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ApprOchs: A Memristor-Based In-Memory Adaptive
Approximate Adder

Dominik Ochs∗, Lukas Rapp∗, Leandro Borzyk∗, Nima Amirafshar, and Nima TaheriNejad

Abstract—As silicon scaling nears its limits and the Big Data
era unfolds, in-memory computing is increasingly important for
overcoming the Von Neumann bottleneck and thus enhancing
modern computing performance. One of the rising in-memory
technologies are Memristors, which are resistors capable of
memorizing state based on an applied voltage, making them
useful for storage and computation. Another emerging computing
paradigm is Approximate Computing, which allows for errors
in calculations to in turn reduce die area, processing time and
energy consumption. In an attempt to combine both concepts and
leverage their benefits, we propose the memristor-based adaptive
approximate adder ApprOchs - which is able to selectively compute
segments of an addition either approximately or exactly. ApprOchs
is designed to adapt to the input data given and thus only compute
as much as is needed, a quality current State-of-the-Art (SoA) in-
memory adders lack. Despite also using OR-based approximation
in the lower k bit, ApprOchs has the edge over S-SINC because
ApprOchs can skip the computation of the upper n-k bit for a
small number of possible input combinations (22k of 22n possible
combinations skip the upper bits).

Compared to SoA in-memory approximate adders, ApprOchs
outperforms them in terms of energy consumption while being
highly competitive in terms of error behavior, with moderate
speed and area efficiency. In application use cases, ApprOchs
demonstrates its energy efficiency, particularly in machine learning
applications. In MNIST classification using Deep Convolutional
Neural Networks, we achieve 78.4% energy savings compared
to SoA approximate adders with the same accuracy as exact
adders at 98.9%, while for k-means clustering, we observed a
69% reduction in energy consumption with no quality drop in
clustering results compared to the exact computation. For image
blurring, we achieve up to 32.7% energy reduction over the exact
computation and in its most promising configuration (k = 3),
the ApprOchs adder consumes 13.4% less energy than the most
energy-efficient competing SoA design (S-SINC+), while achieving
a similarly excellent median image quality at 43.74dB PSNR and
0.995 SSIM.

Index Terms—Memristive Computing, Approximate Computing,
In-Memory Computing, Adaptive Adder

I. INTRODUCTION

NOWADAYS, because of the increase in the quantity of
data, processing systems are required to move ever more

data rather than processing it. However, data retrieval occupies
more time than its processing. Hence, research focus has been
shifting towards in-memory computing. In-memory comput-
ing describes the execution of operations such as additions,
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multiplications or bitwise operations directly in the memory.
That prevents costly data movement, saving time and energy.
A subparadigm of this technology is based on memristors,
which are resistors capable of memorizing states based on an
applied voltage [1]. They can also be controlled to perform
logical operations, such as implications (IMPLY Logic [2])
or OR-operations (FELIX Logic [3]), making them not only
interesting for storage [4], but also for computation [2].

Another paradigm is approximate computing. Numerous
particular applications do not require exact computing. Many
applications are inherently error-tolerant, such as machine
learning, image processing, and signal processing [5]–[7].
Therefore, approximate computing allows to achieve high
efficiency in speed, area, and power or energy consumption
by compromising accuracy [8]. Approximate computing can
be coupled with memristive in-memory computing to reduce
energy consumption even further [9], [10].

Improvements of memristive adders in terms of energy
consumption, runtime and accuracy are of particular interest
because additions are used ubiquitously and therefore carry
a huge potential for optimization [11]. To the best of our
knowledge, all memristive adders are run-time static, meaning
a pre-defined segment of bits is approximated [12]–[15].
Depending on the application and the corresponding value
distribution, that might not be suitable. Oftentimes, the lower
bits of a number are approximated because they contribute
less to the number. However, if small numbers often occur in
an application, approximation introduces large relative errors.
Furthermore, when numbers are sufficiently small, the upper
bits are zero and need no computation. For CMOS, such
an adaptive approximate adder has shown promising results
compared to static alternatives [16]. However, there has not
been a proposal for an in-memory counterpart.

To address these challenges, our key contributions are:
• We introduce the Adaptive Precision Adder Framework

(APAF), an in-memory framework that splits a number
into segments with a fixed size at design time, and then
dynamically determines which segments of a number to
compute exactly, approximately, or not at all based on the
bit pattern of the input segments (at runtime) to improve
speed, efficiency, and accuracy.

• The APAF allows for any exact or approximate adder to
be used within its framework. This enables the user to
tailor the involved exact and approximate adders to their
needs, acting as a meta optimization for any previously
proposed approximate adder.

• We evaluate the APAF on an established exact in-memory
adder paired with a novel approximate adder, which ORs
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the inputs, as a proof of concept. We call this specific
adder and instantiation of the APAF, the ApprOchs adder.

This adaptive approach aims to optimize the accuracy and
efficiency of addition operations across various applications
while allowing for flexibility and adjustability.

The rest of this paper is structured as follows. We begin
with an introduction into the ApprOchs adders architecture in
Section III, followed by a look at the circuit implementation.
The corresponding costs are presented in Section IV. After
that, we examine machine learning applications in Section VI
and image processing applications in Section VII employing
the ApprOchs adder, before finally drawing a conclusion and
taking an outlook on future development in Section VIII.

II. RELATED WORK

A. Memristors and Memristor Logic

The memristor, a recently developed two-terminal device,
was first theorized by Chua [1] and later experimentally
demonstrated by Strukov et al. [17]. This component functions
as a non-volatile memory element by retaining information
through its variable resistive states. Due to its benefits, including
minimal power consumption, rapid data writing capabilities,
and compact size, the memristor has emerged as a highly
promising candidate for memory cell applications [2], [12],
[18], [19].

IMPLY represents a type of stateful logic that takes advantage
of the inherent properties of memristors, enabling logical
functions to be carried out without the necessity of distinct
read or write steps [19]. This logic is highly compatible with
crossbar array architectures and has emerged as a leading
approach for in-memory computing systems [18], [20]. In an
IMPLY operation, typically expressed as a =⇒ b, the input
values are determined by the resistive states of the memristors,
with the corresponding truth table displayed in Table I.

FELIX is another type of stateful logic, which also enables
logical functions without distinct read or write steps [3]. The
FELIX logic, or more specifically the FELIX-OR, allows a
single-cyle logical OR operation denoted by a ∨ b [3]. Table I
contains the logic table. Additionally, there are other stateful
logics such as SIXOR [19], MAGIC [21], and TSML [22].
For our exact adder, we used IMPLY because it is the most
reliable in memristive technology [14]. However, our approach
can be expanded to use exact and approximate adders from
other logics and architectures. For our approximate-part adder
and adaption process, we used FELIX because it enables us to
model an OR in a single cycle [3] and the required processes
are entirely OR-based. Using IMPLY would require many more
steps for these processes. Additionally, the ORs are not reused,
making the reliability of the FELIX-OR irrelevant.

B. IMPLY-based Full Adders

Of IMPLY-based adders there are the three general types
serial, parallel, and hybrid (semi-serial, semi-hybrid), of which
the latter endeavors to produce a better balance between
computing time and memristor usage. Serial adders consist of
memristors in the same row or column of a crossbar array and

TABLE I: Truth Table for IMPLY and FELIX-OR functions

a b a → b a ∨ b
1 1 1 1
1 0 0 1
0 1 1 1
0 0 1 0

TABLE II: Comparison of Exact n-Bit IMPLY Adders

Adder Time Steps Memristors
Serial [15] 22n 2n+3

Parallel [12] 5n+16 4n+1
Semi-Serial [24] 10n+2 2n+6

Semi-Parallel [13] 17n 2n+3

can only perform one operation per cycle [2], [15], [20]. The
best State-of-the-Art (SoA) IMPLY-based full adder requires
22n steps and 2n + 3 memristors for an n − bit calculation
[15]. Note that other logic variants such as MAGIC [21] or
SIXOR [19] feature faster exact full adders [19], [23], however,
we have chosen IMPLY due to its higher reliability, higher
practical relevance, and more wide-spread use, as mentioned
in Section II-A. Parallel adders consist of multiple rows that
are not connected, which enables the parallelization of some
operations [12]. Via switches, each row can be connected
to a shared c-memristor, which serves for computing and
propagating the carry-out. Not all steps can be parallelized
due to the dependency on the previous carry-out. Adders of
this type require 5n + 16 steps and 4n + 1 memristors for
an n− bit addition. The hybrid adders are either semi-serial
which consists of two parallel rows with inputs [14], [24] or
semi-parallel with two parallel rows, with one input and a work
memristor each [13]. Semi-serial requires 10n+ 2 steps and
2n + 6 memristors, and semi-parallel 17n steps and 2n + 3
memristors for an n−bit addition. Table II lists the SoA adders
of each type together with their computing time and memristor
requirements.

We chose the SoA serial adder by Rohani et al. [15] for our
proof of concept implementation (ApprOchs) of the APAF due
to the simplicity of its topology.

C. Approximate Computing

Approximate computing primarily involves modifying logic
by removing or altering gates or individual transistors and
redesigning the corresponding truth table, accepting some
degree of inaccuracy in the process. This approach can enhance
performance metrics like energy efficiency, chip area utilization,
and computation speed. However, the trade-off is a reduction in
computational accuracy [25], [26]. Due to the inherent nature
of approximate computing, it is most suitable for error-tolerant
applications, such as machine learning, image processing, and
signal processing [5]–[7]. In machine learning, accuracy is a
commonly used quality metric, whereas in image processing,
the Peak Signal-to-Noise Ratio (PSNR) measures noise levels,
with a PSNR above 30dB generally being acceptable in the
SoA [27], [28]. Additional metrics like the Structural Similarity
Index Measure (SSIM) are also used to evaluate image quality,
considering the importance of structure for human visual
perception [29].
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Fig. 1: CMOS Adaptive Approximate Adder [16].

Various approximation techniques have been developed
for CMOS technology [7], [16], [30]–[34] and others [35].
Recently, there has been growing interest in approximate full
adders utilizing memristors, by employing the memristors into
an approximate addition algorithm. This movement began
with the introduction of Memristor Ratioed Logic-based
approximations in [36] and [37]. More recent work has explored
IMPLY-based approximate full adders in serial topology, as
discussed in [10] and [38], which optimized the truth table using
specific input vectors, leading to reductions in processing steps
and energy consumption by up to 42% and 68%, respectively. In
[39], a semi-serial topology was employed for an approximate
adder, achieving reductions of up to 29% in steps and 34% in
energy usage. By cleverly disregarding the carry, [40] achieved
even better results for serial, parallel, semi-serial, and semi-
parallel topologies. Other work [41] focuses on reducing latency
instead of energy, achieving computation in only two steps per
approximate bit. However, the aforementioned adders do not
consider the nature of the data they are processing. These adders
provide a static segment of bits to which the approximation is
applied during runtime and cannot adapt based on the data. The
only exception to this is the CMOS-based adaptive approximate
adder shown in Figure 1 [16]. The adder first sequentially
compares both inputs, starting at the Most-Significant Bit
(MSB), for whether the inputs are equivalent or not. The XOR-
based comparison stops at the first unequal bit and assigns all
bits before that to the exact adder and all bits after that to
the approximate adder. However, this method incurs a large
overhead and is not directly translatable into memristive in-
memory computing.

In this work, we propose the novel APAF, where the inputs
are divided into segments whose sizes are determined by the
user before runtime. During runtime the APAF enables the
adders to discriminate based on the inputs which segment of
bits should be approximated and which should be computed
correctly or not at all for a superior balance between error,
computational speed, energy consumption, and memristor
requirements. The implementation of our APAF in the form of
the ApprOchs adder offers significant improvements in speed
and energy efficiency over the SoA, while maintaining or
improving on error metrics for image processing and machine
learning-based applications in most cases.

III. APPROCHS DESIGN

The principle for our approximate adder, as is also true
for numerous others, is that by reducing the amount of bits
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Fig. 2: Example additions using the APAF. Green sections in-
dicate exact addition, yellow shows OR-approximated addition,
and white represents performing no addition.

that are calculated accurately through changing the algorithm
steps that are employed on the memristors to calculate the
addition, we can reduce both processing time and energy
consumption. Often, approximate adders have the bits that
are approximated fixed, starting from the Least-Significant Bit
(LSB) upwards. This has the advantage that the absolute error
can be kept as small as possible, as only the lowest bits can
be calculated inaccurately. For applications that rely on small
integers, this poses an issue because the calculations may all
be approximated, and the error increases with each further
addition when the integer stays in the band of approximated
bits, i.e. for small integers, the relative error is high. To solve
this problem, our proposed adder uses an adaptive element
that automatically determines the approximation depending
on how large the number is. For this, a n-bit integer is split
into two fixed segments before runtime, where the lower LSB
part consists of k bit. It then checks the upper, MSB part of
n − k bit for whether any of the bits are equal to one by
using an OR operation. If there is a large integer being added,
the upper bit part of the addition will use an exact algorithm,
while the lower bit part is added approximately by using OR
operations. In this case, there are no carries propagated in the
lower part (especially not between the sections), making both
parts completely parallelizable.

For example, Figure 2a shows the 4-bit addition of two
integers values, namely, 9 and 3. The example demonstrates that
approximation is used in the lower part and accurate calculation
is used in the upper part. When using an exact adder, the result
is 12, as shown in Figure 2a. Using the ApprOchs adder, the
4-bit integers are split into an upper bit half (high bits) and a
lower bit half (low bits), as shown in Figure 2a. The ApprOchs
adder then checks if the upper half contains a 1 in any of its
bits. As this is the case in this example (integer A’s MSB is
1), the upper part will be added accurately, and the lower part
will be “added” using OR operations. This produces 11 as the
result. Checking the upper half for a 1 means that the ApprOchs
adder does not work very well for two’s complement (negative)
numbers, because it will always select the upper part in those
numbers as the MSB will always be 1. This is especially a
problem as in −1, always all-bits equal to 1. Therefore, there
is a large interpreted value discrepancy compared to unsigned
integers.

If the condition that the upper bit part contains a bit equal
to one is not met, the LSBs will be added using an exact
algorithm, and the upper bit part will be ignored and not
calculated at all, saving both power and time. This second case



4

TABLE III: Adaptive Precision Adder Framework Algorithm

Case 1 (Non-Zero MSBs): 1 ∈ an:k+1bn:k+1

Time Step n− k MSBs k LSBs

1 OR =
∨n

i=k+1(ai ∨ bi)

2 ex(an:k+1, bn:k+1)1 Si = ai ∨ bi ∀i ≤ k

3 ex(an:k+1, bn:k+1)2
...

...
tex(n− k) + 1 ex(an:k+1, bn:k+1)tex(n−k)

Case 2 (All-Zero MSBs): 1 /∈ an:k+1bn:k+1

Time Step n− k MSBs k LSBs

1 OR =
∨n

i=k+1(ai ∨ bi)

2 ex(ak:1, bk:1)1
3 ex(ak:1, bk:1)2
...

...
tex(k) + 1 ex(ak:1, bk:1)tex(k)

is illustrated in Figure 2b. Here, 3 and 3 are added together,
which when added exactly results in 6. This calculation can
be seen in Figure 2b. As the upper half (high bit 1 and high
bit 0) does not contain a 1, the ApprOchs adder does not
calculate this part and only accurately calculates the lower half,
saving half the energy and half the compute time. This case-
distinguishing behavior has the benefit that for tasks relying
on small integers, such as machine learning tasks, where the
weights can be very small, the calculation is done exactly, and
for larger integers, the LSBs are approximated to get a small
relative error and achieve both the energy and time benefits of
approximate computing. Another advantage of the ApprOchs
adder’s adaptive element is that it can be applied to different
integer sizes. This makes it applicable to many use cases and
different integer sizes. This system could also be double-ended
or have more adaptive sections for larger integers. By default
k = n

2 , so there is an upper half and a lower half, but k can
be set to any other value to suit a certain use case.

Figure 3 shows the circuit of the adder. For 8-bit, it uses 24
memristors in total: 16 memristors for the two 8-bit input
integers, 2 working memristors for the exact addition, 1
memristor to store the result of the initial OR-operation to
decide the case, k memristors for the k LSB OR-approximations
(by default k = 4), and 1 carry-out memristor. The exact adder
algorithm we use requires two working memristors, that is why
our circuit features two working memristors as well.
The control circuit that decides the case (Case 1 or Case 2) is
built using CMOS logic and switches depending on the state
of the OR memristor. In the case of a logical 1 in the OR
memristor, the control logic will switch the accurate algorithm
to the high bits and enable the approximate algorithm for the
low bits. For a logical 0 in the OR memristor, the control
circuit will switch the accurate algorithm to the low bits and
will disable the approximate algorithm.

Table III shows the general algorithm for the APAF using
the exact adder labelled as ex. Any addition starts out with
reading all values of the upper part of memristors into a single
FELIX-OR (labelled OR) in step 1 shown in Table III. This
OR-memristor acts as a control signal to turn the approximation
either on or off. So, depending on this memristor, either the
upper part will be calculated accurately and the lower part will

be approximated, or the lower part will be added accurately, and
the upper part will not be calculated at all. In the case where the
initial FELIX-OR operation and consequently the memristor
produces a logical 1, the circuit switches the upper part of the
memristors to exact adder and the lower part memristors to the
FELIX-OR blocks (labelled s) that are used to approximately
add those LSB memristors. In Table III this is step 2 of case
1. This switching behavior is accomplished by using normally
closed switches for the lower bit part so if OR = 1, it will
cut off the accurate algorithm from the lower part and instead
connect the OR blocks to the outputs of the memristors in step 2
as previously explained. The results of the approximate addition
are therefore stored in the s-memristors, and the outputs of any
exact addition, whether for the upper part or the lower part,
are stored in the corresponding a-memristors. The carry-out
of any exact addition is stored in the c-memristor. In step 2 of
the algorithm, the exact adder commences its operation either
on the MSBs or LSBs depending on the case and then runs
for tex(k) steps for a total of tex(k) + 1 steps for the whole
algorithm. The approximate computation of the LSBs in case
1 happens totally simultaneously in one step, in step 2.

IV. EXPERIMENTS AND RESULTS

A. Hardware and Accuracy Criteria

For error analysis and accuracy assessment, we use the
commonly used metrics Mean Error Distance (MED) [42],
Normalized Mean Error Distance (NMED) [43], and Mean
Relative Error Distance (MRED) [26] presented in Equations (1)
to (3), respectively. In these equations, ZEx,i and ZAx,i

represent the i-th of 22n possible n-bit sums computed with a
specific exact and approximate adder, respectively. We adjusted
Equation (3) from the literature slightly to skip the division
by zero that would be caused by zEx,1, which is the sum of
0 + 0 and the only number that equals 0 for the exact adder
in the denominator.

MED =
1

22n
×

22n∑
i=1

|ZEx,i − ZAx,i| (1)

NMED =
MED

2n+1 − 1
(2)

MRED =
1

22n − 1
×

22n∑
i=2

|ZEx,i − ZAx,i|
ZEx,i

(3)

For efficiency comparisons, we evaluate speed as the number
of steps required to perform a full n-bit addition, energy for
an n-bit addition, and area requirements as measured by the
number of memristors used.

B. Experimental Setup

To evaluate the performance in terms of energy consumption
and to validate the correctness of the proposed algorithms, we
conducted circuit simulations using LT-SPICE. These simula-
tions were based on the Voltage-controlled ThrEshold Adaptive
Memristor (VTEAM) model [44], which was implemented in
SPICE [14]. This approach enhances the reliability of our
simulations and ensures their practical relevance. Additionally,
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Fig. 3: Circuit of an n-bit ApprOchs adder with approximation level k. NMOS and PMOS represent normally opened and
normally closed switches, respectively. All yellow circles represent lines directly connected to control and apply the OR logic
operation, whereas green circles represent connections to the algorithm control logic. To reduce clutter in the figure connecting
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employing this widely used model facilitates a more straightfor-
ward comparison with previous studies, such as those in SoA
literature [15], [38], [39]. To evaluate the accuracy metrics for
different configurations of n and k, we use a model in Python
on all possible 22n input combinations, which for n = 8 is
65536.

C. Results

Speed: The time ApprOchs requires to compute an n-bit
addition largely depends on the time of the underlying exact
adder tex. Since the potential approximation of the LSB part
can be performed in parallel to the exact adder ex and only
requires one step, it does not contribute to the overall time
of the algorithm. However, before the exact adder may begin
operation, performing the FELIX-OR over the MSBs requires
an additional step. Therefore, in the general case, the step
count t amounts to

t(n) ≤ max(k, n− k)

n
× tex(n) + 1, (4)

where tex(n) is the time required by the underlying exact
adder, n is the number of bits in the addition and k is the
approximation split, i.e., the number of LSBs comprising
the lower part. The upper part then consists of n − k bit.
Equation (5) shows the equivalent formulation. Furthermore,
when using the serial adder [15] as an exact adder, the step
count is given by Equation (6).

t(n) ≤ tex ×max(k, n− k) + 1 (5)

t(n) ≤ 22×max(k, n− k) + 1 (6)

For k ̸= n
2 , the step count t varies depending on the specific

input. To obtain predictable operation times, the control logic
will need to wait for the slowest case. Therefore, for the general
case and in case of using this adder in a crossbar scenario, the
inequality becomes an equality:

t(n) = tex ×max(k, n− k) + 1. (7)

Table IV shows these slowest cases for n = 8 and k < n.
For the default case of k = n

2 , the equation simplifies to
Equation (8). When using the serial adder [15] as an exact
adder, it further simplifies to Equation (9). For speed, we only
report relative performance numbers because real latency is
technology dependent, which limits how well we can compare
our work to others using a different technology. In the literature,
it is common to report speed values in terms of the number
of cycles as opposed to absolute latency values in seconds.
Furthermore, this will ensure that our work remains comparable
in the future as we move to newer technology.

t(n) =
1

2
tex(n) + 1, (8)

t(n) = 11n+ 1. (9)

Area: Equation (10) depicts the number of memristors
required, where n and k are as in Equation (4) and spw,ex(n)
is the number of additional work memristors of the underlying
exact adder (usually 2 or 3 memristors). The 2n originate from
the two n-bit inputs, k for the LSB approximation, one as
carry-out, and one as initial FELIX-OR (labelled OR in the
circuit). The number of memristors required for the exact serial
adder is spex(n) = 2n+ 3 and with n = 8 it is spex(8) = 19.
Table IV shows the area for an 8-bit ApprOchs adder with a
serial exact adder and various k.

sp(n) = spw,ex(n) + 2n+ k + 2, (10)

Energy: The energy consumed by the ApprOchs adder with
the underlying serial exact adder [15] was measured using
LT-SPICE. The energy consumption in nJ is

e(n, k)a,b = 0.202(n− k) +

{
e1 if 1 ∈ an:k+1bn:k+1,
e2 otherwise,

where e1 = 4.0789(n− k) + 0.210k, (11)
e2 = 4.0789k,

where a, b are arbitrary n-bit inputs and e1, e2 correspond to the
energies in nJ in cases 1 and 2, respectively. In Case 1, there
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TABLE IV: Step Count, Area, Energy, and Accuracy for 8-bit ApprOchs using [15] as Exact Adder (tex(8) = 176, spex(8) = 19,
eex(8) = 32.631). For Energy and Accuracy, the mean over all possible inputs (mixed cases) and over each case are reported.
Accuracy for Case 2 is omitted since it does not produce any errors.

Mode Time Steps Mem-
ristors

Energy (nJ) Accuracy
Mixed Case 1

t(k) tx(k) Mixed Case 1 Case 2 MED NMED MRED MED NMED MRED
Exact tex(8) + 1 177 20 34.246 - - 0.0 0.0 0.0 - - -
k=1 7

8
tex(8) + 1 155 21 30.174 30.176 5.493 0.2511 0.00049 0.00135 0.251 0.00049 0.00136

k=2 6
8
tex(8) + 1 133 22 26.101 26.105 9.370 0.7472 0.00146 0.00396 0.750 0.00153 0.00374

k=3 5
8
tex(8) + 1 111 23 22.025 22.035 13.247 1.7542 0.00344 0.00906 1.848 0.00351 0.00993

k=4 4
8
tex(8) + 1 89 24 17.960 17.964 17.124 3.7240 0.00731 0.01818 3.757 0.00732 0.01917

k=5 5
8
tex(8) + 1 111 25 14.003 13.893 21.001 7.6487 0.01502 0.03447 7.759 0.01513 0.0292

k=6 6
8
tex(8) + 1 133 26 10.762 9.822 24.877 14.650 0.02878 0.05722 15.750 0.03076 0.04897

k=7 7
8
tex(8) + 1 155 27 11.501 5.751 28.754 23.662 0.04648 0.07312 31.755 0.06201 0.07547

are n− k exact adder steps and k FELIX-OR approximations,
while in Case 2, there are k exact adder steps. Case 1 is
triggered when there is at least a single one in either of the
input number’s n− k MSBs. Additionally, irrespective of the
case, a FELIX-OR is performed over the n − k MSBs to
initially determine the case.

Other work has simply averaged the energy over all possible
input combinations. To make this work comparable, we will
do the same. However, since our algorithm works differently
depending on the inputs, we need to employ a weighted average
of the input combinations for Case 1 (upper bits exactly, lower
bits approximately) and Case 2 (upper bits not calculated, lower
bits exactly). The mean energy over uniformly distributed inputs
in nJ is thus

e(n, k)ā,b̄ = 0.202(n− k) +
(22n − 22k)e1 + 22ke2

22n
(12)

where e1 and e2 are as in Equation (11) and inputs ā
and b̄ are from a uniform distribution over the possible
input combinations. The weighted average (the fraction in
Equation (12)) is calculated based on how many combinations
trigger Case 1 and how many trigger Case 2, assuming uniform
input distribution to ease comparison. Please note that for
k < n−2, the following becomes true: 22k << 22n. Therefore,
uniformity-specialized Equation (12) can be approximated for
smaller ks as

e(n, k)ā,b̄ ≈ 4.2809(n− k) + 0.210k (13)

We report energy in absolute values since it is heavily
technology-dependent and there is no common method to
report relative energy unit for energy consumption (unlike for
clock cycles for speed and number of memristors for area).
Table IV shows the energy for n = 8 and various k using [15]
for the exactly computed bits, where standalone [15] requires
eex(8) = 4.0789n = 32.631nJ . Additionally, it shows the
energy assuming inputs are either exclusively from Case 1 or
Case 2.

Accuracy: To evaluate the accuracy, we calculated MED,
NMED, and MRED for an 8-bit adder by applying all 216

possible input combinations. Furthermore, we calculated the
error metrics assuming only input combinations leading to
Case 1, with Case 2 being practically 0 in all metrics due to no
errors (exact calculations). The results are displayed in Table IV.

We observe all three metrics rising together with k. This is
because k increases the highest number that is approximated.
Another reason is that the higher k is, the more numbers are
approximated, as can be derived from Equation (12).

V. COMPARISON AND DISCUSSION

In this section, we compare our proposed approach to the
SoA algorithms found in the literature, primarily focusing
on the approximated adders from [38], [45], and [39], with
additional comparisons drawn from the most recent works [40].
The comparative results, covering energy consumption, speed,
area, and accuracy, are summarized in Tables V and VI. All
comparisons are performed with n = 8 and k = 5 unless
otherwise noted. We also added how ApprOchs performs if
inputs are taken from either case exclusively (ApprOchs Case
1, ApprOchs Case 2).

A. Energy Consumption

Our proposed approach, ApprOchs, exhibits significantly
lower energy consumption compared to the SoA. Specifically,
ApprOchs requires 14.003 nJ, which is 39.2% less than SIAFA
1,3 and SIAFA 4 from [38], 32.9% less than SAID 1 [41]
and 38.4% less energy than the SAFAN adder from [45].
In comparison to the proposal of [39], ApprOchs requires
32.4% less energy. Furthermore, the energy consumption of
ApprOchs is also 26% lower than SINC and SINC+ [40],
and 10% less than the semi-parallel S-SINC implementation
[40] which previously required the lowest energy. Despite also
using OR-based approximation in the lower k bit, ApprOchs
has the edge over S-SINC [40] because ApprOchs can skip
the computation of the upper n − k bit for some possible
input combinations (22k of 22n possible combinations skip the
upper bits). These results demonstrate that ApprOchs is highly
energy-efficient.

B. Speed

The speed of ApprOchs is comparable to the SoA. Our
method takes 111 steps, which is on par with the SIAFA adders
from [38] and SAFAN [45]. However, it is outperformed by
the SINC and SINC+ implementations [40], which take 48
steps, but at much higher energy consumption. ApprOchs is
generally faster than the serial exact adder [15] it is made of,
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TABLE V: Energy, Speed, and Area Comparison

Algorithm Energy (nJ) Speed Area
e(n,k) e(8,5) t(n,k) t(8,5) s(n,k) s(8,5)

Serial Exact [15] 4.0789n 32.6311 22n 176 2n+ 3 19
Parallel Exact [12]* 4.0772n 32.6176 5n+ 18 58 4n+ 1 33

Semi-Serial Exact [24]* 3.8435n+ 0.8053 31.5580 10n+ 2 82 2n+ 6 22
Semi-Parallel Exact [13]* 4.8339n 38.6712 17n 136 2n+ 3 19

SIAFA 1,3 [38]* 1.7090k + 4.8250(n− k) 23.0200 8k + 22(n− k) 106 2n+ 3 19
SIAFA 2 [38]* 2.5131k + 4.8250(n− k) 27.0405 10k + 22(n− k) 106 2n+ 3 19
SIAFA 4 [38]* 1.7066k + 4.8250(n− k) 23.0008 8k + 22(n− k) 106 2n+ 3 19
SAFAN [45]* 1.6628k + 4.8250(n− k) 22.7890 7k + 22(n− k) 101 2n+ 3 19

[39]* 1.66k + 3.84(n− k) + 0.86 20.7345 5k + 10(n− k) + 3 58 2n+ 6 22
SINC [40]* 0.7230k + 4.8250(n− k) 18.9900 3k + 22(n− k) + 3 84 3k + 4(n− k) + 1 28

SINC+ [40]* 0.72k + 4.82(n− k) + 0.78 18.8744 3k + 22(n− k) + 3 84 3k + 4(n− k) + 2 29
PINC [40]* 0.723k + 4.0772(n− k) 15.8466 5(n− k) + 18 33 3k + 4(n− k) + 1 28

PINC+ [40]* 0.72k + 4.07(n− k) + 0.78 18.9900 5(n− k) + 18 33 3k + 4(n− k) + 2 29
S-SINC [40]* 0.57k + 3.84(n− k) + 1.06 15.4566 2k + 10(n− k) + 3 45 2n+ 6 22

S-SINC+ [40]* 0.57k + 3.84(n− k) + 1.87 16.2590 2k + 10(n− k) + 5 45 2n+ 6 22
S-PINC [40]* 0.6372k + 4.8339(n− k) 17.6877 3k + 17(n− k) + 3 66 2n+ 3 19

S-PINC+ [40]* 0.63k + 4.83(n− k) + 0.92 18.6164 3k + 17(n− k) + 2 68 2n+ 3 19
SAID 1 [41] 1.2283k + 4.8250(n− k) 20.6165 2k + 22(n− k) 76 2(n− k) + 2k + 3 19
SAID 2 [41] 1.5488k + 4.8250(n− k) 22.2190 6k + 22(n− k) 96 2n+ k + 3 24
ApprOchs Equation (12) 14.003 22×max(k, n− k) + 1 111 2n+ k + 4 25

ApprOchs C. 1** Equation (11) 13.8837 22× (n− k) + 1 67 2n+ k + 4 25
ApprOchs C. 2** Equation (11) 21.0005 22× k + 1 111 2n+ k + 4 25

(*) Values taken from [40], which uses the same experimental setup.
(**) Assuming input distributions only resulting in that case.

TABLE VI: Accuracy Comparison

Algorithm n=8, k=1 n=8, k=2 n=8, k=3 n=8, k=5
MED NMED MRED MED NMED MRED MED NMED MRED MED NMED MRED

SIAFA1, 3 [38] 0.25 0.0004 0.0013 0.875 0.0017 0.0048 2.062 0.004 0.0115 8.8554 0.0173 0.0522
SIAFA2 [38] 0.25 0.0004 0.0013 1 0.0019 0.0055 2.656 0.0052 0.015 13.498 0.0264 0.0822
SIAFA4 [38] 0.5 0.0009 0.0027 1.25 0.0024 0.0068 2.625 0.0051 0.0145 10.6562 0.0208 0.0616

Proposal of [39] 0.5 0.0010 0.0027 1.1250 0.0022 0.0062 2.2500 0.0044 0.0125 8.9121 0.0174 0.0514
No Carry [40] 0.25 0.00049 0.0013 0.75 0.0015 0.0040 1.75 0.0034 0.0092 7.75 0.0152 0.0377

No Carry+ [40] 0.25 0.00049 0.0013 0.625 0.0012 0.0034 1.375 0.0027 0.0073 5.875 0.0115 0.0293
SAID 1 [41] 0.5000 0.0020 0.0028 1.2500 0.0049 0.0069 2.6250 0.0103 0.0147 10.6562 0.0418 0.0614
SAID 2 [41] 0.5000 0.0020 0.0028 1.1250 0.0044 0.0063 2.1875 0.0086 0.0124 8.5293 0.0334 0.0519
ApprOchs 0.25 0.00049 0.0013 0.747 0.0014 0.0039 1.754 0.0034 0.009 7.6487 0.01502 0.0344

ApprOchs Case 1* 0.25 0.00049 0.0013 0.75 0.0015 0.0040 1.75 0.0034 0.0092 7.75 0.0152 0.0377
ApprOchs Case 2* 0 0 0 0 0 0 0 0 0 0 0 0

(*) Assuming input distributions only resulting in that case.

and also than the semi-parallel exact adder [13]. While other
approximate algorithms, like S-SINC and S-SINC+ [40], exhibit
faster speeds (taking only 45 steps), these algorithms generally
exhibit higher energy consumption. Therefore, ApprOchs offers
a balanced trade-off between speed and energy efficiency,
particularly for applications where energy consumption is the
priority. It should also be noted that with a faster underlying
adder, like the parallel exact adder [12], better speeds are to be
expected. Furthermore, the fastest configuration for ApprOchs
with the serial exact adder currently is k = 4 at 89 steps.
However, please note that this fastest configuration features
worse energy characteristics than for instance k = 6, if the
input data is uniformly distributed.

C. Area Usage
In terms of area, ApprOchs demonstrates moderate resource

usage with 2n+k+4 memristors required for implementation.
This is notably better than the parallel exact adder [12] and
the SINC, SINC+, PINC, and PINC+ [40] variants, but also
recognizably worse than the best the SoA can offer with, e.g.,

the SIAFA [38], SAFAN [45], SAID 1 [41], and serial exact
adders [15]. Overall, ApprOchs is rather efficient in terms of
area and very efficient in terms of energy, making it a suitable
candidate for low-power applications.

D. Error Metrics

We also compared ApprOchs to the SoA using error metrics
such as MED, NMED, and MRED, as shown in Table
VI. ApprOchs performs exceptionally well, achieving similar
accuracy to SIAFA [38] for small values of k, but significantly
outperforming these approaches as the approximation degree
increases. For n = 8 and k = 5, ApprOchs achieves an NMED
of 0.01502, which is 14% lower than SIAFA 1,3 [38] and the
approach presented in [39], achieving the second-best value.
Moreover, the MRED for ApprOchs is 0.0344, which is just
outperformed by No Carry+ [40]. No Carry+ [40] is able to
outperform ApprOchs because it estimates a carry-in for the
n − k highest bit, which gives it an edge over ApprOchs.
On the other hand, No Carry [40] performs ever so slightly
worse compared to ApprOchs, despite essentially using the
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same approximation mechanism of OR-ing the lower k bit,
because ApprOchs computes exactly for 22k of 22n possible
input combinations. This advantage increases with higher k,
since more numbers are affected. It is still not enough to
offset the carry-in from No Carry+ in terms of errors, but
it makes enough of a difference in terms of energy to beat
the SoA. These results highlight the robustness of ApprOchs
in minimizing approximation errors, particularly for higher
degrees of approximation.

Despite outperforming the SoA in terms of energy require-
ments and achieving excellent error characteristics, arguably
the main benefit of ApprOchs, namely its ability to adjust to
the input data, has not been sufficiently explored, yet. The
following sections will examine the behavior of the ApprOchs
adder in real-world tasks with non-uniform input distributions.
To this end, we test ApprOchs in two machine learning and
two image processing use cases. To enable a comprehensive
comparison, we implement an 8-bit signed multiplier based
on binary long multiplication, as described in [46]. The 8-bit
multiplier produces a 16-bit product. However, we implemented
it using an 8-bit adder for the partial product paired with shifting
and or’ing instead of a 16-bit adder. The underlying adder is
either the ApprOchs adder or the exact adder from [15].

VI. APPLICATION IN MACHINE LEARNING

To evaluate our proposal in the context of machine learning,
we chose an application in deep learning using the handwritten
digits dataset MNIST with an 8-bit signed integer quantization
of AlexNet and an application in classical machine learning
using k-means clustering on an artificial dataset.

A. Quantized AlexNet on MNIST

Even though AlexNet [47] is an older representative of
the convolutional neural network family, it consists of several
convolution layers paired with dense classification layers. These
building blocks are still highly relevant in modern architectures
as they make up the bulk of today’s computer vision models and
are also used in time series and natural language processing.

In Python, we simulate our approximate hardware (adder
and adder-based long multiplier) by re-constructing the model
architecture with custom convolution and dense layers using
the approximate operators with the original quantized model
weights. This way, we can test the degradation in model infer-
ence performance compared to the exact version. Furthermore,
we examine different levels of approximation by approximating
k ∈ [1; 6] bit, respectively. We then evaluate the results for
inference, accuracy and energy consumption on 1000 random
samples of the MNIST dataset. Table VII shows the results
of ApprOchs compared to the SoA approximate adders PINC,
PINC+, SSINC, and SSINC+ [40], and SAID 1, SAID 2
[41]. We chose these adders for comparison because they
are among the designs with the best speed, energy, and error
characteristics in the literature, as shown in Tables V and VI.
Figure 4 additionally provides a graphical overview of the
results of Table VII. Up until k = 5, all adders except SAID 1,
SAID 2 [41] can sustain the accuracy of the exact adder [15]
of 98.9%. This demonstrates the error-tolerance of the network.

The design goal for SAID [41] was speed over energy and
accuracy and it shows in the benchmarks. SAID [41] performs
worst in accuracy as well as energy consumption. For k = 6
and k = 7, the performance starts to degrade for the remaining
adders. The exact computation [15] features the worst energy
consumption behavior at 1726 mJ per image. The ApprOchs
adder features by far the best energy behavior throughout all
approximation levels. The best energy consumption is achieved
by the ApprOchs adder with k = 1 at 338 mJ per image (19.6%
of the exact adder; 21.6% of the best SoA adder SSINC [40])
and perfect accuracy, thus showing the best overall performance.
As opposed to the SoA approximate adders from the literature,
the energy consumption of ApprOchs rises together with k in
this specific application, while the SoA approximate adders
require less energy per level of k. Analysis confirmed that
the low energy consumption of ApprOchs, especially for low
k, arises from the Rectified Linear Unit (ReLU) activation
function, which maps negative outputs to 0. Therefore, the next
layer features a convolution with many inputs as zero, which
prompts the adaptive adder ApprOchs to only require the LSBs
to perform the costly long multiplication and therefore merely
uses a fraction of the energy of other adders. We computed that
90.94% of the activations are zero in the exact network, while
only 9.05% of activations are greater than zero. Furthermore,
we observed that the weights in AlexNet [47], as is common
with neural networks, are normally distributed around zero
(see Figure 5), which leads to many weights being either 0
or 1 (or other small integers) for which the calculation of the
LSBs suffice. The reason why the adder with k = 1 produces
such a high accuracy is because two’s complement negative
numbers are handled more accurately. For a normal distribution
of 8-bit numbers, the mean relative multiplicative error is 0.26
for k = 1 while it is 3.61 for k = 4. This is due to the
negative numbers, especially −1 = (11111111)2, which suffer
extremely when only the upper 4 bits are calculated exactly as
opposed to the upper 7. ApprOchs’ energy distribution shown
in Figure 6 further illustrates how important the input data is
to ApprOchs’ success in this use case: The standard deviation
decreases with rising ks because the energy discrepancy closes
between the favorable case (Case 2) and the unfavorable case
(Case 1). If the input data is favorable and Case 2 is taken, a
lot more energy is conserved with lower ks than with higher
ks. Additionally, if the unfavorable Case 1 is taken, the cost is
much higher for lower ks than for higher ks. Therefore, with
higher ks this gap diminishes and the standard deviation falls.
This use case illustrates excellently how adaptive behavior can
be utilized for superior performance in use cases where data
is favorably distributed.

B. k-means Clustering

As a second use case, we choose k-means clustering as it
is a simple, effective and relevant algorithm for clustering
and unsupervised machine learning. Similarly to AlexNet
(see Section VI-A), we simulate the approximate hardware
in Python and implement the k-means algorithm with the k-
means++ method for centroid initialization. As the distance
metric, we use Manhattan distance over Euclidean distance to
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TABLE VII: Digit prediction accuracy (Acc.) in percentage and consumed energy (E) per image in mJ for different approximation
k and the latest SoA approximate adders. Note that PINC (PINC+) and SSINC (SSINC+) have the same error behavior. For
ApprOchs, we have additionally provided standard deviation of energy (SD E).

Approx. ApprOchs PINC [40] PINC+ [40] SSINC [40] SSINC+ [40] SAID 1 [41] SAID 2 [41]
Acc. E SD E Acc. E Acc. E E E Acc. E Acc. E

Exact [15] 98.9 1726 - - - - - - - - - - -
k=1 98.9 338 39.5 98.9 1568 98.9 1657 1567 1589 98.9 1946 98.9 1954
k=2 98.9 419 33.4 98.9 1481 98.9 1568 1481 1502 98.9 1851 97.9 1868
k=3 98.9 499 28.9 98.9 1395 98.9 1479 1394 1416 98.7 1756 82.2 1781
k=4 98.9 578 22.3 98.9 1308 98.9 1391 1308 1329 97.2 1661 38.3 1695
k=5 98.9 657 16.7 98.9 1222 98.9 1302 1221 1243 76.8 1565 13.1 1608
k=6 98.8 737 9.7 98.7 1135 98.9 1213 1135 1156 31.7 1470 12.6 1522
k=7 97.9 820 4.7 97.6 1049 97.9 1124 1048 1070 12.9 1375 10.2 1436
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remove the need for a custom square root implementation using
approximate adders. To be able to compare the accuracy values
of the exact and approximate versions, we generate artificial test
data with ground-truth labels. The data samples consist mainly
of Gaussian blobs with a varying number of cluster centers and
diverse variances. The data also includes some anisotropically
distributed data and ring structures. The data is quantized to
8-bit signed integers. The dataset consists of 36 samples with
400 vectors each. We then calculate the accuracy of the exact
hardware and with k ∈ [1; 6] bit approximation with respect to
the ground-truth labels. Since the initial centroid selection is
random, we cycle the permutations of the predicted labels in
order to find the highest accuracy for each result. Additionally,
we specify the number of expected clusters correctly, as was
used in the ground-truth. This is done because we do not
want to evaluate the clustering algorithm itself, but rather the
difference between an exact and approximate implementation.
We report accuracy with respect to ground truth and energy
consumption for configuration. For each configuration, we
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Fig. 6: Statistical distribution of energy consumption for for
ApprOchs, k ∈ {1, 3, 5, 7}. The circles indicate outliers.

TABLE VIII: Clustering accuracy and its standard deviation
in percentage, average total consumed energy and its standard
deviation in mJ, and average iterations for exact and approxi-
mate strategies.

Method Acc. (%) SD Acc. ø E (mJ) SD E ø Iter.
Exact [15] 88.82 7.64 2.161 0.360 5.72

k=1 90.50 7.98 1.928 0.513 7.25
k=2 90.89 7.87 1.687 0.388 8.64
k=3 91.83 8.03 1.431 0.320 7.02
k=4 90.94 8.14 1.158 0.228 8.19
k=5 87.69 9.32 0.848 0.267 12.78
k=6 75.77 11.65 0.670 0.212 18.94

specify the maximum number of iterations for the k-means
clustering algorithm as 30. If the clusters do not converge by
then, the calculation is stopped and results are evaluated as-is.

Table VIII shows the results of the adders tested. Accuracy-
wise, the exact and k ∈ [1; 4] versions perform similarly. The
configuration with k = 6 performed significantly worse. The
best accuracy is achieved by k = 3, which yields a higher
accuracy even than the exact adder. The best energy (but
worst accuracy) is achieved by the k = 6 configuration. It
requires only 31% of the energy of the exact adder. For
k ∈ [1, 4], the average iterations required for convergence
are about 50% higher than for the exact version and for k = 6,
they are 230% higher. With so many more iterations and thus
computations, it is surprising that k = 6 still presents results
that far outperform the SoA in terms of energy consumption.
The many more computations must thus be compensated for
by the high approximation level.

Figure 7 depicts several samples from the test data with the
ground truth and the result of each tested configuration. The
pictures additionally show the classification accuracy for that
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Fig. 7: Examples of clustering with different k. The left-most
column shows the ground-truth labels. Each example contains
the accuracy with respect to ground truth in percent.

sample with respect to the ground truth. Especially samples
3, 4 and 6 demonstrate how the generated data breaks the
assumptions made by the k-means algorithm. None of the
adders perform particularly well in these examples, but the
relative difference between exact and approximated versions
is negligible. Approximation levels k = 5 and k = 6 show
generally worse performance. This is most likely due to the
convergence strategy of k-means. It iterates as long as the
cluster centroids keep changing.

With k = 6, negative numbers will always be approximated
in the LSBs due to the sign bit. This will often cause the
centroids to keep changing slightly due to the approximation in
the LSBs. Therefore, the algorithm does not converge quickly
and is eventually stopped by the maximum iterations, ending
prematurely. This explains the high average iteration count.
The energy is relatively low because only 2 bits are calculated
exactly compared to the exact adder, where 8 bits are calculated
exactly.
The absolute accuracy values should be considered more
leniently compared to the AlexNet case study, because the
ground truth itself leaves room for interpretation and is not as
well-defined as with the human-annotated MNIST dataset. The
better comparison of error behavior is probably given by the
average number of iterations until convergence, which rise with
each further approximation level. However, the accuracy values
and that approximate adders can outperform exact ones to a
certain degree show that approximate computing is very well
suited for k-means clustering due to its high error-tolerance
and fuzzy correct solution which is inherent to unsupervised
learning.

In summary, the results of both machine learning use cases
show how the distribution of the data can be exploited to
achieve lower energy consumption than with non-adaptive
adders. The AlexNet use case has an especially favorable data
distribution for the ApprOchs adder, while the k-means was
evaluated on a largely uniform data distribution. ApprOchs was

designed for high-accuracy low-energy additions adapted to
the input data. The machine learning use cases show that the
ApprOchs meets these design goals and is able to outperform
SoA adders by a large margin in terms of energy use.

VII. APPLICATION IN IMAGE PROCESSING

We evaluated the performance of the ApprOchs in image
processing tasks, specifically in image blurring and edge
detection. Both operations are based on image convolution,
but differ in their kernels and effects: the blurring kernel
(K1 in Figure 8) contains positive elements and produces
a smoothing effect that reduces the impact of high-frequency
noise, whereas the edge detection kernel (K2 in Figure 8)
incorporates negative elements and identifies edges, which
is useful for feature extraction, segmentation and object
recognition. Image convolution involves the element-wise
multiplication of the kernel with image pixels, summing the
products, and normalizing by the kernel’s weight sum. To
manage sums exceeding the 8-bit range, a 16-bit ApprOchs
adder was utilized, with multiplications performed using binary
long multiplication. Energy consumption for the 16-bit design
was estimated based on the 8-bit implementation.

K1 =

 1 2 1
2 4 2
1 2 1

 K2 =

 1 2 1
0 0 0

−1 −2 −1


Fig. 8: Blurring (Gauss) kernel (K1) and edge detection (y-
Sobel) kernel (K2).

A. Evaluation Data Set

Image blurring and edge detection were performed at
different approximation levels k on a dataset of 100 images,
each sized 256×192. The dataset was generated by sampling
images from the training set of Google’s OpenImagesV7
database [48], followed by resizing and conversion to grayscale.

B. Quality Metrics

We compare images produced using an exact adder (k = 0)
to those produced by approximate adders (k > 0). Variations
in image quality are attributed to the applied approximation.

Image quality is measured using Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR
measures image quality by comparing the noise level or pixel
intensity between an original and modified version of an image.
SSIM, on the other hand, evaluates the perceived structural
similarity and integrity between those two images.

C. Image Blurring

Figure 9 presents an example of image blurring using an
exact adder (k = 0) and the ApprOchs adder with progressively
increasing approximation level k. At the initial approximation
levels, the output is virtually indistinguishable from the exactly-
computed reference image. However, at k = 4, a noticeable
degradation in quality begins, with the loss in image quality
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TABLE IX: Median image quality (PSNR in dB, SSIM)
and energy consumption (mJ) for 16-bit image blurring with
ApprOchs adder at varying approximation levels k.

Method PSNR [dB] ↑ SSIM ↑ Energy [mJ] ↓
Exact ∞ 1.000 240.36
k=1 58.28 0.999 216.92
k=2 50.82 0.997 187.28
k=3 43.74 0.995 161.69
k=4 36.81 0.985 142.04
k=5 30.84 0.952 128.43
k=6 25.12 0.880 121.82
k=7 20.27 0.788 123.80
k=8 19.05 0.759 134.30

becoming more pronounced as the approximation level k
increases. Despite the decline in quality, the scene remains
intact, even under the most extreme approximation.

The measurements in Table IX confirm these observations,
presenting median image quality in PSNR and SSIM and
energy consumption for various approximation levels on the
evaluation image set. Median image quality declines steadily
with increasing approximation, remaining high up to k = 3.

Beyond this, quality degradation becomes noticeable, with
significant drops occurring at k > 5, where SSIM falls below
0.9 and PSNR below 30 dB. Median energy consumption
decreases as k increases, reaching a minimum at k = 6, after
which it rises slightly. This is likely because, at higher k,
there are fewer operand combinations where the MSBs can
be omitted from computation, leading to a slight increase in
energy consumption.

Figure 10 provides a comparison of multiple SoA adder de-
signs, including ApprOchs, showing how energy consumption
and PSNR image quality scale with approximation level k. For
clarity, less energy-efficient designs with overlapping image
quality data curves were excluded, retaining only the most
competitive designs in terms of energy efficiency.

The energy consumption plot reveals that ApprOchs has
the lowest energy consumption compared to all other designs
across all approximation levels and it is the only examined
design with a non-linear energy consumption trend - a result
of its decision mechanism. Additionally, as k increases, fewer
computations can be omitted, causing energy consumption to
stabilize and the deviation to approach zero.

Furthermore, the PSNR plot shows a stable, near-linear trend
for ApprOchs, starting at a very high image quality of about
58dB and maintaining strong signal preservation as k increases.
Although S-SINC+ holds a 10dB advantage for 3 ≤ k ≤ 7,
ApprOchs consistently outperforms most competing designs in
terms of PSNR image quality.

Figure 11 relates the mean PSNR to the corresponding
mean energy consumption. ApprOchs forms a pareto front
between k = 1 and k = 6, demonstrating its energy efficiency.
Notably, S-SINC+ (with k = 1) is the only other design
to break this front in the high quality region, achieving
62.2dB. ApprOchs consistently delivers the same PSNR quality
with noticeably lower energy consumption compared to other
designs, underscoring its superior energy efficiency.

(a) Original Image (b) Exact Blurring

(c) 1-Bit Approximation (d) 2-Bit Approximation

(e) 3-Bit Approximation (f) 4-Bit Approximation

(g) 5-Bit Approximation (h) 6-Bit Approximation

(i) 7-Bit Approximation (j) 8-Bit Approximation

Fig. 9: Image quality degradation in image blurring with
increasing approximation level k: original image, blur using
an exact adder (k = 0), and blurs with progressively higher k
based on a 16-bit ApprOchs adder.

The most promising ApprOchs configuration for image
blurring is k = 3, providing excellent image quality at around
43dB (PSNR) and 0.995 (SSIM) with significant energy savings.
Compared to the exact adder (k = 0), energy consumption
is reduced by 32.7%. Relative to the first practical reference
(k = 1), PSNR decreases by 24.9%, and SSIM by only 0.004,
making k = 3 a favorable trade-off. Additionally, ApprOchs at
k = 3 uses 13.4% less energy than the second-most efficient
design, S-SINC+ (at k = 5), while maintaining comparable
image quality at roughly 43dB (PSNR).

D. Edge Detection

Figure 12 presents an example of edge detection using an
exact adder (k = 0) and the ApprOchs adder with progressively
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TABLE X: Median image quality (PSNR in dB, SSIM)
and energy consumption (mJ) for 16-bit edge detection with
ApprOchs adder at varying approximation levels k.

Method PSNR [dB] ↑ SSIM ↑ Energy [mJ] ↓
Exact ∞ 1.000 173.90
k=1 12.13 0.833 164.00
k=2 6.65 0.459 153.28
k=3 5.19 0.117 144.80
k=4 5.41 -0.14 138.27
k=5 5.90 0.042 134.07
k=6 5.54 0.005 131.84
k=7 5.08 0.005 133.05
k=8 3.48 0.007 136.31

1 2 3 4 5 6 7 8
100

150

200

250

300

Approximation Level (k)

E
ne

rg
y

[m
J

]

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Approximation Level (k)

PS
N

R
[d
B

]

ApprOchs
SAID1
Seiler

SIAFA1
SIAFA3
S-SINC

S-SINC+

Fig. 10: Mean energy consumption and PSNR of ApprOchs
and SoA designs plotted against the approximation level k. The
shades represent the standard deviation of the curve. Certain
designs were excluded for the sake of clarity, if they yielded
the same image quality but were less energy-efficient.

increasing approximation level k. At k = 1, the output
closely matches the exact reference, though visual artifacts
are noticeable. For k > 1, visual quality declines rapidly;
structures remain discernible up to k = 4, but beyond this,
noise overwhelms the image.

The measurements in Table X confirm these findings,
showing median image quality (PSNR, SSIM) and energy
consumption for various approximation levels. The results
reveal that the ApprOchs design is unsuitable for handling
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Fig. 11: Mean energy consumption of ApprOchs and SoA
designs plotted against mean PSNR. The error regions represent
one standard deviation from the energy mean. First and last
approximation level k have been marked because of non-linear
development of energy consumption.

negative operands, as image quality is unacceptable across
all approximation levels. This issue stems from the design’s
reliance on the sign bit in its decision mechanism, leading to
undesirable computational behavior, rapid quality degradation,
and negligible energy savings. Therefore, we recommend
against using ApprOchs for operations involving negative
operands and did not conduct further analysis or comparisons
for edge detection.

VIII. CONCLUSION

In this work, we presented ApprOchs, a memristor-based
adaptive approximate adder, suitable for in-memory computing.
The design incorporates a decision mechanism that analyzes
the bit patterns of the operands to determine which parts of
the addition should be computed exactly, approximately, or
skipped entirely, thereby reducing power consumption and
improving speed. We evaluate the adder for two machine
learning applications (MNIST and k-means) and for two image
processing applications (image blurring and edge detection).

The ApprOchs adder demonstrates an improvement in energy
characteristics, with a 9.5% efficiency gain over the currently
best SoA in-memory approximate adder in the general case
of uniformly distributed data. It achieves this while scoring
second-best in terms of error behavior, with only a 22% higher
MED at k = 3 compared to the best SoA adder. Due to its
design, ApprOchs also shows advancements in terms of time
complexity (see Equation (4)), making it nearly twice as fast
as its exact counterpart at an approximation level of k = 4, all
while remaining competitive in terms of hardware cost. Yet,
its flexibility and efficiency makes the ApprOchs adder design
well-suited for a wide range of error-tolerant applications,
such as machine learning and image processing on low-energy
embedded devices, IoT devices such as wearables, or on remote
sensors.

When comparing ApprOchs to both exact and approximate
adders from the literature, we observe significant improvements
in several metrics. For instance, when applied to the MNIST
classification task, ApprOchs achieves a 78.4% reduction in
energy consumption compared to the best SoA approximate
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(a) Original Image (b) Exact Edge Detection

(c) 1-Bit Approximation (d) 2-Bit Approximation

(e) 3-Bit Approximation (f) 4-Bit Approximation

(g) 5-Bit Approximation (h) 6-Bit Approximation

(i) 7-Bit Approximation (j) 8-Bit Approximation

Fig. 12: Image quality degradation in edge detection with
increasing approximation level k: original image, edge detection
using an exact adder (k = 0), and edge detections with
progressively higher k based on a 16-bit ApprOchs adder.

adders, while maintaining the same accuracy as the exact
adder at 98.9%. Similarly, for k-means clustering, ApprOchs
provides a 69% energy saving with no degradation in clustering
quality over the exact adder. In the image blurring application,
ApprOchs reduces energy consumption by 32.7% compared to
its exact counterpart. Its most promising configuration (k = 3)
achieves an excellent image quality, with 43.74dB PSNR and
0.995 SSIM, while consuming 13.4% less energy than the most
energy-efficient competing SoA design (S-SINC+) offering
comparable image quality. However, in the edge detection
application, the performance is unfavorable, even with k = 1,
as indicated by a median PSNR rating of 12.13dB and median
SSIM score of 0.833. This behavior probably stems from
ApprOchs’ difficulty in handling negative numbers, where sign
bits interfere with the decision mechanism.

In future work, we plan to enhance the ApprOchs adder
design by expanding the decision mechanism to support
larger data types, optimizing the exact addition process, and
addressing the current limitations in handling negative signed
numbers. More specifically, we plan on employing exact adders
based on other logic variants such as MAGIC [21] or SIXOR
[19] or other SoA exact adders such as [19], [23], to improve
ApprOchs’ speed. These future improvements will help to scale
accuracy, reduce energy consumption and extend the range of
applications that can benefit from ApprOchs. Furthermore, we
plan to conduct an analysis of our design in a crossbar setup
to evaluate its throughput.
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