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Abstract—Image processing algorithms continue to demand
higher performance from computers. However, computer perfor-
mance is not improving at the same rate as before. In response to
the current challenges in enhancing computing performance, a
wave of new technologies and computing paradigms is surfacing.
Among these, memristors stand out as one of the most promising
components due to their technological prospects and low power
consumption. With efficient data storage capabilities and their
ability to directly perform logical operations within the memory,
they are well-suited for In-Memory Computation (IMC). Ap-
proximate computing emerges as another promising paradigm,
offering improved performance metrics, notably speed. The
trade-off for this gain is the reduction of accuracy. In this paper,
we are using the stateful logic Material Implication (IMPLY) in
the semi-serial topology and combine both paradigms to further
enhance the computational performance. We present three novel
approximated adders that drastically improve speed and energy
consumption with a Normalized Mean Error Distance (NMED)
lower than 0.02 for most scenarios. We evaluated partially
approximated Ripple Carry Adder (RCA) at circuit-level and
compared them to the State-of-the-Art (SoA). The proposed
adders are applied in different image processing applications and
the quality metrics are calculated. While maintaining acceptable
quality, our approach achieves significant energy savings of 6%-
38% and reduces the delay (number of computation cycles) by
5%-35%, demonstrating notable efficiency compared to exact
calculations.

Index Terms—Approximate, Memristor, In-Memory Comput-
ing, IMPLY, Image Processing

I. INTRODUCTION

With the rising demand for image processing applications
in various fields, more processing power has to be allocated
to these tasks. Since the required image quality and time
to process these applications is also increasing drastically,
current technology is facing serious challenges in keeping
up with the demand. In addition to this, the enhancement
of general-purpose computing performance is stagnating with
challenges such as the slowdown of Moore’s Law [1] and
the Von Neumann bottleneck. Hence, nowadays considerable
attention is directed toward exploring novel technologies and
computing paradigms in this domain. In-Memory Computation
(IMC) represents a methodology for performing computations
directly within memory, offering a potential solution to cir-
cumvent the Von Neumann bottleneck that typically occurs
between logic and memory. Among the notable emerging
technologies, the memristor stands out as a promising can-
didate. The compelling attributes of low power consumption
and a compact form factor, as highlighted by Williams et

al. [2], position memristor technology as one of the most
likely candidates for future computing advances. With the
ability to store data non-volatile through its resistive state
and the ability to perform logical operations, it is ideally
suited as a memory cell [3], [4]. In the realm of IMC, the
stateful logic Material Implication (IMPLY) proves to be a
favorable choice; Its well-established and widely recognized
nature, coupled with compatibility with the crossbar array,
positions it as an ideal candidate for such applications [3], [5].
It is also the most reliable when compared to other stateful
memristive logics [6]. The currently available structures to
perform IMPLY operations with, can be divided into serial,
parallel, and hybrid topologies [7]–[10]. A hybrid structure
such as the semi-serial topology combines the advantages of
the serial and parallel approach and so offers a more efficient
approach [8].

An upcoming computer paradigm that is a possible solution
to the power-wall problem is the approximation of computa-
tional processes [1], [11]. The adoption of approximate com-
puting leads to improved performance metrics such as speed,
area, and energy consumption, which all would benefit image
processing applications. The trade-off for these enhancements
is the reduction of the accuracy of these computations [1],
[11], [12]. Since image and video processing applications are
of error-resilient nature, the approximation of some part of the
process could lead to stark gains in computing time and power
consumption [1], [13]. Other important fields such as machine
learning, pattern recognition, communication, data mining,
and robotics are often in someway connected to imaging
applications and would also benefit [1], [13]–[15].

Addition operations are fundamental elements in digital
arithmetic, given that a substantial portion of basic instructions
relies on addition and multiplication [12]. The efficiency of
the associated half and full adders significantly influences
the overall performance of the computational process. In this
work, we extend on the approximated adder from [16] and
present three novel adder algorithms in the semi-serial IMPLY-
based topology to complete this methodological approach.
The algorithms use an approximated approach to create an
inexact truth table. The number of memristors, the hardware
complexity, and the power consumption were drastically re-
duced if compared to the exact semi-serial algorithm [8].
The primary advancement compared to the State-of-the-Art
(SoA) lies in the notable reduction of steps required per
bit. To our knowledge, we present the fastest IMPLY-based
approximate adder algorithms. With our approach, we are able
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to drastically reduce both time and energy requirements for
basic image processing applications with only a marginal loss
of quality that can be considered negligible for the human
visual system. With our memristor-based approach, scalability
and performance gains have a lot more potential for the
increasing demands of image processing applications than the
Complementary Metal-Oxide Semiconductor (CMOS) era.

This work is divided into seven sections. In Section II we
cover the necessary background and review key papers in re-
lated areas. The methodology for designing the algorithms and
their exact operation is described in Section III. In Section IV
we simulated the adders at circuit-level, verified their function-
ality, and evaluated the error analysis using standard metrics.
We compared to other exact and approximated algorithms in
Section V. We simulated three image processing applications
and evaluated the quality of the outcomes. The results of these
can be seen in Section VI, where we also discuss the gains
on application-level In Section VII we conclude the paper and
discuss future work.

II. BACKGROUND

A. Memristors

The memristor was originally discovered by Leon Chua [17]
and physically realized by R. Stanley Williams et al. [18]. The
memristor complements the absent symmetry in representing
the four fundamental passive electronic components, alongside
the resistor, capacitor, and inductor [17]. With its resistive
states enabling nonvolatile data storage, it establishes itself
as the optimal component for a memory cell [3], [4]. Other
advantages of the memristor include low power consumption,
as well as low write time and small dimension of the device
[19]–[21]. The minimum (Ron) and maximum (Roff ) resis-
tance values of the memristor are set by the applied voltage
and the direction of current flow, forming a hysteresis curve.
Conventionally, we can assume the minimum resistance value
is equivalent to a logical ‘1’ and the maximum resistance value
equal to a logical ‘0’ [7], [22], [23].

B. In-Memristor Logic - IMPLY

Memristor-based Material Implication (IMPLY) is a stateful
logic with memristors that has the advantage that no reads and
writes are required to perform logical operations [20]. IMPLY
was introduced by Hewlett Packard (HP), which established
itself as the first stateful logic [3], [9], [24]. There exist
other stateful logic forms for memristors such as FELIX [25],
SIXOR [20], MAGIC [26], and TSML [27] as well as non-
stateful logic as MRL [28]. However, in this work we focus
on IMPLY, as it is the most reliable stateful logic [6] and
the only one where approximations have been presented [16],
[29], [30]. The basic structure to perform IMPLY operations
is shown in Figure 1(a). Two memristors are used, to which
different voltages, VCOND and VSET , can be applied. The two
memristors are connected to a resistor which needs to fulfill the
requirement Ron << RG << Roff . The two applied voltages
must also satisfy the condition in VCOND < VC < VSET for
IMPLY logic to be possible, where VC is the threshold voltage
of the memristor [3], [9], [19], [24], [31]. An IMPLY operation
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Fig. 1: IMPLY operation [3]: (a) Gate structure, (b) Truth table

Va1 Va2

RG

a1 a2

Van

an...

Vc

c
Vb1 Vb2

RG

b1 b2

Vbn

bn...

Vcin

cin

Vw1

w1

Vw2

w2

Vw3

w3

Vw4

w4

Fig. 2: IMPLY based semi-serial n-bit adder structure [22]

is represented by a → b, where the logic inputs correspond
to the resistive state of the memristors. To perform a → b, a
short pulse of VCOND and VSET is applied [3], [24]. In this
process, the b-memristor loses its previous state and the result
of this operation is stored in it instead. The truth table of this
operation can be found in Figure 1(b).

C. IMPLY-based full adders

Adders based on IMPLY logic can be divided into three
categories: serial, parallel, and hybrid forms such as semi-
serial or semi-parallel. In the serial structure, memristors are
placed in the same row or column of a crossbar array, as in
[3], [4], [7]. The best serial algorithm needs 22n steps and
2n + 3 memristors for an n-bit calculation [7]. The parallel
structure consists of individual rows that are not contiguous,
so calculations can be performed in parallel [7], [9], [19].
Since the individual bits are dependent on the calculation of
their predecessor, not all steps can be parallelized and must
therefore be processed sequentially. The full adder algorithm
from [19] requires 5n+ 16 steps and 4n+ 1 memristors and
n external switches for n bits. In the semi-parallel full adder,
the serial structure is divided into two rows, with one input
and a work memristor per row [10]. If two operations can
be performed in parallel, it is possible in this structure which
leads to it only requiring 17n steps and 2n+3 memristors as
well as 3 switches, for n-bit. The semi-serial structure shown
in Figure 2 is a hybrid structure that achieves a better balance
between space consumption and speed, compared to serial and
parallel [22]. This topology consists of two parallel rows with
the inputs, which can connect to four work memristors, cin and
c-memristor. This totals to 2n+6 memristors and 12 switches.
The exact algorithm from [22] requires 10n+2 steps for n-bit.

D. Approximate Computing

The fundamental approach to approximate computing in-
volves redefining logic by eliminating gates or individual
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transistors and formulating a new truth table. With this approx-
imation, performance metrics such as energy consumption,
area usage, and processing time are significantly reduced.
The accuracy of the calculation is reduced as a trade-off. To
evaluate the degree of inaccuracy, error metrics were used in
SoA publications such as [14], [32]–[36]. The most important
and used metrics in this work are Error Distance (ED),
Error Rate (ER), Relative Error Distance (RED), Mean Error
Distance (MED), Normalized Mean Error Distance (NMED)
and Mean Relative Error Distance (MRED). One application
of approximated computing is image processing, since it has
a high error resistance [11], [32]. A common quality metric is
the Peak Signal-to-Noise Ratio (PSNR) which indicates how
strong the noise is compared to the actual signal. A value of
more than 30dB is considered acceptable [37], [38]. Especially
for images, the structural context is relevant for the human
visual system [39]. Therefore, two more quality metrics, Struc-
tural Similarity Index Measure (SSIM) and Mean Structural
Similarity Index Measure (MSSIM), are often used in image
processing [39], [40]. Many variants of Approximated CMOS
based full adder have been published, all of which have used
different approximation methods such as [11], [12], [32], [34].
Other technologies have also been used to achieve a better
approximation [35], [41].

E. Approximate In-Memristor Computing

Approximated full adders based on memristors have re-
cently been proposed. In [42], [43], they utilized the Memristor
Ratioed Logic (MRL) from [28] and changed the truth table
of the full adder to save memristors. The main disadvantage
of MRL is that additional CMOS-inverter and amplifier are
required. Their approximate design reduced the number of
required memristors from 33 to 10 and some CMOS inverters
and evaluated the adders with image addition. Approximated
full adders that utilized IMPLY have also been presented in
[23], [29], [30], where new approximate algorithms for the
serial structure were proposed. They simplified the truth table
and utilized specific input vectors to minimize the number
of required steps. Thereby they reduced energy consumption
by up to 68% and the number of required steps by up to
42% and evaluated their adders in different image processing
applications. In [16] the authors presented an approximated
adder in the semi-serial topology that utilizes the similarity
Sum ≈ Cout. Here, we propose three new algorithms for the
semi-serial adders with a more advanced design methodology
that advances the approach from [16] and results in better
performances in different aspects. We compare our results with
the SoA and present the results in Section V.

III. PROPOSED APPROXIMATE FULL ADDERS

A. Methodology

In our work, the method to design approximated circuits is
to take the correct logic as a reference and derive approximated
logic from it. Typically, this is done by either changing or
omitting components or using a modified truth table so that
the speed and/or the number of components required can be re-
duced [14], [32], [33]. As we are working on the IMPLY-based

semi-serial structure, we use only IMPLY and false operations.
Together they form a complete logic set, with which we can
emulate Boolean logic [7], [44]. It turns out that an inversion
needs only one IMPLY operation and only OR and NAND
need two IMPLY operations. Therefore, the approximations
focus on using these operations and FALSE to reduce the
required steps [16]. We developed the approximations in this
work by introducing an intentional error in the truth table of
an exact full adder at one place of Cout. For each case, we
determined the conjunctive and disjunctive normal forms using
the Karnough-Veigh-Diagramm (KVD) and verified them to
be representable in as few steps as possible in IMPLY logic.
Operating within the semi-serial structure detailed in [8],
we capitalize on its built-in parallelization capability. This
empowers us to concurrently compute numerous essential
steps, resulting in significant time savings in computational
processes. We exclusively employed logical approximations
that align seamlessly with the efficient representation enabled
by this parallelization approach. In each of the presented
algorithms, we represented the sum of the full adder as
Sum ≈ Cout. We are using this approach because it exploits
the similarities and requires only one additional computational
step (inversion) to calculate the Sum, based on the approach
from [16]. To ensure that the algorithm of the approximated
full adder is compatible with the algorithm of the exact full
adder from [8], we took care in this work that the calculated
Sum is always stored in the respective a-memristor and the
carry bit is stored in the c-memristor. We have chosen to
include a shortened description of the algorithm from [16]
in Section III-D to give the reader the complete picture of
the entire space of this methodological approach which this
algorithm is a part of. We labeled the approximated algorithms
in the following sections based on the placement of the error
in the truth table.

B. Approximated algorithm 1

In this algorithm, we introduce an error in the truth table in
the case [a,b,c] = “001” which results in Cout having an ER of
1
8 . Since the sum is equal to the inverted Carry-Out, it has an
ER of 3

8 since in the cases [a,b,c]=“000” and [a,b,c]=“111”,
Sum is not equal to the inverse of Cout.

Cout = ab+ c = (a → b) → c (1)

Sum = ab+ c = (a → b) → c (2)

In Equation (1) and Equation (2) the logical functions of Cout

and Sum can be seen in the Boolean and IMPLY logic form.
We took advantage of the fact that for an OR operation in
IMPLY logic, one of the inputs must be inverted. Therefore
the NAND operation can be used directly and thus calculation
steps can be omitted. Since Cout can be stored directly in the
c-memristor, we only need three steps for its calculation and
another one for the storage of Sum in the a-memristor. Before
starting the calculation, a FALSE operation is required once on
the work memristor, which can be executed in parallel during
the repetitions of the algorithm in the fourth step. The exact
process of the algorithm can be seen in Table I. It requires
only 4n+ 1 steps and 2n+ 2 memristors for n-bits addition.
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TABLE I: Approximated algorithm 1

Steps Section 1 Section 2 Equivalent Logic
- w1 = 0 False(w1)

1 w
′
1 = b → w1 w1 = b

2 w
′′
1 = a → w1

′ w1 = a → b

3 a = 0 c′ = w
′′
1 → c False(a), c = (a → b) → c = Cout

4 a
′
= c

′ → a w1 = 0 a = (a → b) → c = Sum, False(w1)

TABLE II: Approximated algorithm 2
Steps Section 1 Section 2 Equivalent Logic

- w1 = w2 = 0 False(w1, w2)

1 w
′
1 = c → w1 w

′
2 = b → w2 w1 = c, w2 = b

2 w
′′
1 = a → w

′
1 c = 0 w1 = a → c, False(c)

3 c
′
= w

′′
1 → c c = a → c

4 a = 0 c
′′
= w

′
2 → c

′
False(a), c = b → (a → c) = Cout

5 a
′
= c

′′ → a w1 = w2 = 0 a = b → (a → c) = Sum, False(w1, w2)

C. Approximated algorithm 2
In the second algorithm, we introduced an error in the third

row of the truth table due to the approximation, which leads
to a Cout of ‘1’ for the case [a,b,c] = “010”. Cout has an ER
of 1

8 . Since in this approximation Sum = Cout it follows that
the Sum has an ER of 3

8 since again the Least-Significant Bit
(LSB) and Most Significant Bit (MSB) are incorrect.

Cout = ac+ b = b → (a → c) (3)

Sum = ac+ b = b → (a → c) (4)

We used the logical functions in Equation (3) and Equation (4).
We saved steps given that first NAND and then OR are
executed. With this procedure, steps can be combined in
IMPLY form. Since proper storage of Cout in the c-memristor
is necessary, c is firstly stored in a work memristor, and
False(c) was applied so that the c-memristor is available to
store the inversion of a → c. To comply with the default
memory location two more inversions are necessary, resulting
in this algorithm requiring 5n+1 steps and 2n+3 memristors
at n bits. The exact flow of the algorithm can be seen in
Table II.

D. Approximated algorithm 3 [16]
This algorithm was already explained in more detail in [16].

The shortened version is included here since it is also part of
the design approach we implemented in this work and to show
the symmetry of the algorithm presented in [16] with respect
to the second algorithm in this paper. The error placement of
Cout for this algorithm lies at [a,b,c] = “100”. This reduces
the truth table to a form where the first three rows are ‘0’ and
after that, all entries are logical ‘1’. This leads to Cout having
an ER of 1

8 and Sum having an ER of 3
8 .

Cout = bc+ a = a → (b → c) (5)

Sum = bc+ a = a → (b → c) (6)

In Equation (5) and Equation (6) the logical function corre-
sponding to the approximation can be seen [16]. This approx-
imation is a symmetrical approach to the second algorithm
we proposed in Section III-C, with only the inputs a and b
swapped. The exact procedure can be seen in Table III, where
we can see that it also requires 5n + 1 steps and 2n + 3
memristors for an n-bit calculation.

E. Approximated algorithm 4

We changed the truth table of this algorithm at
[a,b,c]=“110”, so that in this case Cout is equal to ‘0’. The
truth table can be seen in Table V, where the red marked bits
represent the errors introduced by us. It can be seen that Cout

again has an ER of 1
8 and Sum has an ER of 3

8 .

Cout = (a+ b)c = (a → b) → c (7)

Sum = (a+ b)c = (a → b) → c (8)

In this algorithm, we first perform an OR operation and then
a NAND operation, which is not possible otherwise due to
the selected memory locations. Equation (7) and Equation (8)
show this algorithm’s logical functions we created and the
reason for the necessity to perform a double inversion. The
exact procedure can be found in Table IV. It should be noted
that False(a) could also be performed in steps 2 or 3. We
selected and implemented the chosen variant due to its superior
energy efficiency observed during circuit simulations, with an
equal number of steps. This algorithm requires 5n + 1 steps
and 2n+ 3 memristors for a calculation of n bits.

IV. CIRCUIT-LEVEL SIMULATION AND ERROR METRICS

A. Simulation setup

To simulate the proposed approximated full adders we used
a model based on the Voltage-controlled ThrEshold Adaptive
Memristor (VTEAM) model [31], which is implemented in
SPICE and fitted to measurement data [8], [45]. We used LT-
SPICE to perform these simulations to confirm the correct
functionality and verify it for every input combination. The
parameters we selected are listed in Table VI. It is important
to highlight that the specified parameters are outcomes derived
from tailoring the model to real devices, in this case discrete
Knowm memristors [46]. Like with the difference between
discrete and integrated CMOS devices, this leads to slower
operations and increased power consumption. It is important
to recognize that while these outcomes reflect the adaptation
of the model to discrete memristors, integrated memristors
offer significant improvements in operational speed and power
efficiency. However, since we do not have access to integrated
memristors, to ensure relevant and realistic implementability of

TABLE III: Approximated algorithm 3 [16]
Steps Section 1 Section 2 Equivalent Logic

- w1 = w2 = 0 False(w1, w2)

1 w
′
2 = a → w2 w

′
1 = c → w1 w2 = a, w1 = c

2 c = 0 w
′′
1 = b → w

′
1 False(c), w1 = b → c

3 c
′
= w

′′
1 → c c = b → c

4 a = 0 c
′′
= w

′
2 → c

′
False(a), c = a → (b → c) = Cout

5 a
′
= c

′′ → a w1 = w2 = 0 a = a → (b → c) = Sum, False(w1, w2)

TABLE IV: Approximated algorithm 4
Steps Section 1 Section 2 Equivalent Logic

- w1 = w2 = 0 False(w1, w2)

1 w
′
1 = a → w1 w

′
2 = c → w2 w1 = a,w2 = b

2 c = 0 b
′
= w

′
1 → b False(c), b = a → b

3 w
′′
2 = b

′ → w
′
2 w2 = (a → b) → c

4 a = 0 c
′
= w

′′
2 → c False(a), c = (a → b) → c = Cout

5 a
′
= c

′ → a w1 = w2 = 0 a = (a → b) → c = Sum,False(w1, w2)
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TABLE V: Truth Table of the presented algorithms, with
erroneous places marked in red

Inputs Exact Algorithm 1 Algorithm 2 Algorithm 3 [16] Algorithm 4
a b c Sum Cout Sum Cout Sum Cout Sum Cout Sum Cout
0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 1 1 0 0 1 1 0 1 0 1 0
0 1 0 1 0 1 0 0 1 1 0 1 0
0 1 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 0 1 0 1 1 0
1 1 1 1 1 0 1 0 1 0 1 0 1

TABLE VI: VTEAM setup parameter

Parameter voff von αoff αon Roff Ron

Value 0.7V -10mV 3 3 1 MΩ 10 kΩ
kon koff woff won wC aoff aon

-0.5 nm/s 1cm/s 0 nm 3 nm 107 pm 3 nm 0 nm

our proposed circuits, we use measurement fitted models men-
tioned above. We note that IMPLY has been experimentally
validated in [3]. The specific parameters of the IMPLY logic
that we used in this simulation are listed in Table VII. The
parameters were chosen following the same setup already used
in [7], [16], [19], [29], [30]. This allows for a good comparison
to existing approximated and exact full adder.

Real memristors show non-ideal behaviors, one of the most
important of which is their resistance variation, where a
deviation of Ron and Roff has to be expected. To encompass
this in our experiments, we repeated our simulations where
the low and high resistive states of the memristors deviate. We
evaluated the resulting state for Sum and Cout at the end of
each algorithm for each possible input combination. The range
that the resulting states can assume is illustrated in Figure 3.
The results are correct and within the 33% threshold for up to
±30% deviation range. Even with a deviation range of 50%,
only three bit flips occur (fourth algorithm), underlining the
reliability of the proposed solutions. We presented this state
deviation as shaded areas in the following waveform figures.

B. Simulation results

To verify that each algorithm operates correctly with the
mentioned SoA parameters, we simulated them using LT-
SPICE. We took the semi-serial structure from [8] and tested
all possible input combinations that can occur for functionality.
The input states of the a, b, and c-memristor were set before
the algorithm was executed. To accommodate the presented
algorithms we included the step that resets all work memristors
in every algorithm. This step will be parallelized after the
first iteration as explained in more detail in Section III. The
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Fig. 3: Resulting states (Sum, Cout) deviation with varying
Ron and Roff . Orange lines mark the 33% thresholds.

TABLE VII: IMPLY logic parameter

Parameter VSET VRESET VCOND RG tpulse
Value 1 V -1 V 900 mV 40 kΩ 30 µs

0 30 60 90 120 150
Time in s

0.0

0.5

1.0 State Variables
Ain
Bin
Cin
w1

(a) “AinBinCin”=“100” with correct output
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0.0

0.5

1.0 State Variables
Ain
Bin
Cin
w1

(b) “AinBinCin”=“001” with approximated (erroneous by design) output.

Fig. 4: Two example simulations of algorithm 1, illustrating
the resistive deviation of ±20% as shaded areas.

function is considered correct if, after the conclusion of the
algorithm, both the Sum and Cout align with the solutions
specified in the corresponding truth table. As specified in
Table VII, we let each step of the algorithms last 30µs. In the
second, third, and fourth algorithms, the Cout is calculated
at the fourth step which corresponds to the time between
120µs − 150µs. Since the first algorithm’s logic function
allows for a better representation with IMPLY logic, the
calculation of the carry-out is done in the third step. This
corresponds to the period between 90µs − 120µs. For all
algorithms the Cout is stored in the c-memristor to allow
for a flawless continuation with iterations. The calculation of
Sum ≈ Cout is done in the period between 120µs − 150µs
for the first algorithm which is the fourth step. For the other
algorithms, this calculation is done in the fifth step in the
period of 150µs− 180µs. We used the convention of always
saving the Sum result in the a-memristor of the corresponding
bit for all presented algorithms. This saving scheme was
also applied at the third algorithm in [16]. We examined the
simulation of each algorithm for all eight input possibilities,
and the expected exact and erroneous outputs agreed with the
corresponding truth tables from Section III.

The output waveform of each memristor of algorithm 1
was plotted at cases “AinBinCin”=“100” and “001” to show
a correct calculation of Sum and Cout in the first case and a
calculation showing the intentional error produced by our cho-
sen approximation. We present the first case with the correct
outputs in Figure 4a and the case with the error in Figure 4b.
In Figure 5a and Figure 5b the waveforms of the individual
memristors of the second algorithm are displayed. We selected
an input combination of “AinBinCin”=“100” to represent a
correct computation process. In the second display, we chose
“010”, which is used to show the error of Cout and Sum in this
algorithm. With an input combination of “AinBinCin”=“100”
and “110”, we represent a typical calculation of the fourth
algorithm, where the representing memristive states are shown.
We show a correct calculation in Figure 6a and an incorrect
one in Figure 6b.
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Fig. 5: Two example simulations of algorithm 2, illustrating
the resistive deviation of ±20% as shaded areas.
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Fig. 6: Two example simulations of algorithm 4, illustrating
the resistive deviation of ±20% as shaded areas.

To ensure correct functionality of the full adder at circuit-
level with multiple bits, we tested all algorithms as 4-bit Ripple
Carry Adder (RCA). For this, we let the lowest two bits use
the proposed algorithm and the higher two bits use the exact
full adder algorithm for a semi-serial topology from [8]. We
simulated this procedure for all presented algorithms. For each
algorithm presented in this work, five random pairs of numbers
were added by our LT-SPICE simulation and the results agree
with our theoretical calculations.

C. Error analysis

1) Error metrics for 8-bit RCA: To compare the erroneous
behavior of the approximated full adders presented in this

work, we use the error metrics introduced in Section II. The
exact definition of MED, NMED, and MRED can be found in
Equation (9), Equation (10) and Equation (11).

MED =
1

22n
·
22n∑
i=1

|SUMExact − SUMAx|i (9)

NMED =
MED

2n+1 − 1
(10)

MRED =
1

22n
·
22n∑
i=1

|SUMExact − SUMAx|i
SUMExact,i

(11)

More detailed information about these metrics can be found
in [32] - [36]. We performed the following simulations in
MATLAB with Cin=‘0’. Therefore we created a behavioral-
level model of the RCA, which is variable for the respective
approximation degree and the number of maximum bits. For
the 8-bit case, we applied all 65536 input combinations to
RCAs with different approximation degrees. With this setup
the MED, NMED, and MRED were determined. We used the
approximated full adders for the LSBs of the RCA in Figure 7.
The cases with one to five approximated full adders were
recorded in Table VIII. We observed that the MED and thus
also the NMED roughly double per included approximated
full adder. It is noticeable that the second and third [16]
algorithms have the same results for the error metrics at 8-
bit. This result is expected since the truth tables of the two
algorithms are identical when the inputs, a and b, are swapped.
The second and third [16] algorithms give the best results for
MED, NMED, and MRED compared to the other two. The
fourth algorithm gives the worst results, which are up to 16%
worse than those of the other algorithms.

2) Error metrics for 16-bit and 32-bit RCA: In the analysis
of 16-bit and 32-bit RCA, we used one million randomly
generated numbers as input variables. We did this because for a
complete evaluation 22n input combinations would be needed,
which is computationally intensive. We again performed a
behavioral-level simulation in MATLAB and calculated MED,
NMED, and MRED. Therefore we used the RCA structure as
in Figure 7 and increased the number of approximated adders.
The approximated adders are again calculating the lower bits
and the approximation degrees indicate the number of approx-
imated full adders from the total number of full adders. The
16- and 32-bit simulations yield drastically lower NMED and
MRED for the lower approximation degrees in comparison to
the 8-bit simulation. When only approximated adders are used
the quality metrics of the different bit simulations are almost
equal. This indicates that an approximated full adder generates
a substantially higher quality output with a higher number of
bits. The second and third [16] algorithms would again give
the same results if all input possibilities were fully simulated.
Since only one million input combinations were validated, the
results are subject to stochastic deviations. Nevertheless, the
present figures should be a reliable representation, given that
the one million input combinations were chosen randomly. The
same is true for all error metrics of the 16 and 32-bit cases. It
is noticeable that the second and third [16] algorithms perform
better than the other two we presented. The first and fourth



7

TABLE VIII: Error metrics of the presented algorithms for the 8/16/32-bit RCA with varying approximation degrees

Ax
Full Adder

8-bit RCA 16-bit RCA 32-bit RCA
MED NMED MRED MED NMED MRED MED NMED MRED
Approximation degree 1/8 Approximation degree 2/16 Approximation degree 4/32

Algorithm 1 0.25 0.0005 0.0014 0.9056 0.0000069 0.000018 4.8151 < e-09 < e-08
Algorithm 2 0.5 0.0010 0.0028 1.1077 0.0000085 0.000024 4.5291 < e-09 < e-08
Algorithm 3* 0.5 0.0010 0.0028 1.1469 0.0000087 0.000026 4.3603 < e-09 < e-08
Algorithm 4 0.5 0.0010 0.0027 1.2503 0.0000095 0.000026 5.2720 < e-09 < e-08

Approximation degree 2/8 Approximation degree 4/16 Approximation degree 8/32
Algorithm 1 0.8750 0.0017 0.0049 4.6411 0.000035 0.000101 85.1028 < e-08 < e-07
Algorithm 2 1.1250 0.0022 0.0028 4.5378 0.000034 0.000096 71.7812 < e-08 < e-07
Algorithm 3* 1.1250 0.0022 0.0028 4.4258 0.000033 0.000098 71.8584 < e-08 < e-07
Algorithm 4 1.2500 0.0024 0.0069 5.2815 0.000040 0.000103 85.6307 < e-08 < e-07

Approximation degree 3/8 Approximation degree 6/16 Approximation degree 12/32
Algorithm 1 2.1562 0.0042 0.0122 20.0638 0.00015 0.00043 1374 < e-06 < e-06
Algorithm 2 2.2500 0.0044 0.0125 17.4923 0.00013 0.00037 1140 < e-06 < e-06
Algorithm 3* 2.2500 0.0044 0.0125 18.0559 0.00014 0.00038 1149 < e-06 < e-06
Algorithm 4 2.6250 0.0051 0.0146 21.4840 0.00016 0.00042 1363 < e-06 < e-06

Approximation degree 4/8 Approximation degree 8/16 Approximation degree 16/32
Algorithm 1 4.7266 0.0092 0.0273 84.0964 0.00064 0.0017 21865 0.0000025 0.0000072
Algorithm 2 4.4688 0.0087 0.0252 70.1606 0.00054 0.0014 17975 0.0000021 0.0000056
Algorithm 3* 4.4688 0.0087 0.0252 71.0475 0.00054 0.0015 18132 0.0000021 0.0000061
Algorithm 4 5.3125 0.0104 0.0299 85.3070 0.00065 0.0019 21786 0.0000025 0.0000071

Approximation degree 5/8 Approximation degree 10/16 Approximation degree 20/32
Algorithm 1 9.8887 0.0194 0.0589 330.6601 0.0025 0.0070 3.445e+05 0.000040 0.000113
Algorithm 2 8.9121 0.0174 0.0514 277.6172 0.0021 0.0061 2.875e+05 0.000033 0.000094
Algorithm 3* 8.9121 0.0174 0.0514 285.9959 0.0022 0.0062 2.943e+05 0.000034 0.000096
Algorithm 4 10.6562 0.0209 0.0616 341.0114 0.0026 0.0079 3.437e+05 0.000040 0.000111

Approximation degree 8/8 Approximation degree 16/16 Approximation degree 32/32
Algorithm 1 235.0758 0.4600 1.0019 66475 0.5072 0.9979 4.286e+09 0.4990 0.9999
Algorithm 2 203.3758 0.3980 0.9159 51123 0.3900 0.9152 3.436e+09 0.4000 0.9243
Algorithm 3* 203.3758 0.3980 0.9159 51626 0.3939 0.8665 3.527e+09 0.4105 0.8776
Algorithm 4 85.3320 0.1670 0.6281 22034 0.1681 0.6646 1.434e+09 0.1670 0.6405

* The error metrics for algorithm 3 were taken from [16]

algorithms produce similar results for the 16-bit and 32-bit
error metrics. We displayed the results in Table VIII.

V. CIRCUIT-LEVEL COMPARISON

We compared the algorithms presented in this paper and
algorithm 3 from [16] with the exact full adders from [7]–
[10], [19] and the approximated full adders from [29], [30] in
various circuit-level metrics.

A. Comparison with exact full adders

1) Energy consumption: We calculated the energy con-
sumption with the LT-SPICE energy consumption tool for
all algorithms. Simulation encompassed all feasible input
combinations for a full adder. The result is defined as the
mean value across all simulations. Since the first step of the
algorithms is performed only before the first iteration, it is
not considered in the results because it is negligible with
respect to several bits. The energy consumption of the first
algorithm is 28.8pJ because only one work memristor was
used. The energy consumption for the first step of the other
three algorithms is 55.5pJ. The formulas for all presented
adders in a RCA structure that embeds k approximated adders
and n total adders are shown in Equation (12) to Equation (15).

E1(n, k) = 1.4509k + 3.8435(n− k) + 0.834 (12)
E2(n, k) = 1.6694k + 3.8435(n− k) + 0.865 (13)
E3(n, k) = 1.6678k + 3.8435(n− k) + 0.865 (14)
E4(n, k) = 1.8697k + 3.8435(n− k) + 0.865 (15)

The energy consumption of the semi-serial topology [8]
with the IMPLY specific values from Table VII was recre-
ated in [16]. The resulting energy consumption per bit was
3.8435nJ with an additional 0.8053nJ for the extra steps. We
recreated the serial [7], [19] and semi-parallel [10] adders for
a fair comparison. The results can be seen in Table IX. The
improvements of the parameter P if the presented algorithms
to others were determined via Equation (16) and all results
were inserted into Table IX.

Improvement =
Pworse − Pbetter

Pworse
× 100% (16)

It can be seen that the first algorithm since it only requires
one work memristor, has a significantly lower energy con-
sumption than the other algorithms. The second and third [16]
algorithms have almost the same energy consumption, differ-
ing only by 1pJ. The fourth algorithm performs significantly
worse than the others due to the place of its approximation.
Compared to the exact full adder in the semi-serial struc-
ture [8], a significant improvement of 6%− 38% can be seen
for all algorithms.

2) Number of steps: The second important metric at circuit-
level is the number of steps (or clock cycles) that are necessary
per bit, since it represents the delay of the calculation. The
first algorithm we presented requires four steps per bit and
an additional step at the beginning of the calculation, which
ensures that the work memristors are properly initialized, i.e.,
set to logical ‘0’. Our other two algorithms and the approach
from [16] need five steps for one bit and again an extra step
to reset (initialize) the work memristors beforehand.
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The exact algorithm in the semi-serial structure from [8]
requires 10 steps per bit and two extra steps which are applied
only once per computation cycle. With a higher bit-width,
the extra step of the presented algorithms loses strongly in
importance. In comparison to an RCA with only exact adders,
5% − 35% fewer steps are required. Even compared to the
parallel structure [9] which also requires 5 steps per bit,
every algorithm presented in this paper and [16] is faster
since the parallel structure requires 16 extra steps. This is a
noticeable difference for RCA with few bits. A comparison of
the required steps can be found in Table IX. We used a RCA
with approximation degrees of 1/8 and 5/8, as can be seen
in Figure 7. As the same trend applies to the approximation
degrees in between, they were not shown in the table. The
exact full adders that we used for the higher bits are taken
from [8].

For n-bit adders, we calculated the number of steps for the
first algorithm using Equation (17), where the approximation
degree is determined by the factor k, which represents the
number of approximated full adders. The other three algo-
rithms follow Equation (18).

Steps(n, k) = 4k + 10(n− k) + 3 (17)
Steps(n, k) = 5k + 10(n− k) + 3 (18)

The improvement of all algorithms was related to the semi-
serial algorithm from [8] as the baseline, since it is the exact
version of the proposed algorithms, and evaluated at 8-bit. For
this the formula Equation (16) was used. The results of this
can be seen in Table IX.

3) Area usage: Another important comparison point at
circuit-level is the area usage, which represents the cost of the
circuit. This is assessed by the number of required memristors
and switches. The number of memristors required by the exact
full adder in a RCA is always considered here. The exact and
approximated full adder from [7], [19], [30] all require 2n+3
memristors and no additional switches. The exact algorithm
in the semi-serial topology from [8] and the algorithms we
and [16] presented use 2n + 6 memristors and 12 switches.
As both the serial and semi-serial topologies scale with 2n
they are approximately equal when many bits are used. As
the parallel structure from [9] uses 4n+ 1 memristors and n
switches for n-bit, the algorithms we presented are much more
efficient area-wise and require up to 50% less memristors.
The comparison of the different algorithms’ area usage can be
found in Table IX.

B. Comparison to approximate full adders

To give a comparison to the other approximated full adders
that utilize IMPLY we compared the results of the evalua-
tion for the algorithms from [29], [30] with the algorithms
presented in this work. We did not compare to the MRL
based approximated full adder from [42] and [43] and other
approximated adders because the disparity to IMPLY based
structures is too significant to make a meaningful comparison.
The overview of all relevant comparison points at circuit-
level is presented in Table X, where we related our algorithms
and the algorithm from [16] to the SIAFA 1, 3. We did not

directly compare to [16] since the results are very similar to
the second algorithm (due to their symmetry as explained in
Section III-D) and as we wanted to compare the methodolog-
ical approach as a whole with other adders. All comparisons
were made for all algorithms with an approximation degree of
5/8.

1) Energy consumption: In comparison to [29], [30], the
adders presented in this work are more energy efficient than
any SIAFA or SAFAN adder. When compared to SIAFA 1, 3,
the adders require 5%− 17% less energy, which increases to
up to 29% when we compare our first algorithm to SIAFA 4.
This is due to the better energy efficiency of the semi-serial
topology.

2) Number of steps: With the ability to perform some
steps in parallel as explained in Section III, our algorithms
require 43% − 50% fewer steps for an 8-bit calculation,
which is a significant improvement, considering that both are
approximated algorithms.

3) Area usage: All approaches have a similar area usage
since they are in the order of 2n memristors for n-bit adders.
The adder in the semi-serial topology requires 3 more mem-
ristors and 12 additional CMOS switches.

4) Error metrics: Since the approximated adders from [30]
and the adders presented by us and [16] share similar truth
tables we expected resembling error metrics. Our fourth algo-
rithm and SIAFA4 should produce the same results for MED,
NMED, and MRED since they share the same truth table.
This is true for the 8-bit simulation but not for the 16 and
32-bit cases. This deviation happens because we simulated
these cases with only one million random input combinations.
We explained this in more detail in Section IV. In the 8-
bit case, our second and the third [16] algorithms differ
less than 1% in NMED from SIAFA 1 and 2 and exhibit a
noticeably improved MRED of 2% percent. The first algorithm
we presented performed worse than the algorithms above in
both NMED and MRED but is more accurate than SIAFA 2 by
27% and 28% in NMED and MRED, which overall performs
worst in terms of accuracy. In the simulations with more
bits the relation of the algorithms in terms of precision stays
about even. The most significant advantage of the algorithms
presented in this work is that they excel in speed and energy
efficiency while the area usage is only slightly higher than
the algorithms from [29], [30] for few bits and negligible for
higher bits since both scale equally.

VI. APPLICATION IN IMAGE PROCESSING

Image processing is a widely employed technology with di-
verse applications across various domains, including medicine,
industry, automation, robotics, and media. [47]. Given the ele-
vated computational complexity inherent in these applications,
adopting an approximate approach holds significant potential
for substantial gains in both energy efficiency and com-
putational step reduction. Given the inherent error-resistant
nature of these applications, they represent ideal candidates
for identifying efficient trade-offs.

We simulated the presented approximated adders in a RCA
structure similar to Figure 7 using MATLAB for different
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TABLE IX: Circuit-Level comparison to exact SoA full adder

Full adder
Energy

consumption (nJ)
Improvement in

comparison to [8] No. of steps Improvement in
comparison to [8]

No. of
memristors

No. of
switches

n, k n=8-bit n=8-bit n, k n=8-bit n=8-bit n, k n=8-bit n, k
Serial Exact 1 [7]* 4.8250n 38.6000 -18% 22n 176 -115% 2n+3 19 0
Serial Exact 2 [19]* 4.0772n 32.6176 -3% 23n 184 -124% 2n+3 19 0
Parallel Exact [19] - - - 5n+18 58 29% 4n+1 33 n
Semi-Parallel [10]* 4.8339n 38.6712 -18% 17n 136 -40% 2n+3 19 3
Semi-Serial Exact [8]* 3.8435n +0.8053 31.5533 - 10n+2 82 - 2n+6 22 12
Algorithm 1 (1/8 Ax FA) 1.4509k + 3.8435(n-k) + 0.834 29.1894 8% 4k+10(n-k)+3 77 6% 2n+6 22 12
Algorithm 1 (5/8 Ax FA) 1.4509k + 3.8435(n-k) + 0.834 19.6190 38% 4k+10(n-k)+3 53 35% 2n+6 22 12
Algorithm 2 (1/8 Ax FA) 1.6694k + 3.8435(n-k) + 0.865 29.4389 7% 5k+10(n-k)+3 78 5% 2n+6 22 12
Algorithm 2 (5/8 Ax FA) 1.6694k + 3.8435(n-k) + 0.865 20.7425 34% 5k+10(n-k)+3 58 29% 2n+6 22 12
Algorithm 3 [16] (1/8 Ax FA) 1.6678k + 3.8435(n-k) + 0.865 29.4373 7% 5k+10(n-k)+3 78 5% 2n+6 22 12
Algorithm 3 [16] (5/8 Ax FA) 1.6678k + 3.8435(n-k) + 0.865 20.7345 34% 5k+10(n-k)+3 58 29% 2n+6 22 12
Algorithm 4 (1/8 Ax FA) 1.8697k + 3.8435(n-k) + 0.865 29.6392 6% 5k+10(n-k)+3 78 5% 2n+6 22 12
Algorithm 4 (5/8 Ax FA) 1.8697k + 3.8435(n-k) + 0.865 21.7440 31% 5k+10(n-k)+3 58 29% 2n+6 22 12

* We have simulated these adders with the specified parameters from Section IV-A to allow for a fair comparison.

TABLE X: Circuit-Level comparison to approximate full adder

Ax full adder
Energy

consumption (nJ)
Improvement in

comparison to SIAFA1,3 No. of steps Improvement in
comparison to SIAFA1,3

No. of
memristors

No. of
switches

n, k n=8-bit, k=5 n=8-bit, k=5 n, k n=8-bit, k=5 n=8-bit, k=5 n, k n=8-bit, k=5 n, k
SIAFA 1,3 [30]* 1.7090k + 4.8250(n-k) 23.0200 - 8k+22(n-k) 106 - 2n+3 19 0
SIAFA 2 [30]* 2.5131k + 4.8250(n-k) 27.0405 -15% 10k+22(n-k) 116 -9% 2n+3 19 0
SIAFA 4 [30]* 1.6628k + 4.8250(n-k) 23.0080 0% 8k+22(n-k) 106 0% 2n+3 19 0
SAFAN [29]* 1.7066k + 4.8250(n-k) 22.7890 1% 7k+22(n-k) 101 5% 2n+3 19 0
Algorithm 1 1.4509k + 3.8435(n-k) + 0.834 19.1690 17% 4k+10(n-k)+3 53 50% 2n+6 22 12
Algorithm 2 1.6694k + 3.8435(n-k) + 0.865 20.7425 10% 5k+10(n-k)+3 58 45% 2n+6 22 12
Algorithm 3 [16] 1.6678k + 3.8435(n-k) + 0.865 20.7345 10% 5k+10(n-k)+3 58 45% 2n+6 22 12
Algorithm 4 1.8697k + 3.8435(n-k) + 0.865 21.7440 6% 5k+10(n-k)+3 58 45% 2n+6 22 12

* We have simulated the circuits from [29], [30] similar to ours and obtained numbers that do not match theirs and we are not sure why.
So for a fair comparison, we are reporting our own simulated results.
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Fig. 7: Schematic of the RCA structure with n-bit

approximation degrees. We assessed the degradation in ac-
curacy on application-level using quality metrics such as
PSNR, SSIM, and MSSIM. We evaluated and analyzed the
RCA in several specific applications such as image addition,
image subtraction, and gray-scale filtering, and determined
their quality metrics respectively. This analysis aimed to not
only capture the error metrics outlined in Section IV but also
to delve into the application-level behavior of each algorithm
and find the boundaries of applicability for the proposed
algorithms. Every algorithm presented by us was able to reach
the 30dB threshold in PSNR for every application with up to
five out of eight adders being approximated.

A. Image addition

Image addition stands as a fundamental application within
image processing, commonly employed for tasks such as
masking and enhancement through averaging [34]. Image
addition entails the summation of corresponding pixels from
two images of identical dimensions, followed by halving the
resultant values. As an example, we simulated two well-known
256×256 8-bit example images with all full adders presented
in this work. We chose exactly these images so that we would
have a direct comparison to the approximated adders from
[16], [29], [30]. We varied the approximation degree from one

(a) (b) (c) (d)

(e) (f) (g)

Fig. 8: Results of the RCA with of approximation degree
of 5/8: (a) rice, (b) cameraman, (c) Exact Image Addition,
(d) Algorithm 1, (e) Algorithm 2, (f) Algorithm 3 [16], (g)
Algorithm 4

up to five approximated adders out of eight total adders. We
found that the PSNR value surpasses the required threshold
for all algorithms with these approximation degrees. For the
scenario where the quantity of approximated adders equals or
exceeds six, a PSNR value below 30dB is observed across
all algorithms. This falls below the widely accepted threshold,
indicating a discernible distortion in image quality. The sim-
ulated images for all of our algorithms and algorithm 3 [16]
with an approximation degree of 5/8 are shown in Figure 8
and the calculated quality metrics for the image addition are
presented in Table XI. With five approximated full-adders, the
second and third [16] algorithm together with SIAFA 1 exhibit
the best PSNR.
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TABLE XI: Quality metrics of image processing

Algorithm
Image

addition
Image

subtraction
Gray-scale

filter
Average

performance
PSNR
(dB) MSSIM PSNR

(dB) MSSIM PSNR
(dB) MSSIM PSNR

(dB) MSSIM

approximation degree: 1/8 Ax. full adder
Algorithm 1 51.12 0.9976 55.81 0.9966 57.44 0.9993 54.79 0.9978
Algorithm 2 51.12 0.9976 58.76 0.9974 53.21 0.9985 54.36 0.9978
Algorithm 3* 51.12 0.9976 58.76 0.9974 52.90 0.9984 54.26 0.9978
Algorithm 4 51.12 0.9976 58.76 0.9974 54.16 0.9984 54.68 0.9978

approximation degree: 2/8 Ax. full adder
Algorithm 1 48.46 0.9957 50.02 0.9869 51.37 0.9972 49.95 0.9933
Algorithm 2 47.16 0.9940 51.83 0.9911 49.44 0.9968 49.48 0.9940
Algorithm 3* 47.17 0.9941 51.80 0.9909 49.93 0.9970 49.63 0.9940
Algorithm 4 48.17 0.9952 52.16 0.9909 49.06 0.9955 49.80 0.9939

approximation degree: 3/8 Ax. full adder
Algorithm 1 43.79 0.9884 45.56 0.9703 44.76 0.9878 44.70 0.9822
Algorithm 2 43.33 0.9858 45.46 0.9559 44.93 0.9903 44.57 0.9773
Algorithm 3* 43.31 0.9860 45.26 0.9520 45.49 0.9910 44.69 0.9763
Algorithm 4 43.41 0.9865 46.71 0.9765 43.06 0.9841 44.39 0.9824

approximation degree: 4/8 Ax. full adder
Algorithm 1 38.09 0.9619 40.38 0.9409 37.97 0.9474 38.81 0.9501
Algorithm 2 38.20 0.9583 38.86 0.8210 39.87 0.9677 38.98 0.9157
Algorithm 3* 38.31 0.9603 39.45 0.8602 40.23 0.9693 39.33 0.9299
Algorithm 4 37.68 0.9576 40.92 0.9463 36.96 0.9451 38.52 0.9497

approximation degree: 5/8 Ax. full adder
Algorithm 1 32.06 0.8966 34.93 0.9104 30.39 0.8163 32.46 0.8744
Algorithm 2 32.98 0.8901 33.57 0.6896 34.29 0.8989 33.57 0.8262
Algorithm 3* 32.93 0.8934 33.74 0.7183 34.05 0.9003 33.57 0.8373
Algorithm 4 32.06 0.8920 35.13 0.9130 31.51 0.8525 32.90 0.8858

* The quality metrics for algorithm 3 were taken from [16]

B. Image subtraction

Image subtraction is often used for motion detection. But it
is also used in robotics, medicine, or surveillance systems [48],
[49]. The image subtraction procedure is very similar to the
image addition. In this case, we are representing the pixels of
two images of the same size as 2s complement. We then take
the inversion for each pixel of the subtracted image. After this
every corresponding pixel, of the first and the inverted second
image, is added together in our RCA structure. As an example,
we took two 512×512 8-bit images from the image database
of [50] and simulated the subtraction in MATLAB. We again
choose these images to have an apple-to-apple comparison
with the adders from [16], [29], [30]. The results of the
different algorithms with an approximation degree of 5/8 can
be seen in Figure 9. The simulated quality metrics for image
subtraction can be found in Table XI. Again the PSNR value of
all algorithms is over 30dB for an approximation degree of up
to 5/8. With six or more adders this threshold again could not
be reached and the noise effects would render motion detection
applications unusable. For this application Algorithm 4 and
SIAFA 4 exhibit the best PSNR and MSSIM, closely followed
by Algorithm 1.

C. Gray-scale filter

The gray-scale filter converts a colored RGB image into a
gray-scale version. In an image, each pixel comprises three
colors: red, green, and blue, along with their corresponding
intensities. To produce a gray-scale image, the algorithm sums
up the individual color values for each pixel and then divides
the resulting sum by three. With this, the resulting gray-
scale intensity is the average of all three color values. We
first added the red and the green color-space together and
after that added the red to the prior result. It is noteworthy
that in alternative gray-scale conversion methods, the color
components are not uniformly weighted, leading to disparate
outcomes in the generated gray-scale images. We performed
the mentioned process for all pixels of the 684×912 8-bit

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9: Results of the RCA with an approximation degree
of 5/8: (a) First Image [50], (b) Second Image [50], (c)
Exact Image Subtraction, (d) Algorithm 1, (e) Algorithm 2,
(f) Algorithm 3 [16], (g) Algorithm 4

(a) (b) (c)

(d) (e) (f)

Fig. 10: Results of the RCA with an approximation degree of
5/8: (a) toysnoflash, (b) Exact Gray-scale Filter, (c) Algorithm
1, (d) Algorithm 2, (e) Algorithm 3 [16], (f) Algorithm 4

example image, which was again chosen so that a comparison
to the SoA adders could be drawn fairly. We simulated every
proposed algorithm with different approximation degrees up
to five out of eight approximated adders. An overview of
the quality metrics we assessed is located in Table XI. Each
algorithm exhibits more than 30dB PSNR at approximation
degrees of 1-5 and is visually almost indistinguishable from
the exact calculation. The simulation result of all algorithms
with an approximation degree of 5/8 can be found in Figure 10.
The results of six or more approximated adders did not meet
the required PSNR threshold of 30dB. This time SIAFA 1, 3
exhibit the best PSNR, followed by algorithms 2, 3. All four
approaches share roughly the same MSSIM.

D. Application-level comparison

1) With Exact Semi-Serial Adder [8]: To effectively com-
pare our algorithm with the exact approach [8] in image
processing we looked at the difference per pixel for each
application. We compared the RCA structures with five out of
eight approximated adders with the exact 8-bit RCA, which is
the highest sufficient approximation degree. In image addition
and subtraction only one addition is required per pixel, while
in the gray-scale filter, two additions are required. If we sum
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TABLE XII: Application level comparison to exact semi-serial adder [8], and approximate serial adders [29], [30]

Algorithm
Image addition

(256x256 8-bit Image)
Image subtraction

(512x512 8-bit Image)
Grayscale filter

(684x912 8-bit Image)
Energy per
pixel (nJ)

Total
Energy (mJ)

Steps per
pixel

Total Steps
(million)

Energy per
pixel (nJ)

Total
Energy (mJ)

Steps per
pixel

Total Steps
(million)

Energy per
pixel (nJ)

Total
Energy (mJ)

Steps per
pixel

Total Steps
(million)

Semi-Serial Exact [8] 31.558 2.068 82 5.374 31.558 8.273 82 21.496 63.116 39.372 164 102.305
Algorithm 1 (5/8 Ax FA) 19.619 1.286 53 3.473 19.619 5.143 53 13.893 39.238 24.477 106 66.124
Algorithm 2 (5/8 Ax FA) 20.743 1.359 58 3.801 20.743 5.438 58 15.204 41.486 25.879 116 72.362
Algorithm 3 [16] (5/8 Ax FA) 20.735 1.305 58 3.801 20.735 5.436 58 15.204 41.470 25.869 116 72.362
Algorithm 4 (5/8 Ax FA) 21.744 1.425 58 3.801 21.744 5.700 58 15.204 43.488 27.128 116 72.362
SIAFA 1,3 [30] (5/8 Ax FA) 23.020 1.509 106 6.947 23.020 6.035 106 27.787 46.040 27.209 212 125.287
SIAFA 2 [30] (5/8 Ax FA) 27.041 1.772 116 7.602 27.041 7.089 116 30.409 54.082 31.961 232 137.106
SIAFA 4 [30] (5/8 Ax FA) 23.008 1.508 106 6.947 23.008 6.031 106 27.787 46.016 27.194 212 125.287
SAFAN [29] (5/8 Ax FA) 22.789 1.493 101 6.619 22.789 5.974 101 26.477 45.578 26.936 202 119.377

up the required energy and steps per pixel, we get the total
energy consumption and number of steps per image processing
application. With the algorithms 1, 2, 4 up to 38%, 34%, 31%
less energy and 35%, 29%, 29% fewer steps are required for
the image processing applications. Algorithm 3 from [16] has
almost identical (< 0.1% difference) results as algorithm 2,
which again can be explained by their symmetry to each other.
For these gains in speed and energy efficiency, the accuracy
of the calculations is reduced but still in an acceptable range
as shown in Table XI. As the gray-scale filter requires two
additions the improvement is correspondingly higher than with
the other image processing applications. With the presented
684×912 8-bit image we were able to reduce the number
of steps (clock cycles) by about 36 million and the required
energy by 14.9mJ in comparison to the exact calculations. We
achieve higher gains than algorithm 3 from [16] by 6 million
steps and 1.4mJ, a significant improvement over an already
efficient adder.

2) With Approximated Adder from [29], [30]: Since the
topology from [29], [30] differs from the semi-serial structure
used here and in [16], stark differences in energy consumption
and number of steps are expected. In all image processing ap-
plications, the adders presented in this work require 5%−29%
less energy and 43% − 50% fewer steps. The results for our
experiments with 5/8 approximated adders can be seen in
Table XII, where our approach saves up to 7.5mJ and 71
million steps compared to SoA approximations. We plotted
the energ-speed (number of steps) of our approaches and the
SoA algorithms for the grayscale filter example with different
approximation degrees in Figure 11. We can see the efficiency
of our algorithms, while reaching equal image quality in
most cases and comparable quality in others. The following
comparisons were made with an approximation degree of 5/8
since it is the highest approximation degree with acceptable
image quality. In image addition, the second and third [16]
algorithm exhibit almost equal PSNR and MSSIM as the best
algorithm from [30]. The other two algorithms from this work
have about 0.9dB less PSNR but display similar MSSIM. The
SAFAN adder from [29] yields the worst results with a PSNR
of only 30.59dB. In image subtraction, all of the presented
algorithms have better PSNR in comparison to SIAFA 1, 2, 3
by at least 1dB. The fourth algorithm, SIAFA4, and SAFAN
perform the best with over 35dB PSNR. SIAFA 2, 4, and our
first and fourth algorithms exhibit the best MSSIM with over
0.9 in this application. At the gray-scale filter, SIAFA 1, 3 have
better PSNR than our presented algorithms and algorithm 3
[16]. The second algorithm still shows very good results with
a PSNR over 34dB. On average the second and third [16]

Fig. 11: Application-level comparison with 1/8 to 5/8 approx-
imated adders for the grayscale filter example.

algorithms together with SIAFA 1, 3 perform best in terms of
PSNR, followed by our first and fourth algorithms as well as
SIAFA 4. SIAFA 2, 4 and algorithm 1, 4 from this work show
the best MSSIM on average.

VII. CONCLUSION

In this work, we presented three novel approximated full
adders based on memristive IMPLY logic in the semi-serial
topology for in-memory image processing. The primary em-
phasis was on reducing the necessary steps per computation
while showcasing a commendable trade-off between area
consumption, speed, energy consumption, and accuracy. By
implementing the proposed methodology, we observed a re-
duction in energy consumption of 6%−38% when compared to
the exact full adder in the semi-serial topology and 5%−29%
compared to other approximated approaches. We were able to
reduce the required number of steps by 5%− 35% compared
to the exact adder and 43% − 50% to other approximated
adders at the same approximation degree. We demonstrated
the fastest IMPLY-based adder algorithm, which requires a
mere 53 steps for an 8-bit computation and is even faster than
the algorithm in the parallel structure (requiring 56 steps). We
integrated the approximated full adders as the lower bits in
a RCA, simulated their behavior, verified their functionality,
and assessed the error metrics. We applied the presented
algorithms in various image processing applications such as
image addition, image subtraction, and gray-scale filtering. We
evaluated the performance of the proposed image processing
systems using varying approximation degrees and determined
the quality of the resulting image with quality metrics. Our
results indicate that for up to five bits of approximated adders
in an 8-bit RCA, the image quality is deemed sufficient since
the PSNR was over 30dB. We can also see that different
approximations excel in different applications, indicating that
error placement is crucial and highly application-specific. We
showed how this approach leads to drastic improvements
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in speed and energy consumption at the application level.
An in-depth stochastical analysis of the proposed algorithms,
their application for 16-bit and 32-bit systems, and a more
generalized theory about the effects of approximations on
image processing are domains for future research.
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