
1

High-Speed and Low-Cost In-Array Memristive
Multipliers using SIXOR and TMSL Logics

Roya Rahimi Disfani∗, Mojtaba Valinataj∗ and Nima TaheriNejad†

Abstract—Memristive systems have many promising features,
making them suitable for both storage and computation. Mem-
ristors can perform logical operations and they can be used
as the basic structures in digital circuits such as adders and
multipliers. In this paper, at first, a new fast and low-cost Full-
Adder (FA) is proposed using Single-cycle In-memristor XOR
(SIXOR) and Three Memristors Stateful Logic (TMSL) gates
that benefits from the advantages of both logics. Then, the
proposed FA is used as one of the basic units inside two new
array multipliers. The first proposed multiplier is designed in
such a way that it has the lowest computational steps (delay)
among the existing designs. This design has on average around
70% lower delay compared to the existing designs. The second
proposed multiplier, as the low-cost design, requires a very low
number of memristors thanks to reusing the existing resources
more efficiently, while still having a low delay. This multiplier
achieves on average around 36% memristor reduction compared
to the state-of-the-art multipliers. Based on the analysis, both
proposed array multipliers have notable efficiency advantages
compared to the state-of-the-art designs based on different
Figures of Merit (FoMs). For example, based on the balanced
FoM, in which the number of computational steps and the
number of required memristors have equal weight, the first and
the second proposed multipliers achieve up to 4.6× and 14.9×
improvements, respectively, compared to the existing designs in
64-bit multiplication.

Index Terms—Memristor, in-memory computation, SIXOR,
TMSL, multiplier, FA, in-array computing.

I. INTRODUCTION

Theoretical basis of memristors was first presented by
Leon Chua in 1971 [1]. However, many years later, Hewlett
Packard (HP) realized the first practical memristor in 2008 [2].
Memristor is a newly discovered passive element with varying
resistance that can hold its state. This characteristic leads
to one of the most important applications of memristors as
memory elements, and is beneficial for energy-efficient In-
Memory Computation (IMC). Data processing inside memory
with less need for data transmission between memory and
processing cores is referred to as IMC, which helps to save
energy and resources and alleviates the Von-Neumann bottle-
neck problem [3]–[5]. Moreover, memristive devices can be
used in fields like digital and analog computations [6], [7],
artificial neural networks [8]–[10], stochastic computing [11],
[12], logic circuits [13], [14], neuromorphic circuits [15], [16]
and systems [17] and brain-like computing [18], [19].

∗ The authors are with the Department of Electrical and Computer
Engineering, Babol Noshirvani University of Technology, Babol, Iran. (e-mail:
{royarahimidisfani, m.valinataj}@nit.ac.ir).
† Author is with Heidelberg University, Heidelberg, Germany and TU Wien,

Vienna, Austria. (e-mail: nima.taherinejad@ziti.uni-heidelberg.de).
(Corresponding author: Mojtaba Valinataj).

Stateful logics are one of the best candidates for IMC. In
stateful logic, input and output values are represented as the
resistance value (state) of a memristor (also called its memris-
tance) [13], [20]. Material Implication (IMPLY) [13], [20],
Three Memristors Stateful Logic (TMSL) [14], Memristor-
Aided Logic (MAGIC) [21], Fast and Energy-efficient Logic
(FELIX) [22] and Single-cycle In-memristor XOR (SIXOR)
[23] are the main stateful logics proposed so far. This kind of
logic has omitted the need for read and write to perform logical
operations or computing. This way, it achieves more reduction
in delay and energy consumption [24]. Stateful logics are
compatible with crossbar array structure for performing logical
operations or computations inside the memory array (in-array
computing).

Addition and multiplication are the most important arith-
metic operations in many types of processing. The efficiency
of a processing core or in general a computing system depends
on the performance of these units. Specifically, optimization of
the multipliers in terms of area, delay and power consumption
can highly improve the whole computing system. Concerning
memristor-based multipliers, there exist a few memristive
designs that similar to non-memristive multipliers are mainly
categorized into serial, array and parallel multipliers. Based
on the multiplier type, the cost and delay that are basically on
opposite sides can be low or high.

In this paper, we focus on designing more efficient in-array
memristive multipliers with respect to area, delay and power
consumption utilizing both SIXOR and TMSL logic gates. To
do so, a new efficient Full-Adder (FA) cell is proposed based
on a combination of SIXOR and TMSL logics. Then, it is used
inside an array multiplier, inspired by the Braun multiplier, to
obtain two new multipliers that utilize memristors more effi-
ciently thanks to reusing some memristors. This is performed,
in some computational steps, by resetting the memristance of
the memristors that have the potential of reusing in the next
computations. This way, the total number of memristors and
as a result, the total area will decrease. The main innovations
of this work can be summarized as following:

1) Proposing a more efficient FA structure based on a tuned
combination of two different logics, i.e., SIXOR and TMSL

2) Constructing two new fast and low-cost array multipliers
utilizing the proposed FA

3) Decreasing the number of required memristors by reusing
some memristors in the multiplication process while having a
higher speed compared to previous designs

The rest of this paper is organized as follows. A review
of SIXOR and TMSL memristive logics is presented in
Section II. In Section III, previous works on memristive

2

Fig. 1: TMSL, (a) circuit diagram and (b) truth-table [14].

multipliers are reviewed. The proposed FA and the proposed
array multipliers are described in Section IV. Section V
presents the simulation results, verifying the operation of the
proposed designs. Comparison with the state-of-the-art designs
is discussed in Section VI, and the paper is concluded in
Section VII.

II. MEMRISTIVE LOGICS - REVIEW

The minimum and maximum values of a memristance are
represented by Ron and Roff , respectively, and the memris-
tance can vary between these values. In Stateful logics, the
logical values are represented by the resistance of memristors.
Hence, Ron and Roff , also called Low Resistance State (LRS)
or L and High Resistance State (HRS) or H, respectively, need
to be mapped to logical values [25]. In this work, they are
assumed to be ‘0’ for HRS and ‘1’ for LRS. The ‘input values’
of stateful logics, which are the state of the memristors before
the beginning of the logical operation, are written into them
either separately (as single memory elements in a crossbar) or
are produced as the output state of previous operations. If the
output values are needed outside the array, they are read using
typical memory read-out operations.

IMPLY is the first stateful logic proposed in 2009 [13]
and is widely used in memristive stateful adders. In 2014,
MAGIC [21] was proposed to implement NOT, OR, NOR,
AND and NAND logical operations, from which only the
NOT and NOR structures are compatible with the crossbar
array. Since then, other single-cycle memristive logics have
been considered which include FELIX [22], TMSL [14] and
SIXOR [23] from 2016 to 2021. These logics are also crossbar
compatible stateful logics which can be used in the design of
various computation units such as adders and multipliers. The
logics utilized in this paper are reviewed in the following:

1) TMSL: Placing three memristors and a resistor according
to Fig. 1(a), constructs the TMSL logic gate. TMSL was pro-
posed to perform single-cycle and crossbar array compatible
AND and NAND logical operations (Fig. 1(b)). The output
state is affected by the pulse duration, resistor and amplitude
of the applied voltage sources (Vset and Vcond). Applying a
narrow high voltage pulse (Vcond) to the input memristors and
a wide low voltage pulse (Vset) to the output memristor leads
to the AND operation. Similarly, applying the voltage pulses
with the reverse properties shown in Fig. 1(a) leads to the
NAND operation.

In the TMSL logic, the out memristor is initialized to H, and
H and L are assumed as ‘1’ and ‘0’ logic values, respectively.
To perform the AND operation, the output state should be in
H only when both of the input memristors are in H (Case 0)
as shown in Fig. 1(b). The applied low voltage pulse (Vset) is

Fig. 2: SIXOR, (a) circuit diagram and (b) truth-table [23].

smaller than the threshold voltage of the out memristor (Vth)
and cannot change the output state. In other cases, at least one
of the input memristors is in L allowing the high voltage pulse
Vcond reaches to the out memristor and changes the out state
to L. Performing the NAND operation is similar to AND.

2) SIXOR: In 2021, a new single-cycle and crossbar com-
patible XOR operator called SIXOR was proposed in [23],
shown in Fig. 2(a). As depicted in Fig. 2(a), SIXOR consists
of five memristors where A and B are auxiliary memristors
(called Caux) connected to input (in1 and in2) and output (out)
memristors. The out and auxiliary memristors are initialized
to H which is assumed to be the ’0’ logic value. Thus, L
represents the ’1’ logic value in this gate.

Whenever input memristors are at the same state with the
same memristance (Case 0 and Case 3 in Fig. 2(b)), the
common node voltage (Vn) will become zero which makes
the output state remains at H. In Case 1, Vn will be equal
to -Vx. Hence, A sees 2Vx across itself which can change
the state from H to L. Meanwhile, in2 changes its state to H
due to the current passing through it. So, Vn increases to Vx,
approximately, changing the state of out to L. In Case 2, in1 is
short-circuit which means Vn=Vx that causes the output state
to change from H to L.

III. MEMRISTIVE MULTIPLIERS - REVIEW

Memristive multipliers are a significant part of memristor-
based computing systems. Compared to the existing mem-
ristive adders, there exist fewer multipliers in the literature
which are mostly IMPLY-based designs. Existing memristive
multipliers are classified as the following:

1) Shift&Add Multiplier: The IMPLY-based Shift&Add
multiplier proposed in [26] is based on the so-called
Shift&Add algorithm. In this algorithm, in each stage, the first
operand is shifted left but it is added to a sum register only
if the corresponding bit in the second operand is ’1’. This
multiplier operates in serial and because of requiring N stages
in an N ×N -bit multiplier, it includes N shifts and maximum
N add operations. The design proposed in [26] uses optimized
IMPLY-based multiplexers, adders and shift registers that lead
to a very low-cost design. However, because of the serial
nature, it has the highest delay compared to other multipliers.
This multiplier requires a low number of memristors equal to
7N + 1 and a low number of switches equal to 8N − 1, as
well. The output product requires 2N2 + 21N computational
steps to be ready in an N ×N -bit multiplier.

2) Array Multiplier: The array-type multiplier for perform-
ing N × N -bit multiplication consists of rows of FA and

3

Half-Adder (HA) cells along with N2 AND gates. IMPLY-
based array multiplier presented in [27] uses (N − 1) rows
of adders and incorporates some optimizations; however, it
requires a high number of memristors. Another IMPLY-based
array multiplier [28] is based on the Braun multiplier. In the
Braun multiplier, the output carries of FA/HA cells in each
row are diagonally sent to the next row which makes it faster.
However, the array multiplier of [28] still requires a high
number of memristors and switches compared to other designs.

3) Dadda Multiplier: In 1965, L. Dadda proposed a new
parallel scheme to speed up the multiplication [29]. This
multiplier uses FA/HA cells in some stages but with a higher
degree of parallelism compared to array multipliers. The
IMPLY-based Dadda multiplier was first presented in [30].
This multiplier is favored for faster computation compared to
[26] and [27] but comes at the cost of a large number of
memristors and switches.

4) Semi-serial Adder-based Multiplier: The IMPLY-based
multiplier proposed in [24] is based on the semi-serial adder
proposed in [31]. To perform the N × N -bit multiplication,
a (2N − 1)-bit semi-serial adder is used for ⌈N

2 ⌉ times. Due
to requiring a low number of memristors and switches in the
base adder, this multiplier also inherits this property, i.e., area-
efficiency. However, its delay (computational steps) is not low
and is higher than that of array [27], [28] and Dadda [30]
memristive multipliers.

IV. PROPOSED DESIGNS

Since addition is the basic operation utilized inside the mul-
tiplication, improving the memristor-based adders will help
to attain more efficient memristive multipliers. Most of the
existing memristive FAs are based on the IMPLY logic such
as [31]–[37]. The first FA based on a combination of some
stateful logics is presented in [23], in which SIXOR, TMSL
and FELIX are used to obtain a new and efficient structure.
In this section, after stating some design considerations, we
introduce a new FA based on a combination of TMSL and
SIXOR logics. Then, utilizing this new FA cell and some
optimizations, we propose two new array multipliers inspired
by the Braun scheme.

A. Design Considerations

As stated in [14], TMSL can perform the AND and NAND
logical operations considering certain operational conditions.
If ‘1’ and ‘0’ logic values are assumed for H and L, respec-
tively, the AND and NAND operations are obtained according
to Fig. 1(b) that we need inside FA/HA cells and to produce
the partial products. But this assumption is different from that
of SIXOR, which we utilize it in combination with TMSL.
In this paper, similar to SIXOR, we assume ‘0’ and ‘1’ logic
values for H and L, respectively. To solve this inconsistency,
we tune the operational conditions of TMSL in a way that
by assuming H and L as ‘0’ and ‘1’, respectively (the same
as SIXOR), correct output results will be produced. For this
purpose, we use RG = 13kΩ for TMSL-AND, RG = 3.9kΩ
for TMSL-NAND and a pulse duration of 2µs different from
those of the TMSL logic in [14], to produce AND and NAND
operations with proper logic values for H and L.

TABLE I: COMPUTATIONAL STEPS OF HALF-ADDER AND
THE PROPOSED FULL-ADDER.

Steps FA operation HA operation

1 Half − Carry(HC) = in1.in2 CHA = in1.in2

2 Half − Sum(HS) = in1⊕ in2
level correction of HS SHA = in1⊕ in2

3 int = Cin.HS
Re-initialization of in1, in2 and Caux

-

4
SFA = Cin ⊕HS
CFA = HC.int

-

In each separate gate, the input memristors are initialized to
the desired initial states with the memristance that is exactly
mapped to ‘0’ or ‘1’ logic values. However, in a memristive
circuit, there may be consecutive gates, or the input memristors
might be used in different operations. Thus, maintaining the
initial state after the first operation is crucial to prevent errors
in the next steps. In practice, the output of a computational
step may be used as an input in the next steps and must be in a
correct state, even if it does not have an exact or strong ‘0’ (H)
or ‘1’ (L) value. The SIXOR and TMSL gates do not show any
considerable sensitivity to H state but are somewhat sensitive
to the input memristance in the L state. In SIXOR, if the input
memristors are not exactly in the L state, an incorrect output
state may be produced. This issue is lighter in TMSL gates;
however, consecutive changes in the memristance of TMSL
gates can still lead to errors in the next steps. To address this
problem, the parameters are optimized to produce and maintain
a strong H state, while approximating L state to ‘1’ which
necessitates level correction in certain computational steps.
A level correction is performed by connecting the intended
memristors to the highest voltage source of the circuit for a
very short time (in the order of nanoseconds). It should be
noted that applying a wide high-voltage pulse to a memristor
can change its state from H to L. Therefore, a very narrow
pulse duration is used, one that does not alter the H state but
corrects the L state.

In the proposed designs, level correction is applied to the
outputs that will be used as the inputs of the SIXOR gates
in the next steps, regardless of whether they are in the H
or L state. This results in a small drift for those in the H
state. However, this drift does not cause errors in subsequent
logic operations. According to our simulations, the SIXOR and
tuned TMSL gates interpret the H state with this small drift as
‘0’, producing outputs with correct logic levels (exact ‘0’ for
H or very close to ‘1’ for L). Furthermore, the accumulation
of state drift is prevented because any potential accumulation
is effectively mitigated at the beginning of the next step.

B. Proposed Full-Adder

The computational steps of the proposed FA and also the
respective HA are shown in Table I. The output sum (SHA)
and carry (CHA) of the HA are obtained by a SIXOR gate
and a TMSL-AND gate, respectively, in two steps. For the
FA, the HS and the HC are produced in the first two steps. As
HS will be used in the next SIXOR gate, a level correction
is performed in Step 2 to prevent the wrong result in the
next steps. In Table I, re-initialization means adjusting one or

4

Fig. 3: Schematic of in-array (a) HA and (b) the proposed FA.

more memristors using a reset pulse. To do so, Vreset = 1.5V
is applied to the positive node of memristors that makes the
memristance to be re-initialized to H.

Re-initializing input memristors and auxiliary memristors
(A and B in Fig. 2 as Caux) of SIXOR in Step 3 (Table I)
makes them ready to be reused in the next step. This way,
the required number of memristors for a single FA is reduced
from 12 to 8 making a high area reduction. The output carry
(CFA) and Sum (SFA) are finally saved on input memristors.

The in-array structures of the HA and proposed FA are
depicted in Fig. 3. HA is implemented by using a SIXOR gate
and a TMSL-AND gate as illustrated in Fig. 3(a). A single HA
requires six memristors shown in green color as well as four
switches (S1 to S4) for connecting the desired rows or columns.
Similarly, the proposed FA is shown in Fig. 3(b). The eight
blue memristors are connected to the desired columns or rows
via four switches (S1 to S4). These switches are symbolically
shown on the crossbar array. In practice, they will be fabricated
on the Complementary Metal-Oxide Semiconductor (CMOS)
part inside the control and read/write circuit as the periphery
of the crossbar. Other switches shown in Fig. 3 are related to
the control logic to apply the appropriate voltages.

We will use the proposed FA in the new multipliers.

Fig. 4: 4× 4-bit Braun-type array multiplier.

However, it can be used for making N-bit adders, as well. An
N-bit simple adder which includes N FAs requires 2N + 6
memristors and produces the output carry and sum in 4N
computational steps. The first FA of this adder consumes eight
memristors. But each of the remaining N − 1 FAs only needs
two memristors as inputs (equal to 2(N − 1) memristors),
whereas two auxiliary memristors, HC, HS and int memristors
of the first FA are reused and Cin is also counted in the first
FA and the outputs are stored on the input memristors.

C. First Proposed Multiplier

For designing an ordinary N×N -bit Braun-type array mul-
tiplier, N2 AND gates, N HAs and N2−2N FAs are required.
Fig. 4 shows the 4× 4-bit Braun multiplier that produces the
8-bit product (P7P6P5P4P3P2P1P0) based on two 4-bit inputs
(a3a2a1a0 and b3b2b1b0). The first proposed multiplier needs
4N2 − 2N memristors. it consumes 2N memristors for two
N-bit input operands and only N2 memristors for N2 AND
gates that produce the partial products. More precisely, only
the output memristor of an AND gate is counted because the
input memristors are counted for SIXOR gates. The input
memristors of the AND gates are reused as the auxiliary
memristors of SIXOR gates, which leads to a reduction in
the number of memristors. Since the input memristors of
HAs are the same as the output memristors of the previous
computational units (AND gates or FAs) and reused auxiliary
memristors, each HA just adds two memristors, thus totally
2N memristors are required for HAs in the N ×N -bit Braun
multiplier. In addition, each FA cell consumes only three
memristors for storing HS, HC and int. This is because the
input memristors of a FA are the same as the output memristors
of previous computational units and the output bits are saved
on the input memristors. As shown in Fig. 4, at least one of
the inputs of FAs (except FA7) is the output of AND gates.
However, the input memistors are used to save the outputs
of FAs. Thus, some bits of the output product (P0, P3, P5,
P6) are saved on the outputs of the AND gates (called a0b0,
a0b2, a1b3 and a2b3) and the other bits on SHA or CHA

memristors. Therefore, each FA requires three memristors and
all FAs require 3N2 − 6N memristors, and the total number
of required memristors will be 4N2 − 2N .

The operation details of the computational steps in the
first proposed multiplier are shown in Table II for the 4
× 4-bit multiplication. In general, the preparation of partial
products is performed in N steps using N2 AND gates. More
precisely, N AND gates with different inputs can be grouped
(N groups altogether). The AND gates of each group can work

5

TABLE II: COMPUTATIONAL STEPS AND THEIR OPERATIONS IN THE FIRST PROPOSED MULTIPLIER (4× 4-BIT).

Step Executed operation Equivalent logic

1 AND (a0, b0) → P0, (a1, b1), (a2, b2), (a3, b3) P0 = a0.b0, a1b1 = a1.b1, a2b2 = a2.b2, a3b3 = a3.b3

2 AND (a0, b1), (a1, b2), (a2, b3), (a3, b0) a0b1 = a0.b1, a1b2 = a1.b2, a2b3 = a2.b3, a3b0 = a3.b0

3 AND (a0, b2), (a1, b3), (a2, b0), (a3, b1) a0b2 = a0.b2, a1b3 = a1.b3, a2b0 = a2.b0, a3b1 = a3.b1

4 AND (a0, b3), (a1, b0), (a2, b1), (a3, b2) a0b3 = a0.b3, a1b0 = a1.b0, a2b1 = a2.b1, a3b2 = a3.b2

5
CHA1−3

= AND(a0b1, a1b0), (a2b0, a1b1), (a3b0, a2b1)
a0, a1, a2, b0, b1 and b2 = 0

CHA1
= a0b1.a1b0, CHA2

= a2b0.a1b1, CHA3
= a3b0.a2b1

a0 = a1 = a2 = b0 = b1 = b2 = 0

6
SHA1−3

= XOR(a0b1, a1b0) → P1, (a2b0, a1b1), (a3b0, a2b1)
Level correction of CHA1−3

, SHA2−3
, a0b2, a0b3, a1b2, a1b3, a2b2,

a2b3, a3b1, a3b2 and a3b3
P1 = a0b1 ⊕ a1b0, SHA2

= a2b0 ⊕ a1b1, SHA3
= a3b0 ⊕ a2b1

7 HC1−3 = NAND(a0b2, SHA2), (a1b2, SHA3), (a2b2, a3b1)
a0, a1, a2, b0, b1 and b2 = 0

HC1 = a0b2.SHA2
, HC2 = a1b2.SHA3

, HC3 = a2b2.a3b1
a0 = a1 = a2 = b0 = b1 = b2 = 0

8 HS1−3 = XOR(a0b2, SHA2
), (a1b2, SHA3

), (a2b2, a3b1)
Level correction of HS1−3

HS1 = a0b2 ⊕ SHA2
, HS2 = a1b2 ⊕ SHA3

, HS3 = a2b2 ⊕ a3b1

9
int1−3 = NAND(CHA1

, HS1), (CHA2
, HS2), (CHA3

, HS3)
a0, a1, a2, b0, b1 and b2 = 0
Input memristors of FAs (a0b2, SHA2 , a1b2, SHA3 , a2b2, a3b1) = 0

int1 = CHA1
.HS1, int2 = CHA2

.HS2, int3 = CHA3
.HS3

a0 = a1 = a2 = b0 = b1 = b2 = 0
a0b2 = SHA2

= a1b2 = SHA3
= a2b2 = a3b1 = 0

10
SFA1−3

= XOR(CHA1
, HS1) → P2, (CHA2

, HS2), (CHA3
, HS3)

CFA1−3
= NAND(HC1, int1), (HC2, int2), (HC3, int3)

Level correction of SFA2−3
and CFA1−3

P2 = CHA1
⊕HS1, SFA2

= CHA2
⊕HS2, SFA3

= CHA3
⊕HS3

CFA1
= HC1.int1, CFA2

= HC2.int2, CFA3
= HC3.int3

11 HC4−6 = NAND(a0b3, SFA2
), (a1b3, SFA3

), (a2b3, a3b2)
a0, a1, a2, b0, b1 and b2 = 0

HC4 = a0b3.SFA2
, HC5 = a1b3.SFA3

, HC6 = a2b3.a3b2
a0 = a1 = a2 = b0 = b1 = b2 = 0

12 HS4−6 = XOR(a0b3, SFA2
), (a1b3, SFA3

), (a2b3, a3b2)
Level correction of HS4−6

HS4 = a0b3 ⊕ SFA2
, HS5 = a1b3 ⊕ SFA3

, HS6 = a2b3 ⊕ a3b2

13
int4−6 = NAND(CFA1 , HS4), (CFA2 , HS5), (CFA3 , HS6)
a0, a1, a2, b0, b1 and b2 = 0
Input memristors of FAs (a0b3, SFA2

, a1b3, SFA3
, a2b3, a3b2) = 0

int4 = CFA4
.HS4, int5 = CFA5

.HS5, int6 = CFA6
.HS6

a0 = a1 = a2 = b0 = b1 = b2 = 0
a0b3 = SFA2 = a1b3 = SFA3 = a2b3 = a3b2 = 0

14
SFA4−6

= XOR(CFA4 , HS4) → P3, (CFA5 , HS5), (CFA6 , HS6)
CFA4−6

= NAND(HC4, int4), (HC5, int5), (HC6, int6)
Level correction of SFA5−6

and CFA4−6

P3 = CFA4 ⊕HS4, SFA5 = CFA5 ⊕HS5, SFA6 = CFA6 ⊕HS6

CFA4
= HC4.int4, CFA5

= HC5.int5, CFA6
= HC6.int6

15 CHA4
= AND(CFA4

, SFA5
)

a0, a1, a2, b0, b1 and b2 = 0
CHA4

= CFA4
.SFA5

a0 = a1 = a2 = b0 = b1 = b2 = 0

16 SHA4
= XOR(CFA4

, SFA5
) → P4

Level correction of CHA4

P4 = CFA4
⊕ SFA5

17 HC7 = NAND(CHA4
, SFA6

) HC7 = CHA4
.SFA6

18 HS7 = XOR(CHA4 , SFA6)
Level correction of HS7

HS7 = CHA4
⊕ SFA6

19
int7 = NAND(CFA5

, HS7)
a1 and b1 = 0
Input memristors of FAs (CHA4

, SFA6
) = 0

int7 = CFA5
.HS7

a1 = b1 = 0
CHA4 = SFA6 = 0

20
SFA7

= XOR(CFA5
, HS7) → P5

CFA7 = NAND(HC7.int7)
Level correction of CFA7

P5 = CFA5
⊕HS7

CFA7
= HC7.int7

21 HC8 = NAND(a3b3, CFA7
) HC8 = a3b3.CFA7

22 HS8 = XOR(a3b3, CFA7
)

Level correction of HS8
HS8 = a3b3 ⊕ CFA7

23
int8 = NAND(CFA6

, HS8)
a2 and b2 = 0

Input memristors of FAs (CFA7
, a3b3) = 0

int8 = CFA6
.HS8

a2 = b2 = 0
CFA7 = a3b3 = 0

24 SFA8
= XOR(CFA6

, HS8) → P6

CFA8
= NAND(HC8, int8) → P7

P6 = CFA6
⊕HS8

P7 = HC8.int8

simultaneously because of having different input memristors.
This reduces the total delay further. So, the outputs of AND
gates are computed in N steps (four steps in Table II). As
shown in Fig. 4, all the FA/HA cells of each row (except the
last row) work in parallel. For the first row, two steps (steps
5 and 6 in Table II) are needed to compute the outputs of
HAs including CHA1−3 (that means CHA1, CHA2 and CHA3)
and SHA1−3 (that means SHA1, SHA2 and SHA3) after the
operation of the AND gates. In Table II “Input memristors of
FAs = 0” means re-initialization. The outputs of the second row
(CFA1−3 and SFA1−3) are prepared in 4 steps. Similarly, the
outputs of the third row (CFA4−6 and SFA4−6) are prepared
in another 4 steps (end of Step 14). The FA/HA cells of the
last row work in serial, which means HA4 in Fig. 4 adds two

steps and each one of FA7 and FA8 cells adds 4 more steps
to the total computational steps (altogether 24 steps).

Algorithm 1 shows how we can extend the proposed multi-
plier for N ×N -bit multiplication. Furthermore, the flowchart
overview of the proposed algorithm is shown in Fig. 5. In
general, the total number of computational steps in the first
proposed multiplier is 9N − 12. It is obtained based on the
critical path, which consists of N AND gates (N steps), two
HAs (4 steps) and 2N−4 FAs (4(2N−4) steps). As shown in
Fig. 3, the in-array structure of each HA or FA circuit needs
four switches. In general, in an N × N -bit array multiplier,
4N switches are needed for HA operations and 4(N2 − 2N)
switches for FAs. Therefore, the total number of switches in
the first proposed multiplier is 4N2 − 4N .

6

Algorithm 1 First proposed N ×N -bit array multiplier. Algorithm 2 Second proposed N ×N -bit array multiplier.
Inputs: aN−1aN−2...a1a0, bN−1bN−2...b1b0
Outputs: P2N−1P2N−2...P1P0

1: P0 = a0 AND b0,...,aN−1bN−1 = aN−1 AND bN−1

2: a0b1 = a0 AND b1, a1b2 = a1 AND b2, ..., aN−2bN−1 = aN−2 AND bN−1,
aN−1b0 = aN−1 AND b0
.
.
.
N: a0bN−1 = a0 AND bN−1, a1b0 = a1 AND b0, ..., aN−1bN−2 = aN−1 AND bN−2

N+1: CHA1
= a0b1 AND a1b0,...,CHAN−1

= aN−2b1 AND aN−1b0
N+2: SHA1

= a0b1 XOR a1b0→ P1, ..., SHAN−1
= aN−2b1 XOR aN−1b0

LOOP Process
assuming in1, in2 and Cin as inputs of FAs and j = 1
5N-6: for i = 1 to N − 2 do

HCj , ..., HC(j+N−2) = in1 NAND in2
HSj , ..., HS(j+N−2) = in1 XOR in2
intj , ..., int(j+N−2) = Cin NAND HS
SFAj

, ..., SFA(j+N−2)
= Cin XOR HS → P2,..., PN−1

CFAj
, ..., CFA(j+N−2)

= HC XOR int

j = j +N − 1
end for

5N-5: CHAN
= in1 AND in2

5N-4: SHAN
= in1 XOR in2 → PN

LOOP Process
9N-12: for i = (N2 − 3N + 3) to (N2 − 2N) do

HCi = in1 NAND in2
HSi = in1 XOR in2
inti = Cin NAND HS
SFAi

= Cin XOR HS → PN+1,..., P2N−2

CFAi
= HC XOR int → P2N−1

end for
return P2N−1,..., P0

Inputs: aN−1aN−2...a1a0, bN−1bN−2...b1b0
Outputs: P2N−1P2N−2...P1P0

1: P0 = a0 AND b0,...,aN−1bN−1 = aN−1 AND bN−1

2: a0b1 = a0 AND b1, a1b2 = a1 AND b2, ..., aN−2bN−1 = aN−2 AND bN−1,
aN−1b0 = aN−1 AND b0
.
.
.
N: a0bN−1 = a0 AND bN−1, a1b0 = a1 AND b0, ..., aN−1bN−2 = aN−1 AND bN−2

N+1: CHA1
= a0b1 AND a1b0,...,CHAN−1

= aN−2b1 AND aN−1b0
N+2: SHA1

= a0b1 XOR a1b0→ P1, ..., SHAN−1
= aN−2b1 XOR aN−1b0

LOOP Process
6N-8: for i = 1 to N − 2 do

assuming in1, in2 and Cin as inputs of FAs
HCi, ..., HC(N−1) = in1 NAND in2
HSi, ..., HS(N−1) = in1 XOR in2
inti, ..., int(N−1) = Cin NAND HS
SFAi

, ..., SFA(N−1)
= Cin XOR HS → P2,..., PN−1

CFAi
, ..., CFA(N−1)

= HC XOR int

Re-initialization of HC, HS and int
end for

6N-7: CHAN
= in1 AND in2

6N-6: SHAN
= in1 XOR in2 → PN

LOOP Process
10N-14: for i = (N2 − 3N + 3) to (N2 − 2N) do

HCi = in1 NAND in2
HSi = in1 XOR in2
inti = Cin NAND HS
SFAi

= Cin XOR HS → PN+1,..., P2N−2

CFAi
= HC XOR int → P2N−1

end for
return P2N−1,...,P0

Fig. 5: Flowchart of the first proposed N ×N -bit array multiplier.

D. Second Proposed Multiplier

The first proposed multiplier can significantly be improved
in terms of area by reducing the number of required mem-
ristors. This design as the second proposed Braun-type array
multiplier is obtained by reusing some of the FAs instead
of using more FAs in different rows of the array multiplier.
Based on Fig. 4, two middle rows and in general N − 2
rows in N×N -bit array multiplier execute similar operations.
Therefore, the FAs of the second row can be reset (re-
initialized) using a reset pulse to be able to perform the
operation of the third row, as well, after finishing the operation
of the second row. Then, these FAs should be reset again to
start the operation of the fourth row, and this approach will
be continued to the end of the (N–1)th row. The last row
(N th row) is different from the middle rows in a HA cell and
also in sending the output carries to the left cells. However,

the FAs of the second row can be reorganized to perform the
operation of the last row, as well, which leads to more area
reduction. The memristors of the second row that are reused
are the ones that save the state of HS, HC and int of the FAs.
These memristors in the first proposed multiplier are unused
after the end of a FA operation. This approach acts similar
to the pipeline structure in ordinary circuits but it does not
require extra registers to save the intermediate results. This
leads to more area reduction.

In the second proposed array multiplier, only the memristors
of the FAs in the second row are re-initialized and reused as
described above. This leads to a significant reduction in the
number of memristors from 4N2 − 2N to N2 + 7N − 5 in
N ×N -bit multiplication. In fact, similar to the first proposed
multiplier, 2N memristors are required for two N -bit inputs
and N2 memristors are consumed for N2 AND gates for
partial products generation. Each HA needs two additional
memristors and thus in total, 2N − 2 memristors are required.
Since each FA needs three memristors and in total, N − 1
FAs are used, 3N–3 memristors are required for the FAs.
Therefore, a total sum of N2+7N −5 memristors is required
in N ×N -bit multiplication.

Algorithm 2 shows how to extend the second proposed
multiplier for N × N -bit multiplication. It should be noted
that the flowchart of the second proposed multiplier is very
similar to that of the first one. The main difference is related
to the first loop process in which if the answer is yes for the
decision box, auxiliary memristors inside FA1 to FAN−1 will
be re-initialized. This multiplier requires the computational
steps equal to 10N−14, which has N−2 computational steps
more than that of the first proposed multiplier (less than 11%
increase in delay while achieving up to 72% area reduction for
N<= 64 bits). These extra steps are the number of needed
re-initializations for the second row’s memristors.

Similar to the first proposed multiplier, the second design
needs 4N2 − 4N switches. As the base structure of both
proposed multipliers is the same, the same number of switches
is required. The reset pulses are applied by the control circuit

7

TABLE III: PARAMETER SETUP USED IN THE VTEAM
MODEL.

Parameter voff von αoff αon Roff Ron

Value 0.7 V -10 mV 3 3 1 MΩ 10 kΩ
koff kon woff won wC aoff aon

1 cm/s -0.5 nm/s 0 nm 3 nm 100 pm 3 nm 0 nm

TABLE IV: PARAMETER SETUP USED IN THE LOGIC
GATES.

Logic
Parameter Vcond Vset Vx Vreset RG Pulse duration

(V) (V) (V) (V) (kΩ) (µs)

TMSL-AND 1.3 0.6 - - 13 2
TMSL-NAND 0.6 1.3 - - 3.9 2

SIXOR - - 1.3 -1.5 - 2

which does not add additional switches in the second proposed
multiplier.

V. SIMULATION RESULTS

A. Simulation Setup

The proposed FA and multiplier designs were validated
through simulations in LTSpice. Voltage-controlled ThrEshold
Adaptive Memristor (VTEAM) model [38] is used to model
the behavior of memristors in SPICE [39], [31]. Table III
shows the parameter values for the VTEAM model. It should
be noted that these parameters are obtained by fitting the
VTEAM model to our measurements [39] of Knowm “BS-
AF-W” discrete memristors [40]. In addition, the considered
values for the parameters of the utilized logic gates are shown
in Table IV. The parameter setting of SIXOR is based on
the referenced values of [23]. TMSL is also validated with
different parameter values considering the conditions of the
referenced paper [14]. For all experiments, the pulse duration
is 2µs with the rise time and fall time that both are set to
5% of the pulse duration. It should be noted that L and H
are assumed as the ‘1’ and ‘0’ logic values, respectively. The
normalized state greater than 0.5 is assumed as ‘1’, and the
value lower than or equal to 0.5 is assumed as ‘0’.

The built-in measurement tool of LTSpice has been used to
evaluate the energy and power consumption of the memristors
in the proposed designs. Because the power dissipation of the
circuits depends on the states of input memristors, the power
consumption is averaged over all input combinations. It should
be noted that the memristive technology (or the model) has a
direct impact on the reported power and energy consumption.
Thus, concerning power and energy, the proposed designs can
be compared only to the prior works that have used the same
technology or simulated with the same model.

B. Proposed FA

The proposed FA correctly produces the output carry and
sum using eight memristors in four steps at 40 µs since for
better presentation the 2 µs pulses are applied every 10 µs.
Please note that for better visibility in the figures, the circuit
starts the operation at a time equal to 10 µs in Figs. 6 to 8.
Fig. 6 illustrates the output results of FA for in1 = 1, in2 = 1
and Cin = 1, which leads to CFA = 1 and SFA = 1. As
shown in Fig. 6, applying the level correction on HS at Step 2
(between 20 µs and 30 µs) does not make a significant change
in its state and it remains in H. Since HS is the input for

Fig. 6: Simulation of the proposed FA for in1 = in2 = Cin = 1,
leading to CFA = SFA = 1.

TMSL-NAND and SIXOR, based on our simulations, a small
change above does not affect subsequent operations or their
final outputs, and these gates consistently produce outputs with
the correct logic levels. Importantly, this change does not lead
to cumulative errors, as any potential deviation is neutralized
at the start of its subsequent step. For the pulse duration of
2 µs, the proposed FA has an average power consumption of
60.23 µW in eight combinations of inputs (cases or states).
The average energy consumption is equal to 0.53 nJ.

C. First proposed multiplier

Fig. 7 shows the simulation of the 4× 4-bit multiplication
based on the first proposed multiplier for a3−0 = 1011 and
b3−0 = 1001 as the input operands. The output product is
correctly obtained as P7−0 = 01100011 after 240 µs or in 24
steps. As an example, level corrections applied to the inputs
of P2 according to Table II cause a small change in P2 during
Step 6, as shown in Fig. 7. However, this change does not alter
its H state, and P2 finally reaches its correct value (strong ‘0’)
in Step 10. For the pulse duration of 2 µs in each step, the
first proposed 4×4-bit multiplier consumes an average power
of 111.2 µW and an average energy of 5.87 nJ for all 256
input combinations.

D. Second proposed multiplier

Fig. 8 illustrates the simulation of the 4× 4-bit multiplica-
tion based on the second proposed multiplier with the input
operands of a3−0 = 1110 and b3−0 = 1100 to produce
P7−0 = 10101000 after 260 µs in 26 steps. For the pulse
duration of 2 µs in each step, the second proposed 4 × 4-bit
multiplier consumes the average power of 107.5 µW and the
average energy of 6.15 nJ for all 255 input combinations.

VI. COMPARISON AND DISCUSSION

The basic performance metrics used in this paper for com-
parison with the previous designs are the number of computa-
tional steps (delay), and the number of memristors (area). The
number of switches is also used as another metric. It should be
noted that the number of switches or drivers does not affect
the merits of the memristive circuits as much as delay and
area because the Back End Of Line (BEOL) process is usually
used to implement memristors in which CMOS switches can

8

Fig. 7: Simulation of first proposed array multiplier (4× 4-bit) with
a3−0 = 1011 and b3−0 = 1001 leading to P7−0 = 01100011.

be implemented underneath the memristor crossbar [41]–[44].
Therefore, it only affects the chip area to some extent.

It should be noted that the VTEAM model we have used
was fitted to Knowm discrete devices which is for single mem-
ristors, not an Integrated Circuit (IC). Substantial parasitics of
discrete devices increase their delay and energy consumption,
considerably compared to integrated devices. Consequently,
the absolute numbers of delay or energy consumption cannot
be directly compared to IC designs. Technological parameters
affect the delay and power consumption of the proposed
designs as well as other designs. Hence, for a fair comparison
of memristive circuits, the same memristive technology should
be used to simulate (and implement) the circuits that need
to be compared, and the circuits with different memristive
technologies cannot be directly compared.

A. Figures of Merit

In addition to the main metrics (the number of compu-
tational steps, memristors and switches), we consider four
figures of merits (Figures of Merit (FoMs)) as defined in [24]
to better compare different designs.

Balanced FoM (FoMB) is shown in Eq. (1) assuming an
equal weight for the number of memristors (NM) and the
number of computational steps (NS):

FoMB =
1

NM ×NS
(1)

When the area is a more important factor compared to the
speed, memristor-centered FoM (FoMM) can be used as

FoMM =
1

N2
M ×NS

(2)

Fig. 8: Simulation of second proposed array multiplier (4 × 4-bit)
with a3−0 = 1110 and b3−0 = 1100 leading to P7−0 = 10101000.

in which NM has a higher effect.
Similarly, speed is a more important factor in the speed-

centered FoM (FoMS):

FoMS =
1

NM ×N2
S

(3)

FoMC is computed using Eq. (4) to evaluate the impact of
required CMOS switches, where NC denotes the number of
switches. To prevent the infinite value for the FoMC when no
CMOS switch is used, 1 is added to NC .

FoMC =
1

NM ×NS × (1 +NC)
(4)

Based on the defined FoMs, always a larger FoM represents
more merit. Eq. (5) can be used to obtain the improvement
percentage of the proposed designs compared to other designs:

Imp.(%) =
Fbetter − Fworse

Fworse
× 100 (5)

In Eq. (5), Fbetter and Fworse are the FoMs of better and
worse designs, respectively. This equation can also be used
to obtain the improvements over other designs with respect to
the basic performance metrics (i.e., the number of memristors,
steps and switches). However, for the basic metrics, the sign of
the obtained Imp. should be reversed because a lower number
of memristors, steps and switches represent a more efficient
design.

B. FA Comparison

A list of stateful FAs is represented in Table V. The
proposed FA along with the SIXOR-based FA of [23] has the

9

TABLE V: SUMMARY OF STATEFUL FULL ADDERS.

Designs # of
mem.

of
steps FoMB FoMM FoMS

Iterative [37] 8 18 7m 0.9m 0.4m
IMPLY serial [34] 5 22 9.1m 1.8m 0.4m

IMPLY parallel [35] 5 21 9.5m 1.9m 0.4m
FELIX [22] 9 6 18.5m 2.1m 3.1m

Semi-serial [31] 8 12 10.4m 1.3m 0.9m
Semi-parallel [36] 5 17 11.7m 2.3m 0.7m

ORNOR [47] 8 17 7.3m 0.9m 0.4m
Cascading logic [48] 7 13 11m 1.5m 0.8m
SIXOR-based [23] 9 4 27.7m 3.1m 6.9m

MIMO parallel [45] 5 10 20m 4m 2m
IMPLY-based CSA [49] 16 30 2.1m 0.1m 0.1m

Cascading logic [46] 10 9 11.1m 1.1m 1.2m
Proposed 8 4 31.2m 3.9m 7.8m

TABLE VI: SUMMARY OF STATEFUL N-BIT ADDERS.

Designs # of
mem.

of
steps

N = 32
FoMB FoMM FoMS

Iterative [37] 8N 21N − 3 5.8µ 0.02µ 0.001µ
IMPLY serial [34] 2N + 3 22N 21.2µ 0.3µ 0.03µ
IMPLY serial [35] 2N + 3 23N 20.3µ 0.3µ 0.03µ

IMPLY parallel [35] 4N + 1 5N + 16 44µ 0.3µ 0.2µ
Semi-serial [31] 2N + 6 10N + 2 44.4µ 0.6µ 0.1µ

Semi-parallel [36] 2N + 3 17N 27.4µ 0.4µ 0.05µ
ORNOR [47] 6N + 6 2N + 15 63.9µ 0.3µ 0.8µ

SIXOR-based [23] 6N + 3 2N + 2 77.7µ 0.4µ 1.2µ
MIMO parallel [45] 5N N + 9 152.4µ 0.9µ 3.7µ

IMPLY-based CSA [49] 19N
2

+ 6 3N + 27 26.2µ 0.1µ 0.2µ
Proposed 2N + 6 4N 111.6µ 1.6µ 0.9µ

lowest delay among all FAs. These FAs are on average, 4.2
times faster than the others. The proposed FA, compared to
the SIXOR-based FA of [23] (as the fastest existing design),
requires a lower number of memristors. Moreover, all previous
FAs that have a lower number of memristors compared to the
proposed FA, incur much more delay. Altogether, the proposed
FA is the best design among all existing FAs with respect to
FoMB and FoMS , and lags only in terms of FoMM compared
to [45] as shown in Table V. In this table, the best FoMs are
shown as bold numbers. In practice, a single FA is rarely used.
Therefore, the number of steps and the number of memristors
for the N-bit simple adders are shown in Table VI along with
three main FoMs for N = 32 as an example. For larger Ns, the
proposed adder needs a lower number of memristors compared
to the fastest existing design in [23] and requires only 3
memristors more than the compactest designs. Altogether, the
N-bit adder constructed by the proposed FA is among the best
adders with respect to the main FoMs. It should be noted
that the designs from [45] and [46] are based on different
memristor models compared to that of our proposed designs.

C. Multipliers Comparison

Tables VII and VIII show the main performance metrics
of two proposed stateful array multipliers in comparison with
previous stateful multipliers for 8 × 8-bit, and 64 × 64-bit
multipliers (N equal to 8 and 64), respectively. These tables
also depict the improvements of two proposed multipliers in
percent compared to previous designs. Imp.(1) and Imp.(2)
stand for the improvement of the first and the second proposed
multipliers, respectively. It should be noted that a positive
result shows an improvement over an older design. However,
a negative result means that the older design has a better
performance metric compared to the newer design.

According to Tables VII and VIII, the optimization of mem-
ristor reuse in the second proposed multiplier leads to 52.1%

and 72.1% reduction in the number of memristors compared
to the first proposed multiplier for 8 × 8-bit and 64 × 64-bit
multiplications, respectively. As a result, the second proposed
multiplier has the lowest number of memristors compared to
all existing array and parallel multipliers except that of [53].
The area improvement of the first and the second proposed
multipliers over the previous array and parallel multipliers is
up to 42% and 72.2%, respectively, for 8 × 8-bit multipliers.
This means that up to 1.7× and 3.6× memristor reductions
are obtained respectively, for the first and the second proposed
multipliers compared to previous designs in the literature. For
64 × 64-bit multipliers (Table VIII), the area improvement
of the first and the second proposed multiplier over previous
designs are up to 42.3% and 83.9%, respectively, which means
reduction in the number of memristors up to 1.7× and 6.2×
for the first and the second proposed multipliers compared to
previous designs.

Based on Tables VII and VIII, the delay, i.e., the number
of computational steps, is highly improved in both proposed
designs. The first proposed multiplier is the fastest design
and the second proposed multiplier is the second fastest
design among all comparable multipliers in the literature. For
8 × 8-bit multipliers (Table VII), the first proposed design
achieves from 1.5× to 24.5× higher speed compared to
previous designs. These improvements are 1.4× to 22.3×
for the second proposed multiplier. Also, for 64 × 64-bit
multipliers (Table VIII), the first proposed design is faster
from 1.3× to 192.4× compared to previous designs. Similarly,
for the second proposed multiplier, the improvements are
between 1.2× to 173.4×. Thus, compared to the state-of-the-
art multipliers such as MultPIM [53] that could reduce the
number of memristors, the proposed designs are the fastest
and therefore can be the top choice for applications where the
speed is more important than the cost.

The effect of multiplier size N on the cost and delay (num-
ber of memristors, steps and switches) of different multipliers
is shown in Fig. 9 for N from 4 to 64 bits. Based on Fig. 9
(a), the second proposed multiplier is always better than all
array and parallel multipliers with respect to the number of
memristors except that of [53]. In addition, it will have an
increasing improvement over the state-of-the-art designs when
the multiplier size increases. The first proposed multiplier
requires a lower number of memristors in all multiplier sizes
only compared to Array [27]. However, based on the zoomed
diagram, it also consumes a lower number of memristors
compared to Array [28] for N < 30. With respect to other
designs, the main point is that Array [28] does not operate well
for N < 9 since it needs the highest number of memristors
compared to all existing designs.

According to Fig. 9 (b), two proposed multipliers have
the highest speed in comparison with the previous multipliers
in all multiplier sizes. The improvement of the first and the
second proposed multipliers over the best of previous designs
with respect to delay, i.e., Array [28], approaches to 25% and
17%, respectively, for larger multipliers sizes even beyond
N = 64. Concerning other designs, it is worth mentioning
that the curve for the multiplier of [24] crosses the curve for
Shift&Add [26], several times for N < 20 and the curve of

10

TABLE VII: COMPARISON OF STATEFUL MULTIPLIERS FOR N = 8.

Designs Number of memristors Number of steps Number of switches

Total N = 8
Imp.(1)

(%)
Imp.(2)

(%) Total N = 8
Imp.(1)

(%)
Imp.(2)

(%) Total N = 8
Imp.(1)

(%)
Imp.(2)

(%)

Shift&Add [26] 7N + 1 57 -76.2 -50.4 2N2 + 21N 296 79.7 77.7 8N − 1 63 -71.9 -71.9
Array [27] 7N2 − 8N + 9 393 38.9 70.7 24N − 35 157 61.8 58 8N2 − 8N + 9 457 51 51

Dadda [30]* NA 385 37.7 70.1 NA 106 43.4 37.7 NA 482 53.5 53.5

Semi-serial [24] 2N2 +N + 2 138 -42.5 16.7 ⌈log2 N⌉(10N + 2)
+4N + 2

280 78.6 76.4 12⌈N
2
⌉+ ⌊N−1

2
⌋ 51 -77.2 -77.2

Array [28] 3N2 + 28N − 2 414 42 72.2 12N − 6 90 33.3 26.7 N2 64 -71.4 -71.4
Serial [50] N2 + 2 66 -72.5 -42.6 27N2 − 32N 1472 95.9 95.5 - - - -

MAT-based [51] 2N2 + 3N 152 -36.6 24.3 N2 + 8N − 8 120 50 45 4N 32 -85 -85

Semi-parallel [52] ⌈N
2
⌉(4N + 3) 140 -41.6 17.9 ⌈log2 N⌉(39

2
)N + 5N + 2 510 88.2 87 8⌈N

2
⌉+ ⌊N−1

2
⌋+ 2N2

−N + 3(⌈log2 N⌉ − 1)
161 -28.1 -28.1

MultPIM [53] 14N − 7 105 -56.2 -8.7 N log2 N + 14N + 3 139 56.8 52.5 - - - -
1st proposed 4N2 − 2N 240 - 52.1 9N − 12 60 - -9.1 4N2 − 4N 224 - 0
2nd proposed N2 + 7N − 5 115 -52.1 - 10N − 14 66 9.1 - 4N2 − 4N 224 0 -

- Imp.(1) and Imp.(2) stand for the improvement of the first and the second proposed multipliers, respectively.
* The reference source does not provide equations.

TABLE VIII: COMPARISONS OF STATEFUL MULTIPLIERS FOR N = 64.

Designs Number of memristors Number of steps Number of switches

Total N = 64
Imp.(1)

(%)
Imp.(2)

(%) Total N = 64
Imp.(1)

(%)
Imp.(2)

(%) Total N = 64
Imp.(1)

(%)
Imp.(2)

(%)

Shift&Add [26] 7N + 1 449 -97.2 -90.1 2N2 + 21N 9536 94.1 93.4 8N − 1 511 -96.8 -96.8
Array [27] 7N2 − 8N + 9 28169 42.3 83.9 24N − 35 1501 62.4 58.3 8N2 − 8N + 9 32265 50 50

Dadda [30]* NA NA NA NA NA NA NA NA NA NA NA NA

Semi-serial [24] 2N2 +N + 2 8258 -49.2 45 ⌈log2 N⌉(10N + 2)
+4N + 2

4110 86.3 84.8 12⌈N
2
⌉+ ⌊N−1

2
⌋ 415 -97.4 -97.4

Array [28] 3N2 + 28N − 2 14078 -13.4 67.7 12N − 6 762 26 17.8 N2 4096 -74.6 -74.6
Serial [50] N2 + 2 4098 -74.8 -9.7 27N2 − 32N 108544 99.5 99.4 - - - -

MAT-based [51] 2N2 + 3N 8384 -48.4 45.9 N2 + 8N − 8 4600 87.7 86.4 4N 256 -98.4 -98.4

Semi-parallel [52] ⌈N
2
⌉(4N + 3) 8288 -49 45.2 ⌈log2 N⌉(39

2
)N + 5N + 2 7810 92.7 92 8⌈N

2
⌉+ ⌊N−1

2
⌋+ 2N2

−N + 3(⌈log2 N⌉ − 1)
8430 -47.7 -47.7

MultPIM [53] 14N − 7 889 -94.5 -80.4 N log2 N + 14N + 3 1283 56 51.2 - - - -
1st proposed 4N2 − 2N 16256 - 72.1 9N − 12 564 - -9.9 4N2 − 4N 16128 - -
2nd proposed N2 + 7N − 5 4539 -72.1 - 10N − 14 626 9.9 - 4N2 − 4N 16128 - -

- Imp.(1) and Imp.(2) stand for the improvement of the first and the second proposed multipliers, respectively.
* The reference source provides neither equations nor numbers for N = 64.

MAT-based [51] for N = 57. However, it highly outperforms
over Shift&Add [26] for larger multiplier sizes. Also, semi-
parallel [52] outperforms Shift&Add [26] with respect to speed
only after N = 50.

As mentioned before, the in-array structures of both
proposed multipliers need the same number of additional
switches. Therefore, based on Tables VII and VIII, the pro-
posed multipliers require around 2× lower switches compared
to Array [27] and Dadda [30] multipliers for 8 × 8-bit and
64 × 64-bit multipliers. However, the proposed multipliers
require more switches compared to some of the previous
multipliers. As shown in Fig. 9 (c), the curves showing the
number of switches for the multipliers of [24], [26] and
[51] increase very closely while they are lower than that
of the proposed multipliers. Array [27] is the worst among
all existing designs according to its drastic growth when the
multiplier size increases. On the other hand, MAT-based [51]
is the best design for N <= 64.

To achieve a deeper view with respect to the situation of
the proposed multipliers compared to different multipliers,
the introduced FoMs are computed for 8 × 8-bit as shown
in Table IX. The highest values of FoMs are boldfaced to
show the best design. This table also depicts the improvements
of two proposed multipliers in percent compared to previous
designs and each other.

Considering N = 8 in Table IX, the second proposed
multiplier achieves the best FoMB , FoMM and FoMS , i.e.,
three out of four FoMs among all designs. Moreover, the first
proposed multiplier has a better FoMB and FoMS compared
to all previous designs. The amounts of improvements in
these FoMs are also high. For example, the second proposed

Fig. 9: Effect of multiplier size N on the number of (a) memristors
(b) steps, and (c) switches for N×N -bit multipliers based on N = 4
to 64 bits.

multiplier achieves an improvement between 1.1× (compared
to Shift&Add [26]) and 27.8× (compared to Array [27]) con-
cerning the memristor-centered FoM (FoMM). Similarly, its
improvement is between 4× and 285.2× compared to previous
designs with respect to the speed-centered FoM (FoMS). With
respect to FoMC , the second proposed multiplier is better
compared to all array and parallel multipliers. It is only not

11

TABLE IX: COMPARISON OF STATEFUL MULTIPLIERS BASED ON THE FIGURES OF MERITS FOR N = 8. BOLD NUMBERS
DENOTE THE BEST DESIGN ACCORDING TO EACH FIGURE OF MERIT.

Designs FoMB FoMM FoMS FoMC

#
Imp.(1)

(%)
Imp.(2)

(%) #
Imp.(1)

(%)
Imp.(2)

(%) #
Imp.(1)

(%)
Imp.(2)

(%) #
Imp.(1)

(%)
Imp.(2)

(%)

Shift&Add [26] 59.3µ 17 122.1 1039.8n -259.4 10.2 200.2n 478.1 897.1 926.1n -200.1 -58.1
Array [27] 16.2µ 328.4 713 41.2n 602.2 2680.8 103.2n 1021.5 1834.3 35.4n 771.7 1554.2
Dadda [30] 24.5µ 183.3 437.5 63.6n 354.9 1701.4 231.2n 400.6 763.4 50.7n 508.7 1055

Semi-serial [24] 25.9µ 167.9 408.5 187.5n 54.3 511 92.4n 1152.6 2060.4 497.7n -61.3 17.7
Array [28] 26.8µ 158.9 391.4 64.8n 346.4 1668.1 298.2n 288.1 569.4 412.9n -33.8 41.8
Serial [50] 10.3µ 573.8 1178.6 155.9n 85.6 634.4 7n 16434.3 28417.1 - - -

MAT-based [51] 54.8µ 26.6 140.3 360.7n -24.7 217.6 456.8n 153.4 337 1661.3n -438.3 -183.7
Semi-parallel [52] 14µ 395.7 840.7 100n 189.3 1045.7 27.5n 4108.7 7158.9 86.4n 257.2 577.8

MultPIM [53] 68.5µ 1.3 92.3 652.5n -116.2 83.2 492.9n 134.8 305 - - -
1st proposed 69.4µ - 89.8 289.3n - 296 1157.4n - 72.5 308.6n - 89.8
2nd proposed 131.7µ -89.8 - 1145.7n -296 - 1996.2n -72.5 - 585.6n -89.8 -

- Imp.(1) and Imp.(2) stand for the improvement of the first and the second proposed multipliers, respectively.

better than Shift&Add [26] and MAT-based [51] multiplier.
The first proposed multiplier is better than Array [27], Dadda
[30] and semi-parallel [52] multipliers.

D. Discussions

The obtained values of different FoMs along with the
basic metrics can help the designers to choose the required
multiplier based on the design goals and constraints. The
proposed array multipliers in this paper are better in most
of the basic performance metrics and most of the investigated
FoMs compared to state-of-the-art designs. Thus, they can be
chosen as a beneficial structure especially the second proposed
multiplier.

We note that memristive technology is still in a maturing
phase and so are the respective models. Consequently, there is
a gap between the simulation and implementation results due
to the effect of non-idealities, especially those not reflected in
the models [54]. However, taping out design is at the moment
very challenging and out of reach for most (including for
us at the moment), especially for non-technical reasons. In
the literature, we barely see any tape-out or measurement
results, especially for any circuit that needs more than a
handful of memristors [54]. Nevertheless, we have taken
certain steps to close this gap and ensure a higher reliability
and practical relevance of our design. First and foremost, we
have used a model that has been experimentally fitted to real
devices and thus includes some of the effects of non-idealities.
Moreover, as device variation is one of the main challenges
of memristive circuits, we have investigated the effect of
memristance variation on the proposed designs. To do so,
the proposed multipliers are simulated when the memristance
changes from 5% to 20% which means that we analyzed cases
where 8kΩ < Ron < 12kΩ and 800kΩ < Roff < 1200kΩ.
The simulations showed that this variation does not affect the
correct operation of the designs. Concerning the power and
energy consumption, it should be noted that the corresponding
results are not reported for the previous multipliers. Moreover,
the proposed multipliers can be compared to the circuits that
are implemented using the same memristor model in the
same technology. The memristor model and technology of
the proposed multiplier in [24] are the same as ours but in
[24] only the energy consumption of the semi-serial adder
used in that multiplier was reported, and the results for the

multiplier were not reported. However, we have estimated the
energy consumption of the semi-serial adder-based multiplier
in [24] based on the reported values for the utilized semi-
serial adder. As a (2N − 1)-bit semi-serial adder is replicated
⌈N

2 ⌉ times for N × N -bit multiplication, a 7-bit semi-serial
adder is replicated two times for a 4× 4-bit multiplier. Based
on [24], the semi-serial adder consumes (9.87N + 1.33) nJ
which leads to 70.42 nJ for each adder. Hence, approximately
140.84 nJ is consumed by the 4 × 4-bit multiplier which
is 24× more than that of the first proposed multiplier and
22.9× more than that of the second proposed multiplier.
Therefore, the energy consumption of the proposed multipliers
is considerably reduced compared to [24].

VII. CONCLUSIONS

In this paper, we proposed an efficient in-array FA which is
based on a combination of SIXOR and TMSL stateful logics.
This FA requires one fewer memristor compared to the best
existing FA while having the same speed. The proposed FA
was used as a basic building-block in the proposed array
multipliers. More efficient reusing of the memristors in the
proposed array multipliers than the previous designs as well
as using the proposed low-cost and high-speed FA helped us
to reach two new low-cost and high-speed multipliers suitable
for in-array computing. The first and the second proposed
multipliers achieved on average 29% and 21%, respectively,
higher speed compared to the fastest existing design in [28].
Based on the introduced figures of merit, both proposed multi-
pliers especially the second one achieved a higher performance
compared to previous designs. The second proposed multiplier
is the best design in three out of four figures of merit. For 8×8-
bit multiplication, this multiplier achieved up to 12.8×, 27.8×
and 285.2× improvement, in the balanced, memristor-centered
and speed-centered figures of merit, respectively, compared to
previous designs. Thus, the proposed usage of different single-
cycle stateful memristive logic gates together (instead of using
a single logic such as IMPLY) can lead to a faster in-array
computation with a lower cost in a more complex unit such
as a multiplier.

REFERENCES

[1] L. O. Chua. Memristor—the missing circuit element. IEEE Transactions
on Circuit Theory, CT-18(5):507–519, September 1971.

12

[2] D. B. Strukov et al. The missing memristor found. Nature, 453:80–83,
May 2008.

[3] M. A. Zidan et al. The future of electronics based on memristive
systems. Nature electronics, 1:22–29, 2018.

[4] N. Taherinejad et al. Memristors’ potential for multi-bit storage and
pattern learning. In 2015 IEEE European Modelling Symposium (EMS),
pp. 450–455, Oct 2015.

[5] N. Taherinejad et al. Fully digital write-in scheme for multi-bit
memristive storage. In 2016 13th International Conference on Electrical
Engineering, Computing Science and Automatic Control (CCE), pp. 1–6,
Sept 2016.

[6] G. Papandroulidakis et al. Crossbar-based memristive logic-in-memory
architecture. IEEE Transactions on Nanotechnology, 16(3):491–501,
May 2017.

[7] M. F. Tolba et al. Memristor fpga ip core implementation for analog
and digital applications. IEEE Transactions on Circuits and Systems II:
Express Briefs, 66(8):1381–1385, 2019.

[8] M. Huang et al. Global-gate controlled one-transistor one-digital-
memristor structure for low-bit neural network. IEEE Electron Device
Letters, 42(1):106–109, 2021.

[9] Y. Yu et al. Design of multilayer cellular neural network based on
memristor crossbar and its application to edge detection. Journal of
Systems Engineering and Electronics, 34(3):641–649, 2023.

[10] A. Horváth et al. Deep memristive cellular neural networks for image
classification and segmentation. IEEE Transactions on Nanotechnology,
pp. 1–8, 2024.

[11] M. R. Alam et al. Exact stochastic computing multiplication in
memristive memory. IEEE Design Test, pp. 1–8, 2021.

[12] M. R. Alam et al. Sorting in memristive memory. ACM Journal on
Emerging Technologies in Computing Systems, pp. 1–22, 2022.

[13] E. Lehtonen and M. Laiho. Stateful implication logic with memristors.
In 2009 IEEE/ACM International Symposium on Nanoscale Architec-
tures, 2009.

[14] P. Huang et al. Reconfigurable nonvolatile logic operations in resistance
switching crossbar array for large-scale circuits. Advanced Materials,
28(44):9758–9764, 2016.

[15] Q. Xu et al. Locally active memristor-based neuromorphic circuit: Firing
pattern and hardware experiment. IEEE Transactions on Circuits and
Systems I: Regular Papers, 70(8):3130–3141, 2023.

[16] Q. Xu et al. Firing pattern in a memristive hodgkin–huxley circuit:
Numerical simulation and analog circuit validation. Chaos, Solitons
Fractals, 172:113627, 2023.

[17] C. Wang et al. Complementary digital and analog resistive switching
based on alox monolayer memristors for mixed-precision neuromorphic
computing. IEEE Transactions on Electron Devices, 70(8):4488–4492,
2023.

[18] M. Guo et al. Pruning and quantization algorithm with applications in
memristor-based convolutional neural network. Cognitive Neurodynam-
ics, 01 2023.

[19] Q. Xu et al. Extreme multistability and phase synchronization in a het-
erogeneous bi-neuron rulkov network with memristive electromagnetic
induction. Cognitive Neurodynamics, 17(3):755–766, 2023.

[20] J. Borghetti et al. ‘Memristive’ switches enable ‘stateful’ logic opera-
tions via material implication. Nature, 464:873–876, April 2010.

[21] S. Kvatinsky et al. MAGIC; memristor-aided logic. IEEE Transactions
on Circuits and Systems II: Express Briefs, 61(11):895–899, Nov 2014.

[22] S. Gupta et al. FELIX: Fast and energy-efficient logic in memory.
In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7, November 2018.

[23] N. TaheriNejad. SIXOR: single-cycle in-memristor XOR. IEEE Trans-
actions on Very Large Scale Integration Systems (TVLSI), 29(5):925–
935, 2021.

[24] D. Radakovits et al. A memristive multiplier using semi-serial imply-
based adder. IEEE Transactions on Circuits and Systems I: Regular
Papers, 67(5):1495–1506, 2020.

[25] R. R. Disfani et al. Operational conditions analysis for memristive state-
ful logics-a study on imply and tmsl. In 2022 20th IEEE Interregional
NEWCAS Conference (NEWCAS), pp. 480–484. IEEE, 2022.

[26] L. Guckert and E. E. Swartzlander. Optimized memristor-based multi-
pliers. CSI2017, 64(2):373–385, February 2017.

[27] L. E. Guckert. Memristor-based arithmetic units. PhD thesis, University
of Texas at Austin, 2016.

[28] N. Revanna et al. The future of computing—arithmetic circuits imple-
mented with memristors. In 2017 51st Asilomar Conference on Signals,
Systems, and Computers, pp. 745–749. IEEE, 2017.

[29] L. Dadda. Some schemes for parallel multipliers. Alta frequenza,
34:349–356, 1965.

[30] L. Guckert and E. E. Swartzlander. Dadda multiplier designs using
memristors. In ICICDT2017, pp. 1–4. IEEE, May 2017.

[31] N. TaheriNejad et al. A semi-serial topology for compact and fast
IMPLY-based memristive full adders. In 2019 IEEE New Circuits and
Systems symposium (NewCAS), pp. 1–5, 2019.

[32] S. Kvatinsky et al. Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 22(10):2054–2066, October
2014.

[33] M. Teimoory et al. Optimized implementation of memristor-based full
adder by material implication logic. In ICECS2014, pp. 562–565, 2014.

[34] S. G. Rohani and N. TaheriNejad. An improved algorithm for IMPLY
logic based memristive full-adder. In 2017 IEEE 30th Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1–4,
April 2017.

[35] A. Karimi and A. Rezai. Novel design for a memristor-based full
adder using a new imply logic approach. Journal of Computational
Electronics, 17(3):1303–1314, Sep 2018.

[36] S. Ganjeheizadeh Rohani et al. A semiparallel full-adder in imply logic.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(1):297–301, Jan 2020.

[37] K. C. Rahman et al. Memristor based 8-bit iterative full adder with
space-time notation and sneak-path protection. In MWSCAS2017, pp.
695–698. IEEE, 2017.

[38] S. Kvatinsky et al. VTEAM: A General Model for Voltage-Controlled
Memristors. IEEE Transactions on Circuits and Systems II: Express
Briefs, 62(8):786–790, August 2015.

[39] D. Radakovits and N. TaheriNejad. Implementation and characterization
of a memristive memory system. In 2019 IEEE 32nd Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1–5,
May 2019.

[40] Knowm. Knowm inc, https://knowm.org., 2017.
[41] S. Bhat et al. Skynet: Memristor-based 3D IC for artificial neural

networks. In IEEE/ACM International Symposium on Nanoscale Ar-
chitectures (NANOARCH), pp. 109–114, July 2017.

[42] H. Manem et al. An extendable multi-purpose 3D neuromorphic fabric
using nanoscale memristors. In IEEE Symposium on Computational
Intelligence for Security and Defense Applications (CISDA), pp. 1–8,
May 2015.

[43] C. Li et al. Three-dimensional crossbar arrays of self-rectifying
Si/SiO2/Si memristors. Nature communications, 8:15666, 2017.

[44] M. Hu et al. Memristor-based analog computation and neural net-
work classification with a dot product engine. Advanced Materials,
30(9):1705914, 2018.

[45] M. Jiang et al. An efficient memristive alternating crossbar array and
the design of full adder. Nonlinear Dynamics, 111(21):20331–20345,
2023.

[46] B. Li et al. Highly efficient reconfigurable stateful logic operations based
on cui memristor-only arrays prepared with a solution-based process.
IEEE Journal of the Electron Devices Society, 11:269–273, 2023.

[47] A. Siemon et al. Stateful three-input logic with memristive switches.
Scientific Reports, 9, 12 2019.

[48] K. M. Kim and R. S. Williams. A family of stateful memristor gates for
complete cascading logic. IEEE Transactions on Circuits and Systems
I: Regular Papers, 66(11):4348–4355, 2019.

[49] N. Kaushik and S. Bodapati. Imply-based high-speed conditional carry
and carry select adders for in-memory computing. IEEE Transactions
on Nanotechnology, 22:280–290, 2023.

[50] B. Bagheralmoosavi et al. Power-area efficient serial imply-based 4:
2 compressor applied in data-intensive applications. arXiv preprint
arXiv:2407.09980, 2024.

[51] J. Sun et al. Efficient data transfer and multi-bit multiplier design in
processing in memory. Micromachines, 15(6):770, 2024.

[52] W. Liang et al. An imply-based memristive multiplier for computing-
in-memory systems with weight-stationary cnn acceleration. In 2022
IEEE International Conference on Integrated Circuits, Technologies and
Applications (ICTA), pp. 112–113. IEEE, 2022.

[53] O. Leitersdorf et al. Multpim: Fast stateful multiplication for processing-
in-memory. IEEE Transactions on Circuits and Systems II: Express
Briefs, 69(3):1647–1651, 2021.

[54] N. TaheriNejad and D. Radakovits. From behavioral design of mem-
ristive circuits and systems to physical implementations. IEEE Circuit
and Systems (CAS) Magazine, 19(4):6–18, Fourthquarter 2019.

