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ABSTRACT In this article, we introduce a novel technique called E-multiplication and accumulation
(MAC) (EMAC), aimed at enhancing energy efficiency, reducing latency, and improving the accuracy of
analog-based in-static random access memory (SRAM) MAC accelerators. Our approach involves a digital-
to-time word-line (WL) modulation technique that encodes the WL voltage while preserving the necessary
linear voltage drop for precise computations. This eliminates the need for an additional digital-to-analog
converter (DAC) in the design. Furthermore, the SRAM-based logical weight encoding scheme we present
reduces the reliance on capacitance-based techniques, which typically introduce area overhead in the circuit.
This approach ensures consistent voltage drops for all equivalent cases [i.e., (a x b) = (b x a)], addressing a
persistent issue in existing state-of-the-art methods. Compared with state-of-the-art analog-based in-SRAM
techniques, our E-MAC approach demonstrates significant energy savings (1.89x) and improved accuracy
(73.25%) per MAC computation from a 1-V power supply, while achieving a 11.84x energy efficiency
improvement over baseline digital approaches. Our application analysis shows a marginal overall reduction
in accuracy, i.e., a 0.1% and 0.17% reduction for LeNet5-based CNN and VGG16, respectively, when trained
on the MNIST and ImageNet datasets.

INDEX TERMS 6T-static random access memory (SRAM), convolutional neural network (CNN), image

classification, processing in memory (PIM).

. INTRODUCTION

ITH the advent of neural network (NN) and deep neu-

ral network (DNN), the prospect of processing data
comes with new challenges due to the large data movement
between the processing and memory units. Studies indicate
that data movement is the primary source of energy con-
sumption in today’s systems [1], [2], [3]. Among various
data-intensive applications, NN has multiple load and store
operations and associates energy overhead, which becomes
more critical when running on devices with a limited power
budget, such as embedded systems.

In recent times, processing in memory (PIM) accelerators
received lots of attention for designing and implement-
ing the multiplication and accumulation (MAC) operations
to improve the energy efficiency of convolutional neural

networks (CNNs) [3], [4], [5]. To reduce the load and store
operations and associated energy/power overheads, many
PIM approaches enable MAC computations inside the mem-
ory by exploiting its analog properties.

Before implementing PIM techniques, it is imperative to
first identify the characteristics of these various options.
Among various memory technologies used for PIM, static
random access memory (SRAM) offers high subbank divis-
ibility (i.e., provides parallel computing), ease of access,
and low fabrication cost [4]. Different in-SRAM-based PIM
techniques, both in analog and digital domains, have been
proposed to accelerate MAC operation [4], [5], [6], [7],
[81, [9], [10], [11], [12], [13], [14], [15], [16], [17]. Digital
methods exploit additional logic to operate on the periph-
eral circuitry of memories (i.e., analog-to-digital converter
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FIGURE 1. (a) Conceptual ADC transfer function for E-MAC versus state-of-the-art techniques. (b) 6T-SRAM memory structure and
equal large-signal model during DAC operation. State-of-the-art BLB discharge behavior including (c) (red) nonlinear [4], [5], [7], [8]

and (d) (blue) linear technique [6].

(ADC), digital-to-analog converter (DAC), additional logic,
etc.) [9], [10], [11], [13]. Analog-based strategies often
exploit the analog behavior of the memory, with little to no
circuit overhead [4], [6], [7], [18].

A. PROBLEM MOTIVATION AND RESEARCH CHALLENGE
So far, the above state-of-the-art analog- and digital-based
MAC accelerator techniques suffer from two fundamental
drawbacks.

1) Nonlinearity: The current state-of-the-art PIM tech-
niques [4], [5], [7], [8], [19] face a significant error
source due to the quadratic current—voltage relation-
ship of a MOSFET. As described in [4] and [6], the
discharge behavior does not follow a linear trend with
respect to the word-line (WL) voltage. Most proposed
setups use a DAC to generate a linear WL voltage, but
this approach leads to nonlinear outcomes during the
multiplication process. Although state-of-the-art tech-
niques [4], [6], [7] have shown improved accuracy at
the circuit level, their design complexity increases due
to the incorporation of extra circuitry. Consequently,
these methods experience up to a 2x rise in power and
energy consumption, which is a concern, particularly in
scenarios involving complex applications such as NN.

2) Nonideality: When the multiplicands are generated via
the WL [4], [S], [6], [7], [8], while Vgs is slightly
higher than Vi, a small discharge occurs due to the
nonzero source-drain current of a MOSFET. This
phenomenon can significantly affect the result if it
happens at the most significant bits (MSBs), as the
contribution to the total discharge increases exponen-
tially with the bit weight. As a consequence, this
circuit nonideality can lead to different output ana-
log voltages for a x b compared with b x a. In such
cases, although the mathematical results of the two
multiplications are identical, the voltage drops will
differ. Such discrepancy is not only unfavorable but
also reduces the available voltage swing for the total
number of multiplications, ultimately decreasing the
accuracy of the computation. As depicted in Fig. 1(a),
by leveraging the E-MAC technique, we can achieve
a larger voltage margin between consecutive voltage
drops (Ay; < Avyn»), representing different multi-
plication results. This ultimately translates to higher
output accuracy. In numerous circuit-level PIM devel-
oped thus far, a topology yielding equal outcomes for
a x b and b x a—equivalent voltage drops—has been
absent. However, the proposed structure accomplishes
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this without incurring additional overhead or circuit
complexities.

B. OUR NOVEL CONTRIBUTION
To tackle the outlined research challenges, we present a novel
E-MAC technique with the following key innovations.

1) We introduce a constant-amplitude, digital-to-time
PIM-based MAC accelerator that eliminates the need
for a DAC. Using an analog time-based charge sam-
pling technique directly on the bit-line-bar (BLB) of
the SRAM, our design enhances MAC operations for
CNN (see Section III). Integrating DAC functionality
within the SRAM cell significantly reduces area and
energy overhead, resulting in better efficiency and per-
formance compared with state-of-the-art methods.

2) Our architecture generates logical bit values using
memory cells, in contrast to state-of-the-art techniques
that rely on capacitance-based weight generation or
multiamplitude voltage methods [4], [6]. Capacitance-
based designs increase circuit area and exhibit nonideal
behaviors, while multiamplitude voltage approaches
lead to nonlinear BLB voltage drops (see Section II-B).

3) To address nonidealities, we use differential sampling
techniques on the BLB, ensuring consistent discharge
voltages for operations such as a x b and b x a. This
reduces inaccuracies, improves ADC performance, and
minimizes the impact of circuit and quantization noise.
By eliminating the need for higher voltage levels,
our approach enhances overall computational accuracy
(see Section II1-A).

The rest of this article is organized as follows. In Section II,
we discuss the concept of in-SRAM MAC operation and
state-of-the-art analog-based PIM techniques, elaborating on
memory behavior with a simplified equivalent circuit in com-
putation mode. Section III introduces our novel mathematical
model for MAC operation and the proposed circuit based on
a large-signal model. Section IV covers data-aware design
and implementation concepts, along with application analysis
results. Finally, Section V presents the conclusion.

Il. CONCEPT OF IN-SRAM MULTIPLICATION AND
ACCUMULATION

Fig. 1(b) shows the fundamental building block of a
6T-SRAM. It includes six transistors, with four transistors
dedicated to storing data by the formation of two back-
to-back inverters (i.e., M1—My), while the remaining two
transistors (i.e., M5 and Mg) are connected as access transis-
tors. To read from the cell, both bit-line (BL) and BLLB are
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initially floating high, i.e., the gate voltage of the access tran-
sistors (M5, M) is discharged to the ground (WL is almost
zero) assuming that Q is equal to zero and Qj, is subsequently
Vaq. BL and BLB must be charged back to Vyq, and the WL
is enabled by applying Vg4 voltage to the gates of Ms, and
M. In this case, the gate—source voltage of Mg is almost zero
(WL = Vg4 and Qp = V4q), resulting in no significant current,
hence no change in BLB and Q). However, BL is pulled down
through Ms and M1, indicating that a stored zero (Q = 0) is
being read from the cell. Similarly, when Vyq is stored in the
cell, BL remains unchanged, but BLB must be discharged to
ZEero.

For the write operation, the charging directions of BL and
BLB must be different. For instance, to write Vyq into the cell,
BL should be precharged to Vgq while BLB is pulled down to
zero, and then Vyy is increased.

A. MAC USING THE SRAM READ AND WRITE OPERATION
A comprehensive analysis of the read and write operations
within SRAM is elaborated in [4] and [6]. Analog-based
PIM techniques exploit the conventional read operation of
the memory element to perform the MAC operation. First,
one operand is written to the memory element [Operand
#1 in Fig. 1(b)]. The second operand is then passed as
a coded voltage (proportional to the digital value) to the
memory element’s WL via a DAC (i.e., Do, Dy, ..., Dy).
The voltage drop on the BLB due to WL activation is sam-
pled by capacitance and later interpreted as a digital output
of the multiplication using an ADC [i.e., Yp, Y1, ..., Y, in
Fig. 1(b)]. This concept can be used for MAC operations,
providing results for Y = D x X and Y = D + X. Here, X
denotes the first operand that is prewritten into the 6T-SRAM
cell using a conventional write operation [i.e., Operand #1 in
Fig. 1(b) or [Qy...01] in Fig. 3(a)].

The proposed architecture inherently supports both mul-
tiplication and addition operations. For multiplication, the
circuit handles multiple distinct voltage levels and is more
susceptible to errors due to nonlinearity and nonideality
issues. Our technique demonstrates robust performance under
these conditions by mitigating nonlinearity and ensuring
consistent voltage headroom. Given that addition requires
fewer distinct voltage levels than multiplication, the same
in-SRAM circuit can perform addition reliably, leveraging
the available voltage headroom without significant circuit
modifications. Specifically, in addition mode, the ADC inter-
prets the accumulated voltage on the BL to produce the
sum. The integration of the accumulation process within the
same in-SRAM architecture ensures efficient addition. This
capability highlights the versatility and robustness of our
design, as a circuit that performs well in the more demanding
multiplication operation will excel in the simpler addition
operation.

B. NONLINEAR VOLTAGE DROPS DURING MAC
OPERATION

Considering the SRAM cell shown in Fig. 1(b), during an
MAC operation, transistors M, and M3 are in the deep
triode region. At the same time, M| and M4 are cut off.
Therefore, Fig. 1(b) could be simplified using Kirchhoff’s
voltage law and Kirchhoff’s current law, and V, and I is
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obtained as follows:

by _va—v 1
El = Vdd — Vout (@))
Io = £ v~ v @)
o 3

B = nnCox (f) . 3)

Vout 1s the output voltage of the computation, Vyq is the
supply voltage equal to 1 V in the 65-nm CMOS technology,
Iy is the current passing through the transistors, C is the con-
stant parasitic capacitance of the BL or BLB, and ¢ denotes
the time. Vi is the voltage of the WL and Vy, is the threshold
voltage of the transistor. 8 is defined as (3), where w,, refers
to the electron mobility of the nMOS, and C o is the oxide
capacitance per unit area. For simplicity, we neglect the effect
of channel length modulation.

Since C is constant and relates to the design’s physical
properties, the only two free parameters to control the output
voltage are ¢ and Iy [see (1)]. State-of-the-art approaches
such as [4], [5], [6], [7], [8] have used Iy as the control
signal. However, the quadratic factor in Iy [see (2)] intro-
duces nonlinear behavior in Vyy, as illustrated in Fig. 1(c).
This nonlinearity challenges digital output interpretation,
leading to increased errors and reduced ADC accuracy.
Overlapping Vo, values for different multiplications causes
incorrect interpretations or requires high-precision ADCs,
increasing system complexity and causing area and energy
overhead.

Previous studies [4], [5], [7], [8] have addressed the issue
of nonlinearity in in-memory computation. State-of-the-art
techniques [4], [5], [7], [8] suffer from nonlinear output
behavior, particularly in scenarios involving lower value
multiplications [see Fig. 1(c)]. In such cases, the output volt-
ages are closely spaced, making it difficult for the ADC to
differentiate between values. This results in significant accu-
racy degradation, especially in applications requiring precise
computations.

The technique proposed in [6] attempts to mitigate this
nonlinearity by introducing additional circuitry, such as a
root function circuit, which linearizes the voltage trend [see
Fig. 1(d)]. While this approach improves accuracy by reduc-
ing the nonlinear effects, it increases the design complexity,
area, and energy overhead. The root function circuit adds
significant power consumption and area requirements com-
pared with E-MAC, which achieves linearity without such
additional hardware. These tradeoffs highlight the need for
solutions that balance accuracy, energy efficiency, and hard-
ware complexity, which our proposed approach addresses in
Sections III-A-III-C.

In this article, we use the active time duration of a single
WL [i.e., the parameter ¢ in (1)] as a control signal, keeping
the current source (/p) constant. A replicated instance of the
linear current generates distinct values. As a result, E-MAC
improves the accuracy of the MAC operation compared with
the state-of-the-art [4], [6], while also reducing energy con-
sumption and circuit design complexity.

To summarize, compared with the state of the art, this
article presents a novel technique (i.e., E-MAC) that differs
significantly in several ways.
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1) State-of-the-art techniques [4], [8], [20], [21], [22] use
separate WL for each bit, requiring four control signals
for a 4-bit multiplication to create logical weights.
In contrast, our E-MAC approach uses a single WL and
accumulative memory cells for a 4-bit MAC operation.
This reduces error probability and circuit complexity,
as only a single WL control timing is necessary, and
generates weights using simple, accurately managed
switches. This method consumes less energy compared
with controlling four individual WLs.

2) State-of-the-art approaches [20], [21], [22] use an
approximated Taylor series for the voltage—current
equation. Our E-MAC technique solves a nonlinear dif-
ferential equation [see (4)—(7)] to ensure output voltage
accuracy.

3) We present a novel approach to multiplication that
reduces design cost and avoids the nonidealistic over-
load of expensive DAC. While state-of-the-art tech-
niques rely on DAC to interpret multiplication output,
we use a shared ideal memory cell. This achieves our
objectives while maintaining accuracy and efficiency.

lll. OUR NOVEL E-MAC TECHNIQUE, AND CONCEPT
OVERVIEW

In this section, we introduce and present an analytical model
that analyzes circuit behavior, facilitating efficient circuit
design. We then propose our time-based solution to address
the issue of obtaining identical results despite the diverse
voltage drops present in state-of-the-art approaches.

A. WLs TIME MODULATION MODELING AND
CONSTRAINTS

In our approach to achieve meaningful interpolation between
the digital input and the analog voltage, we first need to create
a coding scheme to map the 3-bit operand into a 7-bit operand
according to the 4-2-1 logical weighting scheme stored in
the memory column (First Operand — Coded Operand).
Using the already existing memory cells without the need
for additional circuitry, our approach avoids imposing any
area overhead on the circuit. Regarding the additional
write required for this process, the power gained through
analog multiplication compensates for the added energy
consumption.

Second, the other operand needs to be coded into a time
interval (using a programmable frequency divider [23]) to
keep the WL activated (see Table 1). For this coding, we will
not activate the WL for an operand of “0” (i.e., the result
will always be zero), and therefore, no discharge will occur
in this case, resulting in an output of zero (in the case of
multiplication). Fig. 2 displays the design structure of the
proposed methodology.

Note that you can create the pulses mentioned above, equal
to At;, using a frequency functional synthesizer alongside
the system’s existing clock. It is important to emphasize
that although the PWM technique used here may appear
commonplace and obsolete, as it has been proposed in other
computing systems, our approach takes a unique perspective.
Our primary objective is to preserve the linearity of BL drops.
As discussed earlier, any method, including those proposed
in state-of-the-art references [4], [5], [6], [7], [8], which
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TABLE 1. Encoding scheme of operands in an MAC process.

First Operand Coded operand Second Operand Aty (ns)
000 0000000 000 0
001 0000001 001 (1/7)Tmax
010 0000110 010 (2/7)Tmaz
011 0000111 011 3/")Tmaz
100 1111000 100 (4/7) Tyaz
101 1111001 101 (5/7)Tmaz
110 1111110 110 (6/7)Tmax
111 1111111 111 Trmax

attempts to encode data in the amplitude of the WL, will
inevitably result in a quadratic response in the output, leading
to nonlinearity.

To clarify the analog coding for the second nonzero
operand (as indicated in Table 1), we refer to Figs. 1(b) and 2,
and the conditions outlined in (1) and (2), and the requirement
for the nMOS transistor to remain in the active (saturation)
region [6]. The analog behavior of the circuit relies on main-
taining transistor M5 in saturation to ensure accurate voltage
sampling during the discharge process. By accounting for
the provided supply power and operational constraints, the
maximum allowable sampling time can be calculated.

Equation (2) is valid only while M5 remains in the satura-
tion region. However, as the BLB discharges, M S transitions
to the triode (linear) region, slowing the BLB discharge rate
and introducing inaccuracies in the computed result. To mit-
igate this, it is critical to sample the BLB voltage before M5
enters the triode region. This requires precise control of the
WL voltage (Vwr) pulsewidth, denoted as Ti1ax. Controlling
Tmax ensures that sampling occurs while M5 remains in satu-
ration, preventing systematic errors due to delayed discharge.

The maximum pulsewidth (Tnax) is derived based on
the saturation condition of the nMOS transistor. Using the
parameters from (4) to (6), Tvax is calculated to ensure
compliance with the saturation condition and to maintain the
accuracy of the discharging behavior described in (2). This
approach ensures robust and error-free operation across vary-
ing conditions, addressing potential variability introduced as
capacitor C discharges and Iy changes over time

Vout < aVad — Vin 4
[(1 —a)Vgg — Vin] x C

T = ﬂ( Wad — Vin . )
5 x[(1—a)Vad — Vin)l
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Tmax
At = (ﬁ) X A(10) (6)
N—1
i=0 li
Vout = Vdd — TAU- @)

Hence to calculate each sampling time for other operands,
the time coding will follow (5). Af; is the required time
interval interpolated with digital input (O up to 7 in Table 1).
Tmax is the maximum required time that the transistor Mg
remains active and it belongs to 7 x 7 multiplication, A(jo)
is the E-MAC equivalent of the input, and N is the bit-width
of the input. The behavior of the proposed architecture is
modeled as Fig. 3(a). The MSB, including four memory cells,
is modeled into a transistor with a size of 4(W /L), and in this
case, the LSB fits into 1(W /L) transistor. The second operand
will be passed to the gate of lower transistors, and it would be
either “0”’(V) or Vyq. Therefore, by exploiting KVL for Vi
and KCL on the branches, we calculate as (7). Consider that
« is a scaling factor, typically less than 1, applied to the gates
of the transistors associated with the WL. The selection of «
depends on the desired rise and fall times of the WL voltages.
Lowering the voltage at the gates results in faster rise and fall
times.

I

H kN Modulated WL pulse
Wi 1] |vee pattem
ff LLr| v
w ° Y=DxX —ouv - W
4 &E
Qu Q Q Vo
c ER -
Vaa/0 | Vaa/O | Vaa/0 Vaa 14
triod

(a) (b)

FIGURE 3. (a) Large-signal model of circuits during MAC
operations and (b) encoding scheme for (5 x 4).

Example Scenario: To better illustrate our methodology,
let us consider the following example. Suppose we need to
multiply 5 x 4 in our application. First, the first operand (5) is
encoded using seven memory elements, as shown in Table 1.
The resulting binary code, “1111001,” is then written into
seven memory cells, highlighted in blue [see Fig. 3(b)].

Next, the second operand (4) is applied via the shared WL
of these memory cells, represented by the time duration of the
WL signal. Throughout this process, the amplitude of the WL
signal remains constant, ensuring consistency and accuracy in
the operation.

As depicted in Fig. 3(a), after the precharge process, the
WL signal remains active for (4/7) X Tmax, causing the
capacitance C;, discharge via weighted (4-2-1) equal current
sources. In this example, the middle two cells are passing zero
ampere current. Finally, the output can be sampled once the
WL signal is deactivated.

B. PROBLEM OF IDENTICAL RESULTS WITH DIVERSE
VOLTAGE DROPS

The utilization of analog in-SRAM multiplication introduces
an inherent issue due to the method in which the multipli-
cation process is executed. As mentioned before, one of the
operands is stored inside the cell while the other is provided as
an analog input to the WL. The analog input can be in the form
of voltage amplitudes, as seen in previous studies, or as a time
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notion, as presented in this article. When the WL is activated,
there is a decline in the charge retained in either the BL or
BLB capacitance. Later, this decline is retrieved and inter-
preted as the multiplication outcome by configuring an ADC
at the output. This way, one operand is in the digital domain,
while the other behaves as an analog signal. Consequently,
it is possible to encounter a phenomenon where different
voltage drops lead to nonidentical outputs. To clarify, in the
case of multiplying two numbers, A and B, where A and B
range from O to 3 (i.e., up to 3-bit-width), there are only seven
feasible individual results.

The multiplication of 4-bit numbers often results in pat-
terns with a limited number of distinct products. These sim-
ilarities are notable across various combinations, with only
a few unique products. However, current analog in-SRAM
multiplication techniques, as used in state-of-the-art meth-
ods, have not addressed this issue. A specific example is
when multiplying 1 x 7 or 7 x 1, where unequal voltage
drops occur over the BL/BLB despite both the operations
yielding the same product of 7. This inconsistency leads
to additional circuit complexity and cost. To address this,
we applied the differential voltage sampling (DVS) tech-
nique, which allowed us to use the extra voltage margin to
improve multiplication accuracy, increase bit width, or reduce
energy consumption. In contrast to the existing methods,
which typically sample the voltage drops on BL or BLB to
calculate the result, our approach ensures that these voltages
can be represented more efficiently, as described by the cor-
responding equation

N-1p.

—Z’=C° NS (8)
Equation (8) is inherently nonlinear due to the existing Vgqg
factor which varies by time while sampling. By leveraging
DVS, the nonlinear term Vgq will be eliminated (since both
BL and BLB have one Vgq factor in common), and therefore,
we arrive at the following equation:

VeLBLB = Vdd —

N-1p.
|VBLpLB(DVS)| = S20— At ©)
Using this differential technique, we have successfully
eliminated the nonlinearity issue in the output voltage. This
problem has been a challenge in state-of-the-art approaches.
It is crucial to emphasize that achieving linearity is essential
for ensuring equal voltage drops and identical results. In this
approach, for example, the output voltage for both (4 x 5)
and (5 x 4) computations is equal. In the first scenario, the
first operand (i.e., 4) is equal to 4.1y multiplied by (5/7) - Trmax
which is equal to (20/7) - Iy - Tmax Which is exactly equal to
the second scenario for 5 x 4.

C. ANALYTICAL MODEL AND E-MAC CIRCUIT
IMPLEMENTATION AND RESULTS

We developed our analytical model in MATLAB R2022a.
The circuit architecture of our proposed 6T-SRAM PIM
(Fig. 2) is implemented in a 65-nm CMOS technology with
a supply voltage of 1 V. The circuit parameters, such as
the size of transistors, BLB capacitance, and the T, are
optimized using Cadence SPECTRE transient simulation
according to (5)—(7) (Vin = 250 mV and Vpp = 1 V).
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FIGURE 4. Circuit results verify the accuracy of the proposed
analytical model.

Our optimization objective is to minimize the power and
area of our circuit. Fig. 4 displays the overlapping plot of
our model and the circuit simulation outcomes. As shown,
our model accurately predicted the behavior of the final
circuit. The slight deviation in specific numerical values is
due to parasitic capacitance and the physical parameters of the
model, which were also considered in the circuit simulation.
Nevertheless, this does not impact the model’s reliability
since it follows the same linear trend for the multiplication
result. Moreover, when the multiplication result is the same,
the discharge of the BL is also similar, as evident from Fig. 4.
The incorporation of the mathematical model alongside the
circuit simulation validates the effectiveness of our approach
in preserving the necessary linearity of voltage drop.

Considering two signed integer numbers in the range
of [—7:47] for multiplication, we performed a 1000-point
Monte Carlo (MC) simulation to depict the effect of threshold
voltage, gate oxide thickness, and various mobility of transis-
tors on the accuracy of the result in Fig. 5(b). We achieved
a 24.95-mV standard deviation from the accurate result for
the worst case multiplication (7 x 7), which outperforms the
state-of-the-art accuracy by 73%. Fig. 5(c) depicts the result
for worst cases (7 x 7). Table 2 demonstrates the comprehen-
sive analysis of the proposed architecture in circuit metrics
compared with state-of-the-art approaches [4], [5], [6], [7],
[8]. As can be seen, E-MAC outperforms the state-of-the-
art and achieves 47.31% energy improvement compared with
the best result, and in terms of accuracy, we improved by
73.25%. We should elaborate that there exist other techniques
within the domain of in-SRAM, as detailed in [14]. These
alternatives may operate either in the digital domain or as
near-memory core accelerators. However, we have chosen the
aforementioned techniques to compare due to their alignment
with the proposed abstraction level. It is important to note
that digital or near-memory approaches would not perform
as effectively as pure analog in-SRAM techniques [14], [24]
in this context, rendering a comparison meaningless.

TABLE 2. Comprehensive comparison to state-of-the-art
in-SRAM analog-based MAC accelerators.

E-MAC 141 151 161 ] 18]
Technology (nm) 65 65 65 65 180 65
Supply Voltage (V') 1 1.2 1.2 1 1.8 1
Bits-width 4 5 5 4 5 8
MAC Energy (pJ) 0147 0279 35 0523 1.167 3
Accuracy (std.dev) 0.023 0.6 / 0.086 / /
CLK Freq. (M Hz) 103.1 100 2.5 200 / 60-125

In our study, we have rigorously addressed the impact
of parasitic capacitance through three comprehensive
approaches. First, we defined parameter C to encapsulate
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the cumulative effect of all the parasitic capacitors from
the node to the ground, as detailed in Figs. 1(b) and 3(a).
This parameter includes contributions from the drain—bulk,
drain—source, and drain—gate capacitances of all connected
transistors, along with a column capacitor influencing the
discharge behavior of each column. The significance of
parameter C in circuit behavior is thoroughly analyzed in (1)
and (5). Second, the 6T-SRAM cell layout, which occupies
5.07 x 4.89 m in the 65-nm CMOS technology, presented
in Fig. 5(a), accounts for the parasitic capacitances of the
transistors and interconnects between them. The hierarchical
layout approach ensures accurate postlayout simulations,
including peripheral circuitry, with the results depicted in
Figs. 4 and 5(b) and (c). Finally, our proposed structure
underwent postlayout circuit simulation using the TSMC
65-nm CMOS design process, incorporating precise parasitic
modeling via BSIM 4 and validated through MC simulations.

While our current study focuses on the 65-nm technology
node, we acknowledge the potential significance of para-
sitic capacitance in more advanced nodes such as 28 and
14 nm. The study [6] demonstrated that despite pronounced
deep-submicrometer effects in smaller channel lengths, the
discharge behavior of the BLB port remains unaffected, indi-
cating robustness in our design. Furthermore, the shift from
quadratic to linear current behavior in more advanced tech-
nologies is anticipated to enhance the accuracy of our design,
as detailed in our previous findings.

IV. APPLICATION EVALUATION

The proposed in-memory multiplier technique offers sig-
nificant potential for energy-efficient DNN inference on
resource-constrained devices.

To evaluate the effectiveness of the proposed technique,
we have considered CNN due to their significant energy
consumption and data intensity requirements. This article
uses a Lenet5-Inspired CNN [25], [26] and the VGG16 [27]
architecture to conduct an image classification task on the
MNIST [28] and ImageNet [29]. The Lenet5-Inspired CNN
consists of eight layers, including five convolutional layers
and three fully connected (FC) layers, with the last layer
considered the output layer indicating the class of the input
image.

Most operations in DNN are multiplications that have a
higher energy consumption compared with other arithmetic
operations [30]. Therefore, techniques such as the in-memory
multiplier, which can reduce the energy consumption of mul-
tiplication operations, are crucial for improving the energy
efficiency of DNN. The 4-bit signed quantization [31], [32],
[33] is a specific type of quantization used in DNN. Since
4-bit signed quantization uses only eight absolute values,
it can represent only eight distinct values. This significantly
reduces the memory and computational requirements of
DNN, making them more efficient and easier to deploy on
hardware with limited resources. However, the reduction in
precision can also lead to quantization errors and decreased
model accuracy.

A. CNN-BASED IMAGE CLASSIFICATION (MNIST)
Our experiments use the MNIST dataset [28] for training and
inference (testing). The training was conducted using ADAM
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FIGURE 5. (a) Area of the proposed in-SRAM multiplier, (b) ¢ of multiplication results, and (c) MC simulation for 1000 points for worst

(7 x 7) multiplications.

TABLE 3. Performance results for float quantized, and proposed
model for LeNet5-Inspired CNN.

Model Accuracy  Precision  Recall F1-Score
Original (float32) 99.29 99.28 99.28 99.28
Quantized (int4) 99.01 99.01 99.02 99.01
In-Memory (int4) 98.91 98.91 98.90 98.90

optimizer [34], 2048 as the batch size, and for 2000 epochs
via categorical cross-entropy as the loss function. Afterward,
the trained CNN was quantized to the int-4 (—7 to 7) by
considering the maximum absolute value of each layer in
the trained network. In the following, all the multiplication
operations, replaced by the proposed in-memory multiplier
and so the (in-memory) trained quantized CNN (4-bit weights
and activations), reached 98.91% accuracy of the MNIST test
data. The confusion matrix and performance criteria of the
trained quantized (int-4) CNN are depicted in Fig. 6(d) and
Table 3, respectively.

As demonstrated, the accelerator’s output is an 8-bit output
that has been interpreted from an analog voltage of the BLB.
The voltage of the BLB could be from 0.4 to 1 V. This voltage
interval is discretized into 256 different levels, and each level
is dedicated to a number in the range from —128 to 127 inter-
val using an ADC. As mentioned earlier, the weights of the
CNN have been quantized to int-4 representation —7 to 7
(symmetric), while the MNIST dataset is in the uint-8 format;
its number interval is 0 to 255. Therefore, it is not aligned with
the int-4 representation. Consequently, a mapping is done to
the uint-8 to the (0-7) interval to be aligned with the int-4
representation.

From the t-distributed stochastic neighbor embedding
(t-SNE) plot [35], the probability distribution, discrimina-
tion, and distance between the data points can be studied.
It is shown that the quantization effect on the MNIST
dataset is negligible. The distributions of the MNIST dataset
in int-8 and int-4 representations are demonstrated in
Fig. 6(a) and 6(b), respectively.

As demonstrated in Fig. 6(a), our quantization method
has not affected the MNIST data distribution significantly.
In the inference phase, as mentioned earlier, all the mul-
tiplication operations are carried out using the proposed
in-SRAM multipliers for achieving energy efficiency with
negligible performance degradation. As shown by the cri-
teria (see Table 3), performance of CNN almost remains
the same with negligible accuracy degradation. In addition
to overall performance that is demonstrated in Table 3 and
Fig. 6(d).
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TABLE 4. Energy performance comparison to baseline and
related works.

Energy (n)/inference)  Relatively Energy  Energy (n/inference)  Relatively Energy
(MNIST) Gain (MNIST) (ImageNet) Gain (ImageNet)
von Neumann system 3866.78 1 16.77 1
4] 994.85 1.89
6] 1864.90 355 - -
E-MAC 524.17 737 2.27 7.37

TABLE 5. Comparison to related works, tested with the MNIST.

Methods  Input/Weight Precision  Algorithm  Baseline Accuracy  Accuracy Degradation

4] 515 LeNet-5 99.20% 0.15%
[36] 6/4 LeNet-5 99.7% 1.30%
[371 -/4 MLP 98.27% 0.11%
[38] ternary MLP 98.77% 0.12%
[39] (16 or 32)/(8 or 16) MLP 98.36% 0.14%
[40] 16/4 LeNet-5 98% 1%
[41] 14/(4 or 5) SNN 90% -
E-MAC 3/4 CNN 99.01% 0.10%

As can be seen in Fig. 6(c), and (d), although the overall
accuracy has a negligible drop compared with the baseline
architecture in 4-bit data representation, the classification
accuracy of classes “4,” “7,” and “9” has been improved.
This happened because of the pattern and spatial structure
and also the numbers that have been used to represent these
classes.

As the next step, the performance of the proposed CNN
is evaluated by considering the energy aspect. We compared
our proposed in-SRAM multiplier with a conventional von
Neumann system [36] and state-of-the-art in-memory multi-
plier accelerators. To have a fair comparison, we consider all
other experimental setups and circuit parameters equal to [4]
and [6]. We have reported the energy gain and energy per
inference in Table 4.

For a comprehensive study, we also compare our model
performance with the other in-SRAM multipliers with analog
computation nature which are implemented for the MNIST
dataset. As shown in Table 5, we obtain minimal accuracy
degradation which means that E-MAC in-SRAM multiplier
minimally impacts the performance of the CNN while provid-
ing energy efficiency up to 15.53 x. In addition, we gained the
least accuracy degradation compared with the state-of-the-art
(see Table 5).

B. VGG16 (IMAGENET)

In this case, we used the ImageNet dataset for inference (test-
ing) purposes in our experiments. We evaluated VGG16 using
the proposed in-memory multiplier to assess its effect on a
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FIGURE 6. t-SNE visualization of the MNIST dataset in (a) 8-bit and (b) 3-bit representation. Confusion matrix for the accelerated
trained quantized CNN in (c) 8-bit and (d) 4-bit number representations.

TABLE 6. Performance results for float, quantized, and proposed
model for VGG16.

Model Top-1 Top-5 Geomean Of Top-1 &
Accuracy  Accuracy Top-5 Accuracies
Original (float32) 71.30% 90.10% 80.15%
Quantized (int4) 70.29% 89.24% 79.20%
In-Memory Multiplier 70.12% 89.18% 79.08%

higher level. To evaluate our classifier, we use the following
performance metrics (top-1 accuracy and top-5 accuracy) of
the original and quantized models.

A modified TF-Lite [42] quantization specification has
been used to quantize the trained VGG16 weights from float-
32 to int-4. We then replaced all the multiplications in our
model with the proposed in-memory multiplier. As demon-
strated in Table 6, due to quantization, top-1 accuracy and
top-5 accuracy have been degraded by only 1.01% and 0.86%,
respectively.

However, using the in-memory multiplier resulted in up to
0.17% and 0.06% degradation in top-1 accuracy and top-5
accuracy, respectively, compared with our quantized baseline
model, due to the compactional error of the aforementioned
in-memory multiplier. Nonetheless, our proposed in-memory
multiplier can be used meaningfully in VGG16 due to the
negligible change in performance criteria.

Our results show that we can reach 7.40x energy gain by
sacrificing 1.18% and 0.92% of top-1 accuracy and top-5
accuracy, respectively. These results show that in scenarios
where we face power constraints (such as embedded systems
and edge devices) or demands for real-time inference, we can
address these priorities by tolerating a negligible accuracy
drop. To have criteria that contain both resource requirements
(energy) and performance (top-1 accuracy and top-5 accu-
racy), we can multiply the resource (energy) gains in Table 4
with the performance values in Table 6. This allows us to
better evaluate and select suitable designs when both per-
formance and resources have a similar importance (weight)
in the system. The combined gains are determined through
the multiplication of the energy gains derived from Table 4
with the corresponding performance measurements (namely,
top-1 and top-5 accuracies) presented in Table 6. Based on the
results of our experiments, we observed that VGG16, trained
on the ImageNet and using our proposed in-SRAM multiplier,
provides high accuracy with energy efficiency.

In summary, we used MNIST for training and inference
of our proposed LeNet5-inspired CNN. Afterward, we quan-
tized the trained CNN to int-4 representation, reaching
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99.01% accuracy on the quantized MNIST test data. The
quantized CNN demonstrated negligible impact on the distri-
bution of the MNIST, and the performance of the CNN almost
remained the same, with a little degradation. The proposed
in-SRAM multipliers used for carrying out all multiplication
operations in the inference phase achieved energy efficiency,
with negligible performance degradation.

In comparison to a conventional von Neumann system and
state-of-the-art in-memory multiplier accelerators, our pro-
posed in-SRAM multiplier showed better energy efficiency
and accuracy degradation. The E-MAC achieved the mini-
mum effect on the performance of the CNN while providing
energy efficiency of up to 7.37x. In addition, we evaluated
the E-MAC on VGG16 which is pretrained on ImageNet. Our
proposed method and reported results lay a strong founda-
tion for further research in the area of image classification
task.

Overall, using the E-MAC for implementing image clas-
sification algorithms provides an efficient and effective
solution and demonstrates high accuracy with energy effi-
ciency. The results of our experiments open new avenues
for future research in the field, with potential applications
in a wide range of fields, including healthcare, autonomous
systems, robotics, etc.

V. CONCLUSION

This article introduced a novel in-SRAM MAC accelerator,
E-MAC, which uses a time-modulated technique to regu-
late the WL voltage, thus eliminating the need for a DAC.
To assess the effectiveness of this approach, we evaluated
its performance at both the circuit and application levels.
E-MAC was designed to meet the requirements of two CNN
(LeNet-5 inspired and VGG16) and tested on the MNIST
and ImageNet datasets. The architecture is optimized for
minimal energy consumption while maintaining high infer-
ence accuracy. Implemented in a 65-nm CMOS process,
E-MAC demonstrated a 1.89x improvement in energy effi-
ciency and a 73.25% increase in accuracy per MAC over
previous designs. Application-level evaluation showed min-
imal impact on inference accuracy, with reductions of only
0.1% for LeNet-5 and 0.17% for VGG16, while achieving a
substantial energy saving of 7.37x.
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