

By Fabian Seiler, Nima TaheriNejad (presenter)

fabian.seiler@student.tuwien.ac.at

nima.taherinejad@ziti.uni-heidelberg.de

CONTENT

COMPUTERS ARE EVERYWHERE

CHALLENGES

Big Data Era

ENERGY FOOT PRINT OF ICT

N. Jones, The information factories, Nature 2018

Data centers

- 2021: 200 TWh
 - Half of Iran's annual energy consumption

Carbon footprint

On par with aviation industry

By 2040

 Surpass energy production **Capacity** Ometov & Nurmi, Towards approximate computing for achieving energy vs. accuracy trade-offs, DATE 2022

9,000 terawatt hours (TWh)

ENERGY FORECAST

electricity demand Widely cited forecasts suggest that the total electricity demand of information and communications technology (ICT) will accelerate in the 2020s, and that data centres will take a larger slice. Networks (wireless and wired) Production of ICT Consumer devices (televisions, computers, mobile phones)

20.9% of projected

MEMORY ACCESS COST

Meta (Facebook)

Google

- ~63%
 - A. Boroumand, et al., Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. New York, NY, USA: Association for Computing Machinery, 2018, p. 316–331.
- Let's take this as an indicative number

FOOTPRINT

eclectx.org/publications [C58] IEEE Nano 2024

PERFORMANCE BOTTLENECK & SOLUTION

Efficient Image Processing via Memristive-based Approximate In-Memory Computing

MEMRISTORS - IMPLY

- Memristor
 - Memory + Resistor
 - Resistance represents logical states
- IMPLY
 - Stateful Logic
 - Complete Logic Set with NOT

[1] Memristor – Circuit symbol

[1] Memristor - the missing circuit element, L. Chua.
1971, IEEE Transactions on Circuit Theory
[2] Memristive switches enable stateful logic operations via material implication, J. Borghetti et al. 2010, Nature

Efficient Image Processing via Memristive-based Approximate In-Memory Computing

[2] IMPLY - Logical operation

SEMI-SERIAL TOPOLOGY

- Combination of topologies
- Two computing sections
- Shared work memristors
- Efficient trade-off

Semi-serial topology, TaheriNejad et al. 2019, IEEE NEWCAS

APPROXIMATE COMPUTING

- Improved speed & energy
- Reduced accuracy
- Redefined truth table
- Evaluation with error metrics
- Error-resilient applications
 - Image Processing
 - Machine Learning

METHODOLOGY

- Exact Full Adder Truth Table
- Error at Cout
- Approximation $Sum \approx \overline{Cout}$

А	В	Cin	Sum	Cout
0	0	0	Ø 1	0
0	0	1	¥ 0	Ø1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	<i>X</i> 0	1

Truth table of exact full-adder

KVD of Cout for presented algorithms

REALIZATION WITH IMPLY-LOGIC

- Semi-Serial Topology
- Parallelization
- Reset of work memristors
- Cout saved in c-memristor
- Sum saved in a-memristor

Semi-serial topology, TaheriNejad et al. 2019, IEEE NEWCAS

Approximated algorithm 2

- Same error rate
- Different places for error
- Algorithm 1 superior for 1-bit
- Only 2/3 work memristors

Truth table of exact full adder

Algorithm	$ER(C_{out})$	ER(Sum)	No. of steps	No. of memristors
Algorithm 1	1/8	3/8	4n + 1	2n + 2
Algorithm 2	1/8	3/8	5n + 1	2n + 3
Algorithm 3	1/8	3/8	5n + 1	2n + 3
Algorithm 4	1/8	3/8	5n + 1	2n + 3

CIRCUIT-LEVEL SIMULATION

- VTEAM-Model
 - Fitted to measurements
- ATOMIC Pipeline
 - Stateful Logic Validation
 - Automated SPICE Simulations
 - Deviation Experiments

Efficient Image Processing via Memristive-based Approximate In-Memory Computing

DEVIATION EXPERIMENTS

- Non-ideal behavior
- Deviation of resistive States Ron & Roff
- Correct up to $\pm 30\%$

ERROR METRICS

- Accuracy evaluation
- MED, NMED, MRED
- 8/16/32-bit

CIRCUIT-LEVEL COMPARISON

- Exact Semi-Serial Adder (8-bit)
 - 6-38% less energy
 - 5-35% fewer steps
 - Same area usage

- SoA Serial Ax Adder (8-bit)
 - 5-29% less energy
 - 45-54% fewer steps
 - 3 memristors & 12 switches more
 - Better accuracy with algorithms 2&3

IMAGE ADDITION

Algorithm 3: Addition with different approximation degrees

IMAGE SUBTRACTION

Algorithm 3: Subtraction with different approximation degrees

Efficient Image Processing via Memristive-based Approximate In-Memory Computing

GRAY-SCALE FILTER

5/8 Ax FA

Algorithm 3: Gray-scale filter with different approximation degrees

Efficient Image Processing via Memristive-based Approximate In-Memory Computing

APPLICATION LEVEL COMPARISON

Energy and steps reduction at application level

ERROR EMERGENCE

- Application Specific
- Dependent on Algorithm
- Error Placement

В Cin Sum Cout А Ø1

CONCLUSIONS AND OUTLOOK

- Conclusion:
 - We combined IMC and AxC
 - Fast and efficient algorithms
 - Advantages of the semi-serial topology
 - Gains at application level
- Outlook:
 - In-depth Analysis of Error placements
 - Application-based Approximations
 - Application in machine learning

