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ABSTRACT Conventional computing methods struggle with the exponentially increasing demand for
computational power, caused by applications including image processing and Machine Learning (ML).
Novel computing paradigms such as In–Memory Computing (IMC) and Approximate Computing (AxC)
provide promising solutions to this problem. Due to their low energy consumption and inherent ability to
store data in a non–volatile fashion, memristors are an increasingly popular choice in these fields. There is a
wide range of logic forms compatible with memristive IMC, each offering different advantages. We present
a novel mixed–logic solution that utilizes properties of the Sum–of–Products (SOP) representation and
propose a full–adder circuit that works efficiently in 2–bit units. To further improve the speed, area usage,
and energy consumption, we propose two additional Approximate (Ax) 2–bit adders that exhibit inherent
parallelization capabilities. We apply the proposed adders in selected image processing applications, where
our Ax approach reduces the energy consumption by 31%–40% and improves the speed by 50%. To
demonstrate the potential gains of our approximations in more complex applications, we applied them in
ML. Our experiments indicate that with up to 6/16 Ax adders there is no accuracy degradation when
applied in a Convolutional Neural Network (CNN) that is evaluated on MNIST. Our approach can save
up to 125.6mJ of energy and 505 million steps compared to our exact approach.

INDEX TERMS Adder, Approximate Computing, In–Memory Computing, Image Processing, Machine
Learning, Memristor

I. INTRODUCTION
In recent years, demanding workloads like Machine Learn-
ing (ML) applications require an ever–increasing amount
of computational capability. At the same time, traditional
processors are limited by their power consumption [1], and
their exponential energy demand is becoming a concern [2].
This motivates research in novel computing paradigms and
emerging technologies such as memristors [2], [3], [4]. They
are power efficient, have a small footprint, and store data
in non–volatile fashion with their resistive states [4], [5],
[6], [7]. Memristors are compatible with crossbar arrays
and can compute operations directly in memory, making
them the ideal targets for In–Memory Computing (IMC) [5],
[8].Various stateful logic forms based on memristors have

been presented [7], [8], [9], [10], [11], each optimized
for specific applications.However, there are still a lot of
untouched potential gains in combining the advantages of
different approaches and utilizing them in a mixed logic. An-
other emerging approach is Approximate Computing (AxC),
which can drastically improve energy consumption, speed,
and area usage. The trade–off for these gains is a reduction
in accuracy, meaning this paradigm is only applicable in
error–resilient applications such as image processing, ML,
or related fields such as computer vision [12], [13], [14]. In
this work, we propose a highly flexible, fast, and energy–
efficient mixed logic form for memristive IMC that is based
on MAGIC [9] and FELIX [10]. We implemented an exact
full adder based on the presented logic and further improved
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FIGURE 1. Memristive circuits for MAGIC [9] NOR and FELIX [10] OR.

the efficiency by introducing two Approximate (Ax) versions
of the adder circuit.Instead of the conventional Ripple Carry
Adder (RCA) approach [15], our approximations are based
on fully parallelizable 2–bit units. We applied our adders in
image processing and ML, where we drastically improved
speed and energy consumption. This work is divided into
eight sections. In Section II we review the literature and
cover related work. The proposed design methodology and
Ax adders are described in Section III. In Section IV we
simulate the presented exact and Ax adders, discuss different
parameter variations for our approach, and evaluate the
error metrics. In Section V we compare to State–of–the–Art
(SoA) logic forms and approximations. We evaluate three
image–processing applications and show the potential gains
in Section VI. In Section VII we showcase the applicability
of our approximations in ML and conclude the paper in
Section VIII.

II. RELATED WORK
A. MEMRISTOR–BASED IN–MEMORY–COMPUTING (IMC)
Memristors are two–terminal components that store data in
a non–volatile fashion using their resistive states [3]. With
advantages such as low power consumption, fast write time,
and small dimensions, they are ideal as memory cells [3], [5],
[6], [16]. The memristor’s minimum (Ron) and maximum
(Roff ) resistive values are conventionally interpreted as log-
ical ‘1’ and ‘0’, respectively, which can be reached by an ap-
plied voltage. Various stateful logic forms for in–memristor
computing, such as Memrisor–Aided Logic (MAGIC) [9],
Fast and Energy–Efficient Logic (FELIX) [10], Memristor–
Based Material Implication (IMPLY) [8], Three Memristors
Stateful Logic (TMSL) [11], and Single–Cycle In–Memristor
XOR (SIXOR) [7] have been proposed. MAGIC and FELIX
stand out due their low power consumption, non–destructive
operations, and simple architecture [9], [10]. In crossbar–
arrays MAGIC NOR and FELIX OR provide an efficient
and flexible atomic logic set. They are shown in Fig. 1 and
require only a single voltage pulse, compared to other logic
forms that have more complex requirements [7], [8], [11].

B. APPROXIMATE COMPUTING (AxC)
With AxC performance metrics such as energy efficiency,
speed, and area usage can be significantly improved, whereas

the accuracy is decreased as a trade–off. Error metrics were
introduced and applied in the SoA to evaluate the degree
of inaccuracy [13], [17]. For more detailed information on
the error metrics, we refer the reader to [13], [17], [18].
The applications of erroneous calculations are limited to
applications that exhibit inherent error–resilience, such as
image processing and ML as well as related fields [12],
[13], [14]. A commonly used quality metric for image
processing is the Peak Signal to Noise Ratio (PSNR), which
indicates the noise level. A value of over 30 dB is considered
acceptable in the literature [13], [17], [18]. The Structural
Similarity Index Measure (SSIM) is also often used to
quantify the perceived image similarity [19]. Recently, lots of
interest was shown toward memristor–based AxC. In [20] the
authors automatically evaluated error metrics of Ax adders
but provided no specific implementations to compare. Ax
adders based on IMPLY were presented in [15], [21], [22],
[23], [24] and evaluated in various image processing applica-
tions. The algorithms from [15] stand, out as they presented
the fastest and energy–efficient IMPLY–based algorithms in
many topologies, which we will use as a baseline for com-
parison. Here, we present a mixed logic that combines the
advantages of MAGIC and FELIX to provide an efficient and
flexible design methodology for arbitrary logic functions. We
showcase the potential of our approach by implementing
an exact adder and two approximated derivatives that are
based on fully parallelizable 2–bit units. When applied to
image processing and ML, our method leads to significant
improvements in energy, area, and latency.

III. PROPOSED APPROACH
A. DESIGN METHODOLOGY
The core concept of our work is to combine the MAGIC [9]
NOR (or FELIX NOR as they are similar) with the FELIX [10]
OR circuits. With this, we can evaluate arbitrary boolean
expressions with up to five inputs in only three cycles.
An overview of the procedure is given in Algorithm 1. To
achieve this, a boolean equation f must be converted to the
Sum–of–Products (SOP) form:

f(x1, x2, . . . , xn) =
∑

mi∈M

(
n∏

j=1

x
(mi)
j

)
, xmi

j ∈ {1, xj , xj},

(1)
where f is expressed as a sum of the minterms mi for n
inputs. The expression can be converted to only OR and NOR
statements via De Morgan’s theorem

(
A ·B ≡ A+B

)
. The

proposed approach consists of three steps. In the first, the
values in the minterms mp

k are populated, which are then
used in the second step to calculate MAGIC NOR (mp

k). The
resulting intermediate results are then combined with FELIX
OR. With our method, multiple output functions can be
computed in parallel as the created minterms are independent
of each other, enabling stark parallelization. We require both
the inputs and inversions of inputs to create valid minterms
mp

k for the output p. For that, we use the MAGIC NOR gate
with a single input, which is practically a NOT gate. We do
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FIGURE 2. Circuit design for XOR using the presented logic. In phase I,
the intermediate results a + b and a + b are calculated with NOR (red
markings). In phase II, the intermediate results are combined with OR (blue
markings), storing a ⊕ b in the output.

this operation concurrently for all of our function inputs to
get the corresponding inversions. Because these (inverted)
inputs may be required by multiple minterms mp

k, their
values must be distributed. As we are working in a crossbar
array, the inputs of all the required minterms can be SET
or RESET in one cycle and in parallel by the control logic.
The memristors that are used for the intermediate results spk
must also be initialized to ‘1’ and the output memristors
op must be set to ‘0’ [9], [10]. After the initialization, the
inputs mp

k are combined with a NOR function to calculate
all intermediate results spk, which is done parallel for all k
modules. To achieve this, the operation voltage Vop is applied
to all input memristors for each minterm, while spk are
grounded. To calculate the outputs, additional switches swk

are required to connect the memristors holding the values spk.
These switches are not part of the crossbar array itself and
are rather located in the control logic. When these switches
swk are closed, the intermediate values spk are connected to a
common bus. We then apply OR with the intermediate values
spk as the inputs, by applying vop to the output memristor. An
advantage of our approach is that only a single operational
voltage Vop is required, which we discuss in more detail in
Section IV-B.

In Fig. 2, we illustrated an exemplary circuit for an XOR
operation, which is represented as a+ b+ a+ b within our
approach. We marked the circuits for the NOR phase in red,
where the intermediate results are stored in the memristors
at the bottom. The OR phase is shown in blue, where the
intermediate results are combined via an OR operation and
stored in the output memristor. During both steps, only the
memristors inside of the highlighted region(s) are connected
to the bus. The switch sw is closed in the second phase.

B. FULL ADDER IMPLEMENTATION
As adders are the most basic building blocks, they are often
used for comparison between different approaches. There-
fore, we implemented an adder using the method proposed
in this work. Since our approach is always calculated in two
steps, we propose 2–bit adders instead of the conventional
1–bit, which are then combined into an RCA. This results
in a discrete circuit with five inputs and three outputs
(si, si+1 and cout), which is still computed in two steps.

Algorithm 1: SOP function with q outputs

Input: I = {ij}n−1
j=0 ; Output: O = {op}q−1

p=0

1 procedure SOP Function f : I 7→ {0, 1}q
2 Create Inot = {NOT(ij) | ij ∈ I}
3 for every output op do in parallel:
4 Set mp

k = {al | al ∈ I ∪ Inot}n−1
l=0

5 swk open; spk ← NOR(mp
k), Sp = {spk}

6 swk closed; op ← OR(Sp)
7 end
8 end
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FIGURE 3. Proposed circuit for the output (si) of the exact 2–bit full
adder. We marked the NOR circuits in red and the OR circuit in blue.

When we apply our method to the full adder logic of
the 2–bit cells, three independent equations are evaluated
concurrently using the proposed NOR and OR phases. We
presented the circuit for si in Fig. 3, where the two phases are
again color–coded. The other two circuits follow the same
principle.

C. PROPOSED APPROXIMATED ADDER
To further improve the efficiency of memristive adders, an
upcoming approach is AxC, where the accuracy is traded for
improved speed, area usage, and energy efficiency [15], [21].
We analyzed our exact 2–bit adder to find approximations
that are independent of cin, so they can be computed in
parallel. When the cin of the 2–bit units is assumed as ‘0’,
and therefore disregarded, and we approximated the internal
carry as bi, we achieve the following equations:

si = aibi + aibi (2)

si+1 = ai+1bi+1bi + ai+1bi+1 bi+

ai+1bi+1bi + ai+1bi+1bi (3)
cout = ai+1bi+1 + ai+1bi + bi+1bi (4)

This approximation of si, si+1, and cout prevents depen-
dencies between the two additions ai + bi and ai+1 + bi+1

while making the three outputs independent of cin. Since
the Ax 2–bit units disregard cin, the cout only has to be
computed on the last erroneous adder unit, allowing us to
omit the circuit responsible for cout. This leaves us with two
possible implementations, where the cout is either calculated
on the last Ax bit or completely disregarded in every unit.
We name our approximations: Parallel 2–bit Approximated
Adder (with Carry–out), resulting in P2AAC and P2AA for
both versions. The truth tables for both versions are shown in
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TABLE I. Truth table of the proposed P2AAC circuit with the outputs
“couts1s0”. The incorrect by-design outputs are marked in red.

Input Bitsa1b1 a0b0cin

000 001 010 011 100 101 110 111

00 000 000 011 011 001 001 010 010
01 010 010 101 101 011 011 100 100
10 010 010 101 101 011 011 100 100
11 100 100 111 111 101 101 110 110

TABLE II. Truth table of the proposed P2AA circuit (cout = 0) with the
outputs “couts1s0”. The incorrect by-design outputs are marked in red.

Input Bitsa1b1 a0b0cin

000 001 010 011 100 101 110 111

00 000 000 011 011 001 001 010 010
01 010 010 001 001 011 011 000 000
10 010 010 001 001 011 011 000 000
11 000 000 011 011 001 001 010 010

Tables I and II, where the errors introduced by our approxi-
mation are marked in red. From Equations (2), (3) and (4) we
can derive the necessary operations that an Ax 2–bit adder
has to perform and design the circuit accordingly. Please note
that the logic for si constitutes an XOR operation, which
we show in Fig. 2. Due to the parallelization capabilities
of our approximations, the number of steps required by a
partially Ax RCA can be drastically reduced. Together with
the initialization of the required inputs, our approach requires
three steps for a 2–bit addition. The number of total steps is
calculated by

SP2AAC(k, n) =
3
2 · (n− k) + 3 (5)

SP2AA(k, n) = max
(
3, 3

2 · (n− k)
)

, (6)

where k corresponds to the number of Ax bits (must be
multiples of two) and n is the total number of bits in
the RCA. For every two bits, we require three steps, but
depending on the Approximation Degree (AxD), some of
those can run in parallel leading to fewer steps overall. We
will denote the AxD of an RCA with an approximated part
as k/n, where k is the number of Ax bits and n is the total
number of bits of the RCA. It is noticeable that P2AAC
requires three more steps than P2AA. This stems from the
fact that with P2AA, no carry–out is produced, so the first
two bits of the exact adder can also be computed in parallel
to the Ax 2–bit units.

IV. CIRCUIT–LEVEL SIMULATION
A. SIMULATION SETUP
We verified the functionality of the proposed adders with
LTSpice simulations. The SPICE implementation [25] of
a memristor model based on Voltage–controlled ThrEshold
Adaptive Memristor (VTEAM) [26] was used. The param-
eters for this model were set similarly to Table III 1 , as

1We used tungsten chalcogenide memristors produced by KNOWM [27].
Detailed information on the model and memristor can be found in [26], [28]

TABLE III. Parameters of the utilized VTEAM memristor model [25], [26].

Parameter Voff Von αoff αon Roff Ron

Value 0.7V −10mV 3 3 1MΩ 10 kΩ

kon koff woff won wc aoff aon

−0.5 nm/s 1 cm/s 0 nm 3nm 107 pm 3nm 0nm

they are fitted to a real discrete Knowm memristor [28] that
is commonly used [7], [15], [21], [29]. This increases our
confidence in the practical relevance of our simulations and
allows for an easier comparison. We note here that, similar to
the difference between discrete and integrated Complemen-
tary Metal Oxide Semiconductor (CMOS) devices, discrete
memristors have higher energy consumption and operate
slower. It is reasonable to assume that integrated memristors
provide a significant performance improvement [16], [30].
We assume that the circuit is mapped to a 1T1M crossbar
array where the switches are located underneath the crossbar
[31], while the external switches that connect the NOR

modules are embedded in the control logic. We chose to
follow the established practice from [21], [23], [29] on
disregarding the effect of the switches and rather focusing
on the logic design of the proposed circuits.

B. SIMULATION RESULTS
We simulated all possible input combinations of our
proposed (Ax) adders and validated them with our theoretical
calculations. All memristors were initialized accordingly.
The inputs were set to their logical states, the memristors
for the intermediate NOR step were set to logical ‘1’, and
the output memristors to ‘0’. We evaluate a grid of varying
operation voltages (Vop) and cycle times (top), to find
combinations that lead to valid results for arbitrary functions
with up to five inputs. We implemented this limitation as
the Fan-In of the OR step grows very fast for functions
with more inputs. As these values strongly depend on the
memristor model and technology nodes used, they should
rather be seen as a case study to showcase the feasibility of
our approach. The valid parameter combinations are shown
in Fig. 4, where the energy efficiency and the quality of the
logical output state are indicated as well. A value of over
0.66 is deemed logical ‘1’, a value under 0.33 logical ‘0’, and
undefined otherwise. A valid combination is given if these
limits are upheld for all input combinations. With quality, we
denote the mean difference between optimal results (‘0’/‘1’)
and simulated outputs over all input combinations. Our case
study revealed that only some combinations of Vop and top
allow the correct operation of both NOR and OR gates with
a varying number of inputs. The upper bound is given by a
five input XOR, where the limiting factor is the high Fan-In
to the OR gate (2n−1), which are connected in parallel and
can therefore push the total resistance below the required
threshold. The lower bound of valid combinations is set when
only a single input OR in a NOT (i0) arrangement, with a
high input resistance, is used. With the cycle time, the total
current flow through the output memristor can be limited,
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The three outputs are calculated in parallel.

which allows us to match it to the corresponding voltages.
Our results indicate that when a higher voltage is applied a
shorter pulse is required to guarantee functionality. A lower
Vop and a higher top lead to the best output quality, while
the inverse combination achieves the best energy efficiency.
We chose the combination Vop = 940mV and top = 9 µs,
which retains correct functionality while boasting the highest
energy efficiency.

We calculated the average power consumption for each
presented adder, where the exact adder requires 491.2686 pJ
per bit. Additionally, 17.455 pJ are required per input per
bit (therefore, 4× for Ax and 5× for the exact versions)
to calculate the required complementary values. When we
embed the k lowest bits with our Ax adders in an RCA of
length n, the resulting energy consumption is:

EP2AAC(k, n) = 274.3175 · k + 578.5436 · (n− k) (7)

EP2AA(k, n) = 205.9451 · k + 578.5436 · (n− k) (8)

Fig. 5 illustrates the waveforms of the intermediate (NOR)

and the output memristors (OR) of P2AAC with the example
inputs ai+1,i: “01”, bi+1,i: “11”. In the first phase from 0−
6 µs the NOR operations calculate the intermediate results.
Afterward, the outputs c, si+1, and si are computed in the
OR phase from 9− 18 µs.

C. ERROR METRICS
Since our circuit–level simulations from above match our

expected results, we proceed with a behavioral model that
provides equivalent functionality from here on out. To quan-
tize and effectively compare the erroneous behavior of Ax
full adders, error metrics such as Mean Error Distance
(MED), Normalized Mean Error Distance (NMED), and
Mean Relative Error Distance (MRED) are commonly used
in the SoA [13], [15], [17]. We embed our Ax adders in
RCA, vary the approximation degree in steps of two, as
the approximations are based on 2–bit units, and evaluate
the metrics. The results for 8, 16, and 32–bit are shown
in Table IV. We evaluated all 2562 input combinations for
the 8–bit RCA, but chose to only use one million random
combinations for 16/32–bit. We did this because a complete
evaluation would be very computationally intensive, so a
slight stochastic deviation has to be expected. As expected,
P2AAC is better than P2AA in every metric, since the carry–
out of the 2–bit unit is calculated instead of always being
set to ‘0’. It is important to note that these metrics only
represent the general accuracy of an adder but fail to estimate
the accuracy for specific applications.

V. CIRCUIT–LEVEL COMPARISON
In this section, we compare our approaches to other SoA
logic forms on the most important circuit–level metrics. An
overview of exact and Ax adders is shown in Table V. Due to
the limited space, we only chose representative adders to rep-
resent certain types of approaches. Our adders require almost
a magnitude less energy than IMPLY–based approaches.
SIXOR is more energy efficient for the full adder, but as
it needs TMSL for general logical functions, our approach
will require less energy for other circuits. It is important to
note that our circuits only require one operational voltage
(since it is based on MAGIC and FELIX), while IMPLY
and SIXOR need two. Our proposed exact adder is nearly
three times as fast as SIXOR and at least four times faster
than all other logic forms. The trade–off for these improve-
ments over the SoA is the drastically increased number of
memristors and switches. The same trends also apply to
our Ax adders P2AAC and P2AA. As our approximations
are based on 2–bit units that can be computed in parallel,
using an AxD of 4/8, they are 76.3% − 94.8% faster and
80.7% − 87.8% more energy efficient than the IMPLY–
based approximations from [15], [21], [22], [23]. On the
other hand, comparable algorithms require 82.5%− 93.2%
fewer memristors, rendering the trade–off dependent on the
application and design goals. The application–level gains of
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TABLE IV. Error metrics the proposed approximated adder P2AAC and P2AA for 8/16/32 bit configurations and with different AxDs.

Full adder 8–bit Adder 16–bit Adder 32–bit Adder

MED NMED MRED MED NMED MRED MED NMED MRED

Approximation Degree 2/8 Approximation Degree 4/16 Approximation Degree 8/32

P2AAC 0.500 9.780e−4 2.754e−3 2.935 2.200e−5 6.200e−5 50.355 < 1.0e−6 < 1.0e−6
P2AA 1.750 3.425e−3 9.434e−3 8.425 6.400e−5 1.770e−4 141.245 < 1.0e−6 < 1.0e−6

Approximation Degree 4/8 Approximation Degree 8/16 Approximation Degree 16/32

P2AAC 2.938 5.749e−3 0.016 50.369 3.840e−4 1.068e−3 1.293e4 2.000e−6 4.000e−6
P2AA 8.422 0.016 0.044 141.194 1.077e−3 2.972e−3 3.624e4 4.000e−6 1.200e−5

Approximation Degree 6/8 Approximation Degree 12/16 Approximation Degree 24/32

P2AAC 12.441 0.024 0.066 807.990 6.165e−3 0.017 3.311e6 3.850e−4 1.069e−3
P2AA 34.966 0.068 0.163 2.265e3 0.017 0.045 9.281e6 1.080e−3 2.973e−3

Approximation Degree 8/8 Approximation Degree 16/16 Approximation Degree 32/32

P2AAC 50.349 0.099 0.244 1.294e4 0.099 0.243 8.480e8 0.099 0.243
P2AA 141.079 0.276 0.508 3.622e4 0.276 0.507 2.375e9 0.277 0.507

(a) cameraman (b) rice (c) exact (d) P2AA (e) P2AAC

(f) toysnoflash (g) exact (h) P2AA (i) P2AAC

(j) boat (k) exact (l) P2AA (m) P2AAC
FIGURE 6. Results of different image processing applications with an
AxD of 4/8: image addition (top), grayscale filtering (middle), and
Gaussian blurring (bottom).

our Ax adder compared to our exact one will be covered in
detail in Section VI and Section VII.

VI. APPLICATION IN IMAGE PROCESSING
A. EXAMPLE APPLICATIONS
Image processing is widely used in computer vision,
robotics, medicine, and industrial applications. It is an opti-
mal application for AxC due to its inherent error–resilience.
We simulated three common applications and evaluated the
PSNR and SSIM, which we show in Fig. 6. In the literature,
image addition and grayscale conversion are often used,
as they directly showcase the applicability of the Ax full
adders. In [15] datasets for both applications were proposed
to increase the variety of the experiments. In image addition,
two 8–bit images are added together pixel–wise, while in
the grayscale filter, the color channels are summed up via
two additions [15]. Our results indicate that both P2AA
and P2AAC achieve acceptable quality in terms of PSNR
with an AxD of up to 4/8. An example with this AxD is

shown in Fig. 6 (a)–(e). We note here that P2AAC is only
slightly below the 30 dB threshold, with an AxD of 6/8.
The experiments of the grayscale filtering lead to roughly the
same results, for which an example image is shown in Fig. 6
(f)–(i). To validate the applicability of P2AAC and P2AA
in more complex tasks, we utilized our adders to create
shift–and–add multipliers and evaluate a Gaussian smoothing
example by convoluting a kernel across the image, such as
in [15], [35]. We chose this application as it is commonly
used to denoise data in computer vision and ML. We used
the same 3×3 kernel as in [15], [36] since it is considered
appropriate for 8–bit inputs [35], [36], and applied it to the
example image “boat.” The results are shown in Fig. 6 (j)–
(m), where both Ax adders suffice with an AxD of 4/8.
Our experiments indicate that P2AAC also reaches the 30 dB
PSNR threshold with an AxD of up to 6/8.

B. APPLICATION–LEVEL GAINS AND COMPARISON
Our presented Ax adders exhibit substantial gains in energy
efficiency (31%–40%) and latency (50%) compared to the
already efficient exact implementation. In image addition,
we can save up to 83.9 µJ of energy and up to 393 thousand
steps. In the grayscale filter example, up to 291 µJ of energy
and 1.18 million steps can be saved when our approach is
applied. For Gaussian blurring of a 256× 256 8–bit image,
these gains sum up to 27mJ of energy and 88 million
steps. Compared to SoA approaches, our adders required
76%− 92% fewer steps in image addition while improving
the PSNR by 0.1 dB − 6.7 dB, when an AxD of 4/8 is
evaluated. For the grayscale filter, our adders improve the
PSNR by 2 dB − 7.9 dB with the same gains in latency.
A direct energy–efficiency comparison to IMPLY–based ap-
proximations may not be entirely fair since they are based on
different logic forms. However, we believe it is reasonable to
assume that our logic approach is roughly 5− 8 times more
energy efficient and 5− 19 times faster than IMPLY–based
circuits. The trade-off for these impressive improvements is
an increased footprint, rendering the effectiveness dependent
on the intended usage and design goals.
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TABLE V. Comparison of key circuit level metrics to SoA exact and approximated full adders.

Full adder Energy consumption [nJ] Number of steps Number of Memristors Number of Switches

n, k
n = 8
k = 4 n, k

n = 8
k = 4 n, k

n = 8
k = 4 n, k

n = 8
k = 4

MAGIC [32]A 6.85e−4n 5.48e−3 12n+ 1 97 14n+ 1 113 0 0
FELIX [10]A 1.35e−4n 1.08e−3 6n 48 4n 32 0 0
SIXOR [7]B 0.22n 1.76 4n 32 9n 72 0 0
Par. IMPLY [33]B 4.08n 32.62 5n+ 18 58 4n+ 1 33 n 8
S–Ser. IMPLY [34]B 3.84n+ 0.81 31.56 10n+ 2 82 2n+ 6 22 12 12
Proposed Exact 0.58n 4.63 3n/2 12 53n 424 10n 80

SAFAN [23] 1.66k + 4.83(n− k) 25.95 7k + 22(n− k) 116 2n+ 3 19 0 0
PINC [15] 0.72k + 4.08(n− k) 19.20 5(n− k) + 18 38 3k + 4(n− k) + 1 29 n− k 4
S–SINC [15] 0.57k + 3.84(n− k) 17.66 2k + 10(n− k) + 3 51 2n+ 6 22 12 12
P2AAC 0.27k + 0.58(n− k) 3.41 (3 · (n− k)/2) + 3 9 17k + 53(n− k) 280 6k + 10(n− k) 64
P2AA 0.21k + 0.58(n− k) 3.14 max (3, (3 · (n− k)/2)) 6 12k + 53(n− k) 260 4k + 10(n− k) 56

A The presented numbers from MAGIC and FELIX use a theoretical memristor model that renders a direct comparison unfair.
B The values for Par. IMPLY, S–Ser. IMPLY and SAFAN are taken from [15] as they have simulated it with the same memristor model as us.

TABLE VI. Average quality metrics of image processing applications with

the proposed P2AAC and P2AA circuits.

Architecture Image Addition Grayscale Filter Gaussian Blurring

PSNR
[dB]

MSSIM PSNR
[dB]

MSSIM PSNR
[dB]

MSSIM

Approximation Degree 2/8

P2AAC 54.236 0.999 48.867 0.997 50.881 0.998
P2AA 46.403 0.995 44.081 0.992 44.317 0.997

Approximation Degree 4/8

P2AAC 42.196 0.981 39.715 0.971 45.082 0.993
P2AA 33.375 0.935 31.278 0.911 31.193 0.974

Approximation Degree 6/8

P2AAC 29.861 0.828 29.395 0.805 33.517 0.935
P2AA 21.608 0.661 19.681 0.621 19.909 0.811

VII. APPLICATION IN MACHINE LEARNING (ML)
The demand for efficient computation in ML applications
necessitates innovative approaches to optimize energy effi-
ciency and inference time. As ML algorithms are inherently
tolerant of inaccuracies, P2AAC and P2AA are ideal for
drastically increasing performance. With this evaluation, we
want to highlight the potential of our proposed methods for
ML applications.

A. k–NEAREST NEIGHBORS
To evaluate our circuit on a basic ML application, we
chose a classification task based on k–Nearest Neighbors
(k–NN). We used the Breast Cancer Wisconsin (Diagnostic)
dataset [37] that classifies the data in benign and malignant
tumors with a quantization to 8–bit and split 80/20 into
training and test data. For the k–NN we chose k = 3 with the
Manhattan distance metric and a balanced accuracy score.
The accuracy and energy consumption of P2AAC and P2AA
based RCA with increasing AxD is shown in Fig. 7. Our
results indicate that P2AAC is usable for an AxD of 6/16
without accuracy degradation, which saves up to 19.7% of
the energy consumption and 33.3% of the steps. P2AA is
only applicable with an AxD of up to 2/16, after which the
accuracy degrades drastically. This indicates that the error
propagation is important for this application.
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FIGURE 7. Accuracy and energy of the k–NN over an increasing AxD.

TABLE VII. Architecture of the used CNN. Conv: Convolution, FC: Fully
Connected, ReLU: Rectified Linear Unit

No. Type Kernel Input Activation Output

1 Conv 1× 1 28× 28× 1 ReLU 28× 28× 64
2 Conv 1× 1 28× 28× 64 ReLU 28× 28× 32
3 Conv 1× 1 28× 28× 32 ReLU 28× 28× 16
4 Conv 3× 3 28× 28× 16 ReLU 26× 26× 8
5 Conv 3× 3 26× 26× 8 ReLU 24× 24× 4
6 FC 2304 ReLU 128
7 FC 128 ReLU 64
8 FC 64 10

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
With the rise of deep learning and Neural Network (NN)
applications, we wanted to validate the applicability of our
Ax adders on a LeNet–5 [38] inspired Convolutional Neural
Network (CNN) architecture (Table VII) that was pre–trained
on the MNIST [39] training dataset split (60k images). We
utilized a partially approximated 16–bit RCA, where either
P2AAC or P2AA are used for the lower bits, and embedded
it in a shift–and–add multiplier architecture. We quantized
the layer inputs and weights to 8–bit signed integer. To
evaluate the accuracy and potential gains on inference, we
used the 10k test images with varying AxD. Our results
indicate, that with an AxD of up to 6/16, there is no
accuracy degradation for both proposed approximations. This
is illustrated in Fig. 8, where we save 19.7%–24.1% of
energy and 33.3%–37.5% of steps while keeping accuracy.
At an AxD of 6/16, P2AAC saves up to 102.5mJ and 505
million steps compared to the exact version. With P2AA, up
to 125.6mJ and 505 million steps can be saved with no loss
of accuracy.
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FIGURE 8. Accuracy and energy of the CNN over an increasing AxD.

VIII. CONCLUSION
In this work, we proposed a stateful memristive mixed logic
form based on MAGIC and FELIX that is highly flexible,
fast, and energy efficient. To showcase the potential of our
approach, we implemented a full adder and provided two
additional Ax variants that are based on fully parallelizable
2–bit units, further increasing the efficiency. Compared to
other memristive logic forms, our proposed exact adders are
62% − 87% faster and require up to 85% less energy for
an 8–bit addition. We embed our Ax adders in an RCA
and evaluate three image processing applications, where we
save 50% of cycles and 31% − 40% of energy compared
to our exact adder. We demonstrate the applicability of our
approach in ML, where up to 6/16 bits can be approximated
without a reduction in accuracy when tested on a LeNet–5
based CNN that is applied to MNIST. Our approach can save
up to 125.6mJ and 505 million cycles for each inference.
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