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ABSTRACT Sleep deprivation is a significant contributor to various diseases, leading to poor cognitive
function, decreased performance, and heart disorders. Insomnia, the most prevalent sleep disorder, requires
more effective diagnosis and screening for proper treatment. Actigraphic data and its combination with
physiological sensors like electroencephalogram (EEG), electrocardiogram (ECG), and body temperature
have proven significant in predicting insomnia using machine learning methods. Studies focusing solely
on actigraphic data achieved an accuracy of 84%, combining it with other wearable devices increased
accuracy to 88%, and 2-channel EEG alone yielded an accuracy of 92%, but limits scalability and practicality
in real-world settings. Here we show that using the hybrid approach of incorporating both recursive
feature elimination (RFE) and principal component analysis (PCA) on sleep and heart data features yields
outstanding results, with the multi-layer perception (MLP) achieving an accuracy of 95.83% and an F1
score of 0.93. The top-ranked features are predominantly sleep-related and time-domain RR interval. Our
findings emphasize the importance of tailoring feature sets and employing appropriate reduction techniques
for optimal predictive modeling in sleep-related studies. Our results demonstrate that the ensemble classifiers
generalize well on the dataset regardless of the feature count, while other algorithms are hindered by the curse
of dimensionality.

INDEX TERMS Actigraphy, classification, feature reduction, heart rate variability, insomnia.

I. INTRODUCTION

SLEEP is a regular, cyclical condition of decreased respon-
siveness and sensitivity to external stimulation involving

intricate physiological changes [1]. During sleep, the body
undergoes synchronized brain activity, hormone changes,
muscle relaxation, and temperature and blood pressure re-
ductions. It is crucial for various brain processes, including
neuron interactions and the creation of new neural pathways,
i.e. a dynamic and complex process [2].

Sleep deprivation can lead to fatigue, impaired memory
and attention, mood swings, slow judgment and reaction
times, and uncoordinated movements. Chronic sleep depriva-
tion increases the risk of high blood pressure, cardiovascular

diseases, diabetes, depression, and obesity [3]. Given the
extensive impact of sleep on the body, it’s not surprising that
many illnesses are linked to sleep deprivation. Insomnia is
the most common sleep disorder, according to the American
Psychiatric Association [4].

According to the Diagnostic and Statistical Manual of
Mental Disorders (DSM-5), insomnia is characterized by
difficulty falling asleep, staying asleep, or experiencing early
morning awakenings. These sleep issues must be accompa-
nied by daytime dysfunctions, such as reduced attention or
concentration difficulties. For a diagnosis of insomnia disor-
der, these symptoms must occur at least three times per week
for a minimum of three months [5].
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Hyperarousal, often associated with insomnia, is influ-
enced by various physiological, psychological, behavioral,
and cognitive factors. It is a persistent feature in individuals
with insomnia, manifesting both at night and during the day,
and includes physiological, cognitive, and emotional compo-
nents [6]. Arousal is characterized by somatic, cognitive, and
cortical activation. Individuals with insomnia are particularly
sensitive to disturbances from environmental or other stimuli
at sleep onset and during sleep due to enhanced sensory
processing. These disturbances can directly interfere with
sleep initiation and maintenance. Arousals during sleep and
heightened memory formation around sleep onset can nega-
tively impact the subjective experience of restful, undisturbed
sleep [7].

Hyperarousal in insomnia is characterized by elevated
heart rate, body temperature, metabolic rate, cortisol secre-
tion, and baseline skin resistance compared to healthy sleep-
ers. Studies have shown that the heart rate of individuals
with insomnia is significantly higher than that of normal
sleepers [8]. Heart rate variability (HRV) is the variation in
the time interval between heartbeats and measures neurocar-
diac function, originating from heart-brain interactions and
autonomic nervous system (ANS) processes. It assesses ANS
function, reflecting the balance between parasympathetic and
sympathetic activity. Low frequency (LF: 0.04–0.15 Hz) re-
flects parasympathetic and sympathetic activity, while high
frequency (HF: 0.15–0.4 Hz) is influenced by parasympa-
thetic activity. The LF/HF ratio indicates sympathovagal bal-
ance. Higher LF and LF/HF ratios are associated with poorer
sleep quality and more severe insomnia symptoms, indicating
increased sympathetic nervous system activity [9], [10].

Actigraphy, or activity-based sleep-wake monitoring, is a
non-invasive method for tracking human wakefulness and
sleep cycles using a wrist-worn device with an accelerometer
to record movements. It is widely used in sleep medicine to
assess sleep quality and diagnose sleep disorders. While not
as precise as polysomnography (PSG), actigraphy provides
reliable estimates of sleep patterns, including sleep latency,
total sleep time, and sleep efficiency [11]. The Cole-Kripke
algorithm developed to validate automatic scoring methods
that distinguish sleep from wakefulness based on wrist ac-
tivity, uses a weighted moving average instead of a fixed
score threshold to classify each epoch as sleep or wake. In
a diverse sample, including healthy controls, older adults,
individuals with sleep disorders, and psychiatric patients, the
Cole-Kripke Algorithm shows actigraphic estimates of sleep
latency, total sleep time, and sleep efficiency that are highly
correlated with PSG scores [12].

Byun et al. in [13] demonstrated a machine learning-based
diagnosis of major depression using HRV. They employed a
linear support vector machine (SVM) classifier for its good
generalization performance with high-dimensional data and
reduced risk of overfitting through appropriate regularization.
The authors also used SVM-recursive feature elimination
(RFE) for feature selection, which performs well when the
number of samples is smaller than the number of features and

has been applied to various problems [14].
Depression is linked to autonomic nervous system (ANS)

dysfunction, which can be assessed usingHRV.Depressed pa-
tients typically have lower HRV than healthy individuals, al-
lowing HRV to distinguish between the two groups. Bayesian
Networks, trained on the time domain, frequency domain,
and non-linear HRV features, have effectively identified de-
pression patients with 86.4% accuracy, 89.5% sensitivity, and
84.2% specificity, using the root mean square of successive
differences (RMSSD) of the HRV [15].
Aoyu et al. [16] found that patients with mild cognitive

impairment (MCI) exhibited lower HRV. They used five
machine learning algorithms—K-nearest neighbor (KNN),
Decision Tree (DT), Random Forest (RF), Naive Bayes, and
eXtreme Gradient Boosting (XGB)—to classify healthy in-
dividuals and MCI patients. Standard deviation of all normal
to normal RR intervals (SDNN), the proportion of pairs of
successive RR intervals that differ bymore than 50ms relative
to the total number of RR intervals (pNN50), and LF were
identified as the most important predictors. By employing
a weighted soft voting strategy that combined the outputs
of the five classifiers, they achieved 88.9% accuracy, 89.9%
precision, 88.2% recall, and an F1 score of 89.0%.
A study by Delmastro et al. [17] used Bayesian Networks,

SVM, kNN, DTs, RFs, and AdaBoost (AB) to detect stress
using HRV and electrodermal activity (EDA) as markers. RF
and AdaBoost outperformed the other classifiers, effectively
combining multiple models through bagging and boosting
methods to improve predictions.
Rossi et al. in [18] applied fifteen machine learning algo-

rithms using 14 features to predict insomnia. They reported
that SVM was the best estimator, achieving 91.6% accuracy
and an F1 score of 0.92. The study concluded that vision,
movement, and sleep disorders were the primary factors con-
tributing to insomnia.
In [19], authors created an insomnia dataset based on ques-

tionnaires focused on external symptoms. They tested seven
algorithms: SVM, DTs, Logistic Regression (LR), RF, KNN,
Naïve Bayes, and Stochastic Gradient Descent. LR emerged
as the best classifier with 98% accuracy.
Huang et al. [20] used the National Health and Nutrition

Examination Survey (NHANES) to identify risk factors for
sleep disorders with machine learning. They analyzed data
from demographic, dietary, exercise, and mental health ques-
tionnaires and lab and physical exams. Four methods were
used: XGB, RF, Adaptive Boost, and artificial neural network
(ANN), all with 10-fold cross-validation. XGB outperformed
the other models in terms of accuracy. The top five features
identified were the Patient Health Questionnaire, depression
survey, age, physician recommendation of exercise, weight,
and waist circumference.
A recent study [21] aimed to develop an insomnia pre-

diction model using electronic medical records (EMR) from
2011-2018, obtained from a statewide health information ex-
change. The authors evaluated five machine learning models:
LR, SVM with radial basis function kernel, RF, XGB, and
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a multilayer neural network. Each model’s performance was
assessed using the area under the receiver operating char-
acteristic curve (AUC) on a holdout set. The XGB model,
which used a combination of demographics, diagnosis, and
medication data, achieved the highest average AUC of 0.80
and was selected as the best model.

To this end, the physiological domain, particularly heart
rate and HRV, and sleep physical parameters acquired from
actigraphy have shown significance in predicting insomnia
using machine learning methods. However, most studies have
focused on only one domain, which is a limitation. Combin-
ing both feature domains could potentially enhance perfor-
mance and improve prediction accuracy.

This study aims to diagnose insomnia via objective data ac-
quisition fromwearable devices supporting physiological and
physical sleep-related parameters. We develop an insomnia
classifier using multimodal data comprising actigraphy and
individual heart rate, RR interval, and HRV measurements.
We utilize the publicly available Multilevel Monitoring of
Activity and Sleep in Healthy People (MMASH) dataset,
employing Pittsburgh Sleep Quality Index (PSQI) scores as
ground truth for prediction. The task is binary classification:
predicting whether a subject suffers from insomnia based
on their PSQI score. A PSQI score of 6 or higher indicates
poor sleep and insomnia, while a score below 6 indicates a
healthy subject. We exclude anthropometric data due to its
poor correlation with PSQI scores.

The rest of this paper is organized as follows: Section II
provides the dataset and details the proposed methodology,
including the feature extraction and classification models.
Section III presents the results and performance evaluation.
Finally, Section IV offers a discussion of the findings, and
Section V concludes the paper.

II. MATERIALS AND METHODS
A. DATABASE DESCRIPTION
1) Participants and demographic
We used the MMASH dataset, publicly available on Phys-
ioNet [18]. This dataset includes 24 hours of continuous beat-
to-beat heart data, triaxial accelerometer data, sleep quality,
physical activity, and psychological characteristics (e.g., anx-
iety status, stress events, and emotions) for 22 healthy partici-
pants. The participants’ anthropomorphic characteristics (i.e.,
age, height, and weight) were recorded at the beginning of the
experiment. The participants have an age range of 27.29 ±
4.21 years, a height range of 179.91 ± 8.22 cm, and a weight
range of 75.05 ± 12.79 kg.

2) Data collection and monitoring devices
The participants filled in a set of initial questionnaires
that provided information about their psychological status:
morningness-eveningness questionnaire (MEQ), state-trait
anxiety inventory (STAI-Y), PSQI, and behavioral avoid-
ance/inhibition (BIS/BAS). During the test, participants wore
a heart rate monitor to record heartbeats and beat-to-beat
intervals and an actigraph to record actigraphy information

such as sleep quality and physical activity. The participants
wore these two devices for 24 hours.
The Polar H7 heart rate monitor (Polar Electro Inc., Beth-

page, NY, USA) is a Bluetooth low-energy chest strap with
an electrocardiogram (ECG) sensor that provides informa-
tion about inter-beat intervals (IBI). The ActiGraph wGT3X-
BT (ActiGraph LLC, Pensacola, FL, USA) is a triaxial ac-
celerometer and one of the most commonly used devices
for assessing physical activity. The sensor’s dimensions are
4.6×3.3×1.5 cm, with a weight of 19 g and a frequency range
between 30 and 100 Hz. The accelerometer has a dynamic
range of ±8 g and a precision of 12 bits.

3) Data processing
The sleep data was processed using the Cole-Kripke algo-
rithm [18] from the actigraph data provided in the dataset.
The inter-beat interval (IBI) data was used to derive HRV, of-
fering insights into the sympathetic-parasympathetic balance
of cardiac vagal tone, an indicator of cognitive, emotional,
social, and health status [19]. PSQI is a tool used to measure
sleep quality and patterns, distinguishing between "poor" and
"good" sleep across seven domains: subjective sleep quality,
sleep latency, sleep duration, habitual sleep efficiency, sleep
disturbances, use of sleep medication, and daytime dysfunc-
tion. The PSQI score ranges from 0 to 21 [22]–[24].

B. FEATURE EXTRACTION
In this study, we used beat-to-beat heart data, accelerometer
data, and sleep quality characteristics (Table 1). To assess
sleep quality, we employed PSQI scores, categorizing sub-
jects as having "good" sleep if their PSQI score was below
six and "poor" sleep otherwise. The PSQI’s applicability in
insomnia screening is well-demonstrated across various pop-
ulations, showing high test-retest reliability and good validity
for patients with primary insomnia. This classification ap-
proach resulted in a class imbalance, with a higher number of
healthy subjects having good sleep scores compared to those
with poor sleep quality.
We derived sleep variables from actigraph data using the

Cole-Kripke algorithm. These variables included: In Bed
Time, Out Bed Time, Onset Time, Latency, Efficiency, Total
Minutes in Bed, Total Sleep Time (TST), Wake After Sleep
Onset (WASO), Number of Awakenings, Average Awakening
Length, Movement Index, Fragmentation Index, and Sleep
Fragmentation Index.
We used beat-to-beat heart data, consisting of RR intervals,

heart rate (HR), and HRV features in the time domain, fre-
quency domain, and nonlinear domain. For the RR interval in
the time domain, we calculated RMSSD, SDNN, PNN50, the
standard deviation of differences between adjacent RR inter-
vals (SDSD), median absolute values of the successive differ-
ences between the RR intervals, and the difference between
the maximum and minimum RR intervals. We also included
the mean, minimum, maximum, and standard deviation (SD)
of HR.
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TABLE 1. Descriptions of Sleep and Heart data Features Used to Develop the Machine Learning Models

Features Description

Sleep

In Bed Time Time at which the subject went to bed in minutes

Out Bed Time Time at which the subject got out of bed in minutes

Onset Time Time at which the subject fell asleep in minutes

Latency Time taken by the subject to fall asleep after getting into bed in minutes

Total Minutes in Bed Minutes spent in bed per night

Total Sleep Time (TST) Length of sleep per night expressed in minutes

Efficiency Percentage of total sleep time of the subject to the total time in bed

Wake After Sleep Onset (WASO) Time spent awake after falling asleep for the first time

Number of Awakenings Number of awakenings during the night

Average Awakening Length Time in seconds spent awakening during the night

Movement Index The number ofminuteswithoutmovement expressed as a percentage of themovement phase (i.e., the number
of periods with arm movement)

Fragmentation Index The number of minutes with movement expressed as a percentage of the immobile phase (i.e., the number
of periods without arm movement)

Sleep Fragmentation Index The ratio of the movement and fragmentation indices

Heart Rate

mean_nni The mean of RR-intervals

sdnn The standard deviation of the time interval between successive normal heart beats (i.e., the RR-intervals)

pnni_50 The proportion derived by dividing the number of interval differences of successive RR-intervals greater
than 50 ms by the total number of RR-intervals

rmssd The square root of the mean of the sum of the squares of differences between adjacent NN-intervals

median_nni Median absolute values of the successive differences between the RR-intervals

range_nni Difference between the maximum and minimum nn_interval

mean_hr The mean heart rate

max_hr Maximum heart rate

min_hr Minimum heart rate

std_hr Standard deviation of heart rate

sdsd The standard deviation of differences between adjacent RR-intervals

lf Power in HRV in the low frequency band (0.04 to 0.15 Hz)

hf Power in HRV in the high frequency band (0.15 to 0.40 Hz)

lf_hf_ratio LF to HF ratio

lfnu Normalized LF power

hfnu Normalized HF power

total_power Total power density spectral

vlf Power in HRV in the very low frequency band (0.003 to 0.04 Hz)

sd1 The standard deviation of projection of the Poincaré plot on the line perpendicular to the line of identity

sd2 The standard deviation of the projection of the Poincaré plot on the line of identity (y=x)

ratio_sd2_sd1 Ratio between SD2 and SD1

In the frequency domain, we used the following HRV
features: very-low-frequency power (VLF, below 0.04 Hz),
low-frequency power (LF, 0.04-0.15 Hz) and its normalized
power, high-frequency power (HF, 0.15-0.4 Hz) and its nor-
malized power, the ratio of LF to HF, and total power (sum
of power across all these frequency ranges). These features
were obtained by integrating the power in the appropriate
frequency ranges in the spectrum. This approach is essen-
tial because HRV data naturally consist of unevenly spaced
intervals, and the sympathetic and parasympathetic nervous
systems impact different portions of the spectrum.

Additionally, we used SD of the Poincaré plot, a type of
recurrence plot used to quantify self-similarity in processes.

This plot graphs HRV(n) on the x-axis versus HRV(n+1) on
the y-axis. SD1 is the standard deviation of the Poincaré plot
perpendicular to the line of identity, while SD2 is the standard
deviation along the line of identity. Anthropometric data were
excluded due to their poor correlation with PSQI scores.

C. DIMENSION REDUCTION

We applied principal component analysis (PCA), RFE, and a
combination of both to reduce dimensionality. Additionally,
we used neural networks (NN) to achieve further dimension
reduction.
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1) PCA
PCA aims to reduce the dimensionality of a dataset with
many correlated variables while retaining as much variation
as possible. The dataset, structured as a matrix with variables
in columns and subjects in rows, is transformed into a new set
of variables called principal components [25].

2) RFE
RFE reduces features by iteratively removing the least impor-
tant ones from the dataset until the desired number remains.
Initially, the model is trained on all features, and their im-
portance is evaluated. The least important features are then
discarded, and the model is retrained. This process repeats
until the target number of features is achieved. Feature im-
portance can be determined by the machine learning model or
statistical methods, which evaluate the relationship between
input variables and the target variable [26].

3) PCA and RFE
This process results in two types of datasets. The first applies
PCA to the entire dataset for dimensionality reduction, fol-
lowed by RFE to select the most important principal com-
ponents. The second dataset uses RFE first to select the most
important variables, which are then transformed into principal
components using PCA [27].

4) Neural Network (NN)
Feature extraction using neural networks (NNs) involves
training an NN on the dataset, then removing the final pre-
diction layer. The output from the penultimate layer is used to
transform the data, creating new features based on the learned
representations. With fewer logits from the last hidden layer,
these new features are then used to train a classifier [28].

D. CLASSIFIERS
We considered KNN, DTs, RFs, SVM, MLP, XGB, and Ex-
treme LearningMachine (ELM) machine learning classifiers.

1) KNN
KNN is a non-parametric, supervised method used for clas-
sification and regression. It predicts the label of a new point
by finding the K closest training samples, using Euclidean
distance, with uniformweights.We determinedK = 3 through
cross-validation [29].

2) Decision Tree
DTs are non-parametric, supervised learning methods suit-
able for numerical and categorical data. They use a tree
structure where nodes represent features, branches represent
decision rules, and leaves represent outcomes. We used Gini
impurity for the attribute selection measure [30].

3) Random Forest
RFs are ensemble learning methods that combine multiple
DTs to improve prediction accuracy and control over-fitting.

Each tree is built from a sample drawn with replacement,
using Gini impurity as the split criterion [31].

4) SVM
SVMs are supervised methods effective in high-dimensional
spaces. They aim to find the optimal hyperplane that maxi-
mizes the margin between classes. We used a linear kernel
for our SVM [32].

5) MLP
MLP is a fully connected neural network with one input layer,
one output layer, and multiple hidden layers. Each neuron
in the hidden layer applies a weighted linear summation
followed by a ReLU activation function [33].

6) XGB
XGB is an ensemble method that builds models sequentially,
each correcting the errors of the previous one. This process
continues until the training set is accurately predicted or a
maximum number of models are added [34].

7) ELM
ELM is a single-hidden-layer feedforward neural network
used for classification and regression. It uniquely trains
without iterative tuning, using randomly initialized weights
and biases for the hidden layer and calculating output layer
weights with the Moore-Penrose inverse [35].

E. EVALUATION METRIC
Since the dataset was imbalanced, we evaluated the classifiers
using Precision, Recall, and F1 scores in addition to Accu-
racy. These metrics ensure comprehensive performance eval-
uation and prevent the classifier from predicting the majority
class exclusively.
Precision (P) measures the correctness of positive predic-

tions:

P =
TP

TP+ FP

where TP is true positives and FP is false positives. It in-
dicates how many flagged insomniacs are suffering from
insomnia.
Recall (R) measures the completeness of positive predic-

tions:

R =
TP

TP+ FN

where FN is false negatives. It shows how many insomniacs
were correctly flagged out of the total insomniacs.
The F1 score (F1) combines Precision and Recall:

F1 = 2 · P · R
P+ R

It is the harmonic mean of Precision and Recall, providing a
balanced metric that is high only when both are high.
Classifiers were trained using exhaustive Grid Search for

hyperparameter tuning with stratified K-fold cross-validation
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(3, 5, and 8 folds). Stratified K-fold ensures each split main-
tains the class distribution, crucial for imbalanced datasets.
Accuracy on the test data was used to select the best estimator
parameters. The final estimators were trained on the split that
provided the best accuracy and F1 score.

III. RESULTS
A. SLEEP FEATURES
The study showed that for sleep variables as independent vari-
ables and PSQI score as the dependent variable, the models
achieved the highest accuracy of 80% among all the folds
with a maximum F1 score of 0.53. We present the results
based on the domains that its features used or the combination
of features from multiple domains. SVM and RF achieved
the highest classification accuracy of 80% under the 3-fold
cross-validation configuration. This result is consistent with
the findings reported in [36], where SVM also demonstrated
the highest accuracy (Table 2).

B. HEART DATA FEATURES
Evaluation of the models using beat-to-beat interval features
(time domain, frequency domain, and nonlinear) indicated
that the highest accuracy of 86% was achieved by the MLP,
with a 3-fold cross-validation and an F1 score of 0.71. This
represents an improvement compared to the earlier observa-
tions using sleep features. Notably, most classifiers reported
lower accuracy than the previous models. Additionally, LR
exhibited poorer performance as the number of features in-
creased (Table 3).

C. COMBINATION OF SLEEP AND HEART DATA FEATURES
WITHOUT FEATURE REDUCTION
Using the combination of sleep and heart data features, the
MLP once again reported the highest accuracy at 80%, while
the ELM achieved the highest F1 score of 0.67. Since the
total number of features exceeded the number of samples,
some classifiers, such as KNN, which are susceptible to the
curse of dimensionality, recorded poor performance (Table 4).
To address these dimensionality issues, we employed feature
reduction methods, including PCA and RFE.

D. PCA
We performed PCA on the dataset containing both sleep and
heart data features to reduce the number of independent vari-
ables. However, this did not impact the performance metrics,
as the highest accuracy remained around 80%, achieved by
the MLP (Table 5).

E. RFE
Furthermore, we implemented feature selection methods us-
ing RFE. Consequently, the accuracy formodels such as KNN
increased from around 70% to 80%. As presented in Table 6,
the DT achieved its highest accuracy of 85%, an improvement
compared to the previous 80% accuracy, while ELM yielded
the highest F1 score of 0.8. This improvement is due to the

fundamental approach of RFE, which aims to select features
by recursively considering smaller sets of features.

F. PCA AND RFE
While PCA alone did not significantly impact performance,
the combination of RFE and PCA yielded improved accuracy
for various classifiers, showcasing the effectiveness of these
methods. The application of RFE and PCA, in combina-
tion with both sleep and heart data features, resulted in the
best performance across all classifiers. LR and SVM outper-
formed the other models for 3-fold cross-validation. This was
valid when the features consisted of independent components
extracted using PCA from higher-ranked features by RFE,
whereas DTs and MLP delivered higher accuracies for 3-
fold cross-validation when the higher-ranked independent
components were used as input features.
Choosing features using RFE followed by PCA on the

top-ranked features recorded the best performance across all
classifiers, with 95.83% accuracy achieved by MLP with 5-
fold cross-validation. The F1 scores were also higher than
those achieved with previous feature sets. When considering
F1 scores as the most influential criterion for performance,
the MLP with 3-fold cross-validation emerged as the best
classifier, with a score of 0.93. This suggests that neural net-
works and perceptrons can learn representative features and
generalize better on the dataset. Consequently, we developed
neural networks as the next approach for feature reduction
(Table 7 and 8).

G. NEURAL NETWORK
To perform feature reduction using neural networks (NNs),
we leveraged the representations learned by the network to
extract new features from the samples. These representations
exhibited strong correlations with PSQI scores, surpassing
the performance of traditional sleep variables and heart rate
features (Table 9).

H. SIGNIFICANT FEATURES
Upon performing RFE, the top-ranked features were pre-
dominantly sleep-related, including Total Minutes in Bed,
Number of Awakenings, Average Awakening Length, In Bed
Time, Total Sleep Time (TST), and Fragmentation Index.
Additionally, key HRV features were identified, such as the
median, mean, and standard deviation of the RR intervals, as
well as the proportion of RR intervals with an interval greater
than 50 ms.

IV. DISCUSSION
Insomnia is one of the most common sleep disorders. Diag-
nosing insomnia is of concern as it allows for targeted treat-
ment strategies to enhance sleep quality and overall health.
Early diagnosis also contributes to identifying potential un-
derlying conditions contributing to sleep disturbances [37].
To improve its diagnosis, we aimed to develop a classifier to
predict whether a subject suffers from the disease. Given the
inconveniences associated with surveys and questionnaires,
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TABLE 2. Classification Metrics of Classifiers Trained on Sleep Features. SVM Outperforms the Other Classifiers in Terms of Accuracy and F1 Score

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.17 0.3 0.25 0.17 0.4 0.25 0.17 0.33 0.25 65.08 70 72.92

KNN 0 0 0 0 0 0 0 0 0 69.84 70 70.83

DT 0.33 0 0.38 0.33 0 0.38 0.33 0 0.38 79.37 70 75

RF 0.67 0.2 0.12 0.33 0.2 0.12 0.44 0.2 0.12 80.16 75 75

XGB 0.33 0.2 0.12 0.17 0.2 0.12 0.22 0.2 0.12 75.4 75 77.08

MLP 0.22 0.3 0.25 0.33 0.4 0.25 0.27 0.33 0.25 75.4 75 79.17

SVM 0.44 0.5 0.44 0.67 0.6 0.5 0.53 0.53 0.46 80.16 80 79.17

ELM 0 0.99 0.99 0 0.99 0.99 0 0.99 0.99 50 99 99

TABLE 3. Classification Metrics of Classifiers Trained on Heart Data Features: MLP Improves Overall Performance in Both F1 Score and Accuracy
Compared to Sleep Features

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.51 0.3 0.12 0.44 0.3 0.12 0.4 0.27 0.12 53.57 58 58.33

KNN 0.17 0.2 0.06 0.17 0.2 0.12 0.17 0.2 0.08 68.45 65 68.75

DT 0.5 0.2 0.25 0.28 0.1 0.25 0.36 0.13 0.25 73.21 73 68.75

RF 0.67 0.2 0.25 0.28 0.1 0.25 0.39 0.13 0.25 77.38 73 72.92

XGB 0 0 0 0 0 0 0 0 0 68.45 69 68.75

MLP 0.99 0.4 0.38 0.56 0.4 0.38 0.71 0.4 0.38 86.31 79 79.17

SVM 0 0 0 0 0 0 0 0 0 68.45 69 68.75

ELM 0.5 0.99 0 0.5 0.99 0 0.5 0.99 0 71.43 99 66.67

TABLE 4. Classification Metrics of Classifiers Trained on Sleep and Heart Data Features: Combining Both Data Types Without Feature Reduction Does Not
Yield Improvement

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.25 0.27 0.12 0.33 0.6 0.12 0.28 0.37 0.12 60.32 60 64.58

KNN 0.17 0 0 0.17 0 0 0.17 0 0 69.84 70 70.83

DT 0.17 0.5 0.25 0.17 0.5 0.25 0.17 0.47 0.25 69.84 80 72.92

RF 0.33 0.2 0.25 0.17 0.2 0.25 0.22 0.2 0.25 74.6 75 79.17

XGB 0.33 0.2 0.12 0.17 0.2 0.12 0.22 0.2 0.12 75.4 75 77.08

MLP 0.56 0.4 0.12 0.5 0.4 0.12 0.49 0.4 0.12 80.16 80 77.08

SVM 0 0.13 0.25 0 0.2 0.25 0 0.16 0.25 69.84 75 72.92

ELM 0.99 0 0.99 0.5 0 0.99 0.67 0 0.99 83.33 50 99

TABLE 5. Classification Metrics from Classifiers When Trained on Independent Components Extracted from Sleep and Heart Data Features Using PCA

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.28 0.27 0.35 0.67 0.8 0.62 0.39 0.39 0.44 53.97 40 50

KNN 0.17 0 0 0.17 0 0 0.17 0 0 69.84 70 70.83

DT 0.5 0 0.12 0.5 0 0.12 0.44 0 0.12 74.6 70 75

RF 0.33 0.2 0 0.17 0.2 0 0.22 0.2 0 74.6 75 70.83

XGB 0.5 0.55 0.38 0.83 0.7 0.62 0.61 0.58 0.46 69.84 65 70.83

MLP 0.5 0.67 0.31 0.5 0.7 0.38 0.5 0.63 0.33 76.19 80 81.25

SVM 0 0.13 0.25 0 0.2 0.25 0 0.16 0.25 69.84 75 72.92

ELM 0.4 0.99 0 0.99 0.99 0 0.57 0.99 0 57.14 99 99
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TABLE 6. Classification Metrics from Classifiers When Trained on Top-Ranked Sleep and Heart Data Features Using RFE

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0 0 0 0 0 0 0 0 0 69.84 70 70.83

KNN 0.67 0 0 0.33 0 0 0.44 0 0 80.16 70 70.83

DT 0.89 0.5 0.25 0.67 0.6 0.25 0.71 0.53 0.25 84.92 85 75

RF 0.5 0.4 0 0.5 0.4 0 0.5 0.4 0 79.37 80 70.83

XGB 0.83 0.4 0.12 0.5 0.4 0.12 0.61 0.4 0.12 80.16 75 77.08

MLP 0.33 0.4 0.12 0.17 0.3 0.12 0.22 0.33 0.12 75.4 80 77.08

SVM 0 0.1 0 0 0.1 0 0 0.1 0 69.84 70 70.83

ELM 0.67 0.99 0.99 0.99 0.5 0.99 0.8 0.67 0.99 85.71 75 99

TABLE 7. Classification Metrics from Classifiers When Trained on Top-Ranked Independent Components Extracted from Sleep and Heart Data Features
Using PCA

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.72 0.77 0.5 0.83 0.99 0.62 0.77 0.83 0.54 69.84 85 87.5

KNN 0.56 0.2 0.38 0.5 0.1 0.38 0.49 0.13 0.38 80.16 70 83.33

DT 0.5 0.4 0.38 0.5 0.4 0.38 0.44 0.4 0.38 84.92 85 83.33

RF 0.67 0.4 0.38 0.5 0.3 0.38 0.56 0.33 0.38 79.37 80 83.33

XGB 0.78 0.7 0.31 0.83 0.8 0.38 0.76 0.73 0.33 80.16 85 79.17

MLP 0.89 0.8 0.69 0.83 0.991 0.75 0.82 0.87 0.71 75.4 90 95.83

SVM 0.83 0.7 0.56 0.67 0.8 0.62 0.67 0.73 0.58 69.84 90 91.67

ELM 0.99 0 0.99 0.5 0 0.99 0.67 0 0.99 85.71 75 99

TABLE 8. Classification Metrics from Classifiers When Trained on Independent Components Extracted from Top-Ranked Sleep and Heart Data Features
Using PCA

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.72 0.4 0.5 0.83 0.5 0.62 0.77 0.43 0.54 85.71 75 87.5

KNN 0.56 0.2 0.38 0.5 0.1 0.38 0.49 0.13 0.38 79.37 70 83.33

DT 0.5 0.5 0.38 0.5 0.6 0.38 0.44 0.53 0.38 74.6 85 83.33

RF 0.33 0.4 0.38 0.33 0.3 0.38 0.33 0.33 0.38 79.37 80 83.33

XGB 0.78 0.27 0.31 0.83 0.4 0.38 0.76 0.3 0.33 84.92 75 79.17

MLP 0.89 0.9 0.69 0.99 0.9 0.75 0.93 0.87 0.71 95.24 90 95.83

SVM 0.5 0.7 0.56 0.33 0.8 0.62 0.39 0.73 0.58 75.4 90 91.67

ELM 0.99 0.99 0 0.5 0.99 0 0.67 0.99 0 83.33 99 99

TABLE 9. Classification Metrics from Classifiers When Trained on Features Learned by Neural Networks

Metrics Precision Recall F1 Accuracy

Models\Folds 3 5 8 3 5 8 3 5 8 3 5 8

LR 0.99 0.99 0.62 0.83 0.9 0.62 0.89 0.93 0.62 95.24 95 95.83

KNN 0.99 0.99 0.62 0.83 0.9 0.62 0.89 0.93 0.62 95.24 95 95.83

DT 0.89 0.99 0.62 0.83 0.9 0.62 0.82 0.93 0.62 89.68 95 89.58

RF 0.89 0.9 0.62 0.67 0.9 0.62 0.71 0.87 0.62 84.92 90 83.33

XGB 0.67 0.99 0.62 0.5 0.9 0.62 0.56 0.93 0.62 85.71 95 83.33

MLP 0.99 0.99 0.62 0.83 0.9 0.62 0.89 0.93 0.62 95.24 95 95.83

SVM 0.89 0.99 0.62 0.99 0.9 0.62 0.93 0.93 0.62 94.44 95 95.83

ELM 0.99 0.99 0 0.5 0.5 0 0.67 0.67 0 85.71 75 99
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FIGURE 1. Correlation scores of feature representations from the NN with
the PSQI scores. TST and HR standard deviation are the most relevant
features in insomnia detection.

FIGURE 2. Correlation scores of the top-ranked features given by RFE
with the PSQI scores. Sleep features contribute significantly more to
insomnia detection than heart rate data features.

FIGURE 3. Comparison of the absolute correlation scores of the
top-ranked features given by RFE and the NN with the PSQI scores.

such as poor self-evaluation and high participant dropout
rates, we used the MMASH dataset from PhysioNet, which
contains time series data from actigraphy and heart data
sensors.
Furthermore, we derived sleep variables from the time

series data using the Cole-Kripke algorithm. We used PSQI
scores as the dependent variable, given their high correla-
tion with sleep quality and insomnia. Bitkina et al. [36]
developed various algorithms using these sleep variables and
PSQI scores to model sleep quality, achieving a satisfactory
accuracy of approximately 80–86%.
To further enhance the model, we included HRV variables,

which correlate well with PSQI scores. These variables were
derived from frequency domain, time domain, and nonlin-
ear HRV data analysis. Additionally, we employed ensemble
classifiers such as DTs, RFs, and XGB and algorithms similar
to NNs, such as MLPs and ELMs.
The size of the input features caused many classifiers to

perform poorly due to the curse of dimensionality. To address
this issue, we employed several feature reduction techniques
based on linear algebra and statistical principles, including
PCA, to derive the most critical components from the dataset.
Additionally, we employed statistical methods to recursively
analyze the correlation with the target variables, ranking the
features and eliminating those that did not contribute to the
performance.
We also applied multi-layered NNs for feature learning,

aiming to extract specific features from the dataset. This
allowed us to compare traditional manual feature selection
approaches with a fully automated approach independent of
domain knowledge. These techniques offer advantages over
conventional methods, such as improved efficiency, adapt-
ability, and higher accuracy. However, they often require sig-
nificant computational resources, have low interpretability,
and are prone to overfitting [38]. To mitigate overfitting, we
employed standard practices such as normalization, regular-
ization, and learning rate decay methods [39].
The newly learned features demonstrated a good correla-

tion with PSQI scores and performed well, comparable to
other feature reduction techniques. From the correlation plots,
these new features exhibited higher correlation magnitudes
with PSQI scores compared to the top-ranked features ob-
tained through recursive feature elimination (Figures 1, 2, and
3). Using these strategies, we achieved accuracy exceeding
95% and F1 scores of 0.93.
The ensemble classifiers generalized the dataset well and

showed the highest performance regardless of the number
of features. Consequently, combining feature selection tech-
niques and ensemble methods has improved the insomnia
classifiers’ performance. Using objective data collected from
wearable devices, along with high-performance classifiers,
shows promising results in the timely diagnosis and detection
of insomnia [40], [41].
Classifiers such as LR, KNN, and SVM, which initially

delivered poor performance compared to tree-based and en-
semble models like DTs, RF, and XGBoost, showed signifi-
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cant improvement (see Table 9). We observed that the highest
accuracy of 95.83% was achieved by simpler classifiers such
as LR, KNN, SVM, and MLP. These classifiers also attained
an F1 score of 0.93, matching the performance obtained using
PCA and RFE.

A. COMPARISON WITH THE EXISTING WORK
Several studies on insomnia detection using actigraphic
data highlight the effectiveness and complexity of different
machine-learning models and data modalities. Studies using
actigraphic data alone, such as those employing SVM and RF
models, showed an accuracy of up to 84%, demonstrating the
practical utility of actigraphy in monitoring sleep patterns.
However, integrating more complex electroencephalography
(EEG) data with deep neural networks (DNNs) and feedfor-
ward neural networks (FNNs) can enhance accuracy up to
92%, but at the cost of increased complexity, the need for
more obtrusive equipment,reduced subject comfort, and in-
creased data processing requirements, limiting their practical
application in large-scale or everyday settings (Table 10). Our
work using actigraphic and ECGdata supportedwith RFE and
PCA outperformed previous models, achieving an accuracy
of 95.83% and F1 score of 0.93while preserving applicability,
unobtrusiveness, and user comfort.

Overall, our findings emphasize tailoring feature sets and
employing appropriate reduction techniques for optimal pre-
dictive modeling in sleep-related studies. The success of var-
ious classifiers and reduction methods provides valuable in-
sights for researchers and practitioners seeking to enhance the
accuracy of PSQI score predictions, ultimately contributing to
the advancement of sleep quality assessment in clinical and
research settings.

To this end, advanced machine learning classifiers have
demonstrated high accuracy and reliability in diagnosing
insomnia by analyzing physiological and sleep-related data
collected from wearable devices. These classifiers can pro-
cess complex, multi-dimensional data, providing robust and
scalable real-time sleep disorder detection and monitoring
solutions. This approach offers a promising method for con-
tinuous and non-invasive insomnia diagnosis [40], [48].

B. RESTRICTIONS AND OPPORTUNITIES
However, several concernsmust be addressed to ensure the re-
liability and user-friendliness of these solutions. Data privacy
is a significant issue, as sensitive health information is trans-
mitted and stored. Additionally, wearable devices’ battery life
and sensor accuracy must be improved to provide consistent
and long-term monitoring without frequent interruptions or
errors. Ensuring data security and employing energy-efficient
algorithms are critical for the widespread adoption of wear-
able sleep monitoring technology [49].

Despite these concerns, the integration of wearable device
data with Cognitive Behavioral Therapy for Insomnia (CBT-
I) presents a highly promising avenue for personalized treat-
ment. By providing objective, real-time insights into sleep
patterns and behaviors, this integration can support more ac-

curate assessments, monitor therapy progress, and potentially
improve patient outcomes by tailoring interventions based on
precise, continuous data [50].

C. FUTURE RESEARCH AND DIRECTION
Future research should address the challenges associated with
wearable technology for sleep monitoring. These include
improving the accuracy and longevity of sensors, developing
robust data security measures, and creating energy-efficient
machine learning algorithms [51]. Additionally, further work
is needed to explore how to integrate these technologies with
CBT-I, ensuring that the combination of objective data and
therapeutic interventions maximizes patient benefit.
Further work on insomnia classification should include

using a more extensive and balanced dataset encompassing
individuals from diverse age groups, genders, and ethnicities,
as the MMASH dataset primarily includes data from young
male adults. Implementing these algorithms in wearables and
smartwatches could give users a comprehensive assessment
of their sleep habits. These classification techniques, com-
bined with digital CBT-I, can assist health professionals in
more accurately diagnosing their patients’ health and evalu-
ating the efficacy of current treatment plans.

V. CONCLUSION
We investigated diverse feature sets and classification models
to predict insomnia based on PSQI scores, leveraging sleep
variables and heart data features. Our findings highlighted
MLP as a robust classifier, consistently delivering high accu-
racy and F1 scores across different feature sets and reduction
techniques. Combining RFE and PCA proved a powerful
feature reduction strategy, significantly enhancing classifier
performance. The hybrid approach of incorporating both RFE
and PCA on sleep and heart rate features yielded outstanding
results, with theMLP achieving an accuracy of 95.83% and an
F1 score of 0.93 compared to the existing reported accuracy
of 92% and an F1 score of 0.92.
Our exploration of feature reduction using NNs demon-

strated the potential of learned representations in capturing
meaningful information related to PSQI scores, surpassing
traditional feature performance. Additionally, classifiers such
as LR, KNN, SVM, and MLP showed significant improve-
ments and matched the performance of tree-based models
through careful feature selection and dimensionality reduc-
tion.
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