variations, owing to its capacity for modeling long-
range temporal dependencies. Since most of the other pub-
lished works using the same dataset did not perform ABP
reconstruction [13], [29], [30], we decided to use serveral
representative models as comparison.

It is worth highlighting that the proposed approach not only
reconstructs the full ABP waveform sequence but also derives
SBP and DBP values directly from it. This stands in contrast to
traditional models that regress these values independently, and
offers enhanced clinical interpretability along with improved
support for multi-task learning.

E. Model Characteristics and Performance Differences
1) Architectural Differences and Performance Characteris-

tics: Based on cross-validation, the Conformer-Transformer

TABLE VI
COMPARISON OF PREDICTED ABP WAVEFORM

Dataset Method Model MAE (mmHg) SD (mmHg) RMSE (mmHg) 𝑹

CNN 4.919 7.571 6.554 0.955
LSTM 4.884 7.800 6.801 0.952

UCI-BP Transformer 4.395 7.099 5.904 0.960
Ours Conformer-Transformer 3.005 5.356 4.303 0.978
Ours Swin Transformer 3.258 5.706 4.613 0.975

CNN 5.084 7.309 6.608 0.942
InceptionTime 6.194 8.509 7.997 0.924

MIMIC-BP TCN 5.478 7.768 7.631 0.936
Ours Conformer-Transformer 3.349 5.497 4.588 0.968
Ours Swin Transformer 3.497 5.676 4.773 0.965

achieves superior SBP prediction and ABP waveform re-
construction, highlighting its strength in modeling long-term
rhythmic dependencies by combining convolution for local
morphology with attention for global temporal structure. The
Swin Transformer performs comparably in DBP prediction

(a) Conformer-Transformer (b) Swin Transformer

Fig. 9. Comparison between the predicted and ground truth ABP
waveforms on the UCI-BP dataset.
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while offering faster inference and lower complexity, making
it suitable for resource-constrained environments and more ro-
bust to local perturbations. Overall, the two models show com-
plementary strengths—Conformer-Transformer toward rhythm
modeling and Swin toward local feature perception—providing
a foundation for future hybrid designs targeting different tasks
such as long-term forecasting or real-time tracking.

2) Model Complexity: We evaluated the training and in-
ference efficiency of the proposed models on an NVIDIA
GeForce RTX 4070 Ti SUPER, 16 GB VRAM. For a fair
comparison, we included two representative works [18], [31]
and evaluated their inference efficiency on their reported
hardware platforms. The results are summarized in Table VII.

In terms of architectural differences, PP-Net is based on
an LRCN, focusing on temporal modeling but with limited
capacity to capture complex morphological features. IMCA-
PPG leverages ResNet-50 combined with multi-head cross-
modal attention to enhance feature interactions, but at the cost
of significant computational overhead. By contrast, our two
models strike a better balance between efficiency and accu-
racy: the Conformer benefits from rhythm–morphology fusion,
whereas the Swin Transformer exploits multi-scale temporal
representation. Overall, the Swin Transformer is more suitable
for real-time deployment scenarios (e.g., wearable devices),
whereas the Conformer-Transformer is more appropriate for
tasks requiring higher precision and robustness.

3) Model Loss Curves: The training and validation loss
curves for both Conformer-Transformer and Swin Transformer
models on the MIMIC-BP dataset are shown in Fig. 10. Both
models exhibit a sharp decline in loss during the initial epochs,
followed by a stable convergence, reflecting effective optimiza-
tion. The validation curves remain slightly above the training
curves, suggesting good generalization without overfitting. No-
tably, the Conformer-Transformer converges faster and reaches
a lower final validation loss, while the Swin Transformer
converges more gradually, highlighting their trade-off between
training efficiency and robustness. It should be noted that the
loss values are computed directly from the raw model outputs,
rather than from the rescaled blood pressure predictions.

4) Interpretability through Rhythmicity and Morphological
Feature Learning: We evaluate interpretability using the Land-
mark Overlap Score (LOS), which quantifies whether salient
points fall on physiologically meaningful landmarks in the
PPG waveform. Saliency sequences were derived using Inte-
grated Gradients (IG) and Gradient-weighted Class Activation
Mapping (Grad-CAM), and the top 20% points were selected
to form Ω𝑠 . Three landmarks (foot onset, systolic peak, dicrotic

(a) (b)

Fig. 10. Learning curves on the MIMIC-BP dataset.

notch) were detected on the waveform, with ±100 ms windows
assigned as Ω𝐿 . The LOS is defined as 𝐿𝑂𝑆 =

|Ω𝑠∩Ω𝐿 |
|Ω𝑠 | .

Under random attribution, salient points are expected to be
uniformly distributed, with the expected LOS corresponding
to the proportion of landmark windows. A 2-second segment
at 125 Hz contains approximately 250 samples; each ±100 ms
window spans about 25 points, and three landmarks together
cover around 75 points (≈ 30%). Allowing for potential
window overlap, the effective coverage is estimated at 25–30%,
which defines the random baseline of the LOS.

In experiments, the Conformer-Transformer achieved
IG=0.329 and Grad-CAM=0.388, while the Swin Transformer
achieved IG=0.395 and Grad-CAM=0.382, all above the
baseline, as shown in Fig. 11. This confirms that both models
attend to physiologically meaningful landmarks rather than
arbitrary positions.

To assess whether the models rely on rhythmic continuity
across segments, we designed a rhythm perturbation experi-
ment. Specifically, while preserving the within-segment mor-
phology and the original temporal order of target labels, we
disrupted only the cross-segment rhythmic continuity on the
input side by randomly shuffling signal segments. The results
showed a significant degradation in BP estimation accuracy
after shuffling, as shown in Table VIII, indicating that the
models indeed depend strongly on rhythmic context rather than
relying solely on isolated segment morphology. Here, DCRC
refers to “Disrupting Cross-segment Rhythmic Continuity.”

V. CONCLUSION

We proposed a dual-path deep learning framework for
cuffless BP estimation using only PPG signals. By reconstruct-
ing ABP waveforms and predicting personalized SBP/DBP,
our method enables interpretable and real-time monitor-
ing. We successfully adapted Conformer-Transformer and 1D
Swin Transformer—originally developed for speech and im-
age recognition—to physiological signals. The Conformer-
Transformer excels at modeling long-range rhythm and wave-
form structure, whereas the Swin Transformer offers robust-
ness and low-latency inference suitable for wearable use.

On two public datasets, the Conformer-Transformer achieved
the lowest MAE (2.979 mmHg systolic, 1.603 mmHg dias-
tolic), improving on prior studies by 9.6% and 8.4% and deliv-
ering the best waveform reconstruction. The Swin Transformer
obtained 3.034 mmHg systolic and 1.714 mmHg diastolic
MAE with an average latency of 0.13 ms/sample, outperform-

Fig. 11. Morphological saliency analysis of PPG with landmarks using
the Swin Transformer on the MIMIC-BP dataset.
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TABLE VII
MODEL COMPLEXITY AND INFERENCE EFFICIENCY ACROSS PLATFORMS

Model Platform Architecture Model Output Inference Time (ms/sample) Sample Length Inference Time / Unit (ms/s)

PP-Net [18] NVIDIA Quadro P4000 (8 GB) LRCN SBP, DBP, HR 1.00 8 s 0.125
IMCA-PPG [31] NVIDIA A40 (48 GB) ResNet-50 + MHCA SBP, DBP 30.85 15 s 2.056

Conformer-Transformer (Our) NVIDIA GeForce RTX 4070 Ti SUPER (16 GB) Conformer SBP, DBP, ABP waveform 0.47 2 s 0.235
Swin Transformer (Our) NVIDIA GeForce RTX 4070 Ti SUPER (16 GB) 1D Swin Transformer SBP, DBP, ABP waveform 0.13 2 s 0.065

TABLE VIII
PERFORMANCE ON MIMIC-BP UNDER TWO SIGNAL CONDITIONS

(FILTERED VS. DCRC)

Model Signal SBP (mmHg) DBP (mmHg)

Condition MAE RMSE MAE RMSE

Conformer-Transformer Original 3.414 4.484 1.774 2.419
DCRC 7.941 10.369 3.952 5.263

Swin Transformer Original 3.526 4.707 1.843 2.496
DCRC 7.852 10.349 4.005 5.318

ing existing methods. All results meet BHS grade A and AAMI
standards.

These findings show that BP estimation is not merely
regression but a joint challenge of temporal modeling and
morphological analysis. The complementary strengths of both
models suggest potential for hybrid or adaptive approaches.
Future work will explore architectural integration, multimodal
fusion, and clinical translation to wearables, as well as person-
alized strategies such as subject-specific adaptation, federated
learning, and physiology-aware fine-tuning.
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