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Accelerated Image Processing Through
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Abstract— As the demand for computational power increases
drastically, traditional solutions to address those needs struggle
to keep up. Consequently, there has been a proliferation of
alternative computing paradigms aimed at tackling this disparity.
Approximate Computing (AxC) has emerged as a modern way
of improving speed, area efficiency, and energy consumption in
error-resilient applications such as image processing or machine
learning. The trade-off for these enhancements is the loss in
accuracy. From a technology point of view, memristors have
garnered significant attention due to their low power consump-
tion and inherent non-volatility that makes them suitable for
In-Memory Computation (IMC). Another computing paradigm
that has risen to tackle the aforementioned disparity between
the demand growth and performance improvement. In this
work, we leverage a memristive stateful in-memory logic, namely
Material Implication (IMPLY). We investigate advanced adder
topologies within the context of AxC, aiming to combine the
strengths of both of these novel computing paradigms. We present
two approximated algorithms for each IMPLY based adder
topology. When embedded in an Ripple Carry Adder (RCA),
they reduce the number of steps by 6% − 54% and the energy
consumption by 7%−54% compared to the corresponding exact
full adders. We compare our work to State-of-the-Art (SoA)
approximations at circuit-level, which improves the speed and
energy efficiency by up to 72% and 34%, while lowering the
Normalized Median Error Distance (NMED) by up to 81%.
We evaluate our adders in four common image processing
applications, for which we introduce two new test datasets as
well. When applied to image processing, our proposed adders
can reduce the number of steps by up to 60% and the energy
consumption by up to 57%, while also improving the quality
metrics over the SoA in most cases.

Index Terms— Approximate, memristor, in-memory comput-
ing, IMPLY, energy efficiency, image processing.

I. INTRODUCTION

ADDITION operations serve as foundational components
in digital arithmetic, as a significant portion of basic
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instructions depends on both addition and multiplication [1].
To meet the rapidly escalating demand for processing power,
improving adders is a pivotal factor in enhancing over-
all computing performance. With the slowdown of Moore’s
Law [2] and transistors reaching their physical limits [3], and
the exponentially increasing larger footprint of computing [4],
attention is increasingly focused on exploring new computing
paradigms and emerging technologies.

AxC emerges rapidly as a promising solution to enhance
computing performance and address the power-wall prob-
lem [2], [5]. By approximating computational processes,
significant enhancements in speed, area, and energy con-
sumption can be achieved. The accuracy is reduced as a
trade-off for these improvements [1], [2], [5]. Due to the error-
resilient nature of image and video processing applications,
approximating certain aspects can significantly improve com-
puting time and power consumption [2], [6], [7]. Additionally,
relevant fields such as machine learning, pattern recognition,
communication, data mining, and robotics, which are closely
intertwined with imaging applications, would also benefit [2],
[8], [9], [10], [11].

Several approximated adders based on Complementary
Metal-Oxide Semiconductor (CMOS) technology have been
introduced [1], [12], [13], [14]. They all share the underlying
problem of the Von-Neumann bottleneck that typically occurs
between logic and memory. IMC represents an approach for
performing computations directly within memory, offering a
potential solution to this issue. The memristor [15] stands
out as a promising emerging component. With its inherent
capability to store data non-volatile through its resistive state
and perform logical operations, the memristor is the ideal can-
didate for IMC memory cells [16], [17]. Additional attributes,
such as low power consumption and compact form factor,
further position memristors as promising candidates for future
computing advancements [18], [19], [20], [21]. In the context
of IMC, the stateful logic IMPLY emerges as one of the most
popular choices. It is compatible with the crossbar array, and
it turned out to be the most reliable stateful logic in [22].
Deeming it an optimal candidate for such applications [16],
[23]. The structures currently available for performing IMPLY
operations can be categorized into serial, parallel, and hybrid
topologies [19], [24], [25], [26]. Each topological implemen-
tation offers distinct advantages in one or more metrics such
as speed or area usage, rendering them competitive.

In this work, we present two approximated IMPLY-based
adders for the serial, parallel, semi-serial, and semi-parallel
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topologies. Our proposed methods significantly enhance speed
and energy efficiency across all adder structures compared to
the exact algorithms. They also outperform SoA approximated
adders in both metrics. The key contributions of this paper
are:

• Two new approximation methods for designing IMPLY-
based adders for each of the four IMPLY-based topolo-
gies, leading to eight new approximated adders, thereby,
improving the speed, energy consumption, and error
metrics compared to SoA exact and approximated adder;

• Introducing approximated adders to the parallel and semi-
parallel topology for the first time;

• Proposing a new evaluation dataset for image addition
and grayscale filtering;

This work is divided into eight sections. In Section II,
we will review the literature and cover relevant papers in
related areas. The design methodology and the implementa-
tion in the different topologies are described in Section III.
In Section IV we simulated and verified the adders at
circuit-level. The evaluation of standard error metrics can
be found in Section V. We compared to other exact and
approximated adders in Section VI. The results of three image-
processing applications and their quality evaluation can be
seen in Section VII, where we also discuss the potential gains.
In Section VIII we conclude the paper.

II. RELATED WORK

A. Memristors and IMPLY

The memristor is a novel two-terminal component that
was discovered by Chua [15] and physically realized by
Strukov et al. [18]. It is a non-volatile memory that can store
data with its resistive states. With other advantages such as
low power consumption, fast write time, and small dimensions
the memristor stands out as an optimal device for a memory
cell [16], [17], [19], [20], [21]. The memristor’s minimum
(Ron) and maximum (Rof f ) resistance values are determined
by the applied voltage and current direction. They form a
hysteresis curve, where Ron conventionally corresponds to
logical ‘1’ and Rof f to logical ‘0’ [27], [28], [29].

IMPLY is a stateful logic that is compatible with inherent
properties of memristors and has the advantage that no reads
and writes are required to perform logical operations [20].
It was introduced by Hewlett Packard (HP), it is compatible
with the crossbar array, and it has established itself as a
promising candidate for IMC [16], [26], [30]. There exist
other stateful logic forms for memristors such as FELIX [31],
SIXOR [20], MAGIC [32], and TSML [33]. We selected
IMPLY over other options, as it is the most reliable in our
memristive technology [22] and the only stateful logic with
existing approximations [6], [34], [35]. In Figure 1(a) the
basic structure for IMPLY operations is shown. It consists
of two memristors to which the different voltages VC O N D
and VSET can be applied, and a resistor that is connected to
them. For IMPLY operations to be feasible, the resistor must
meet the condition Ron ≪ RG ≪ Rof f . The applied voltages
must also satisfy VC O N D < VC < VSET , where VC is the
threshold voltage of the memristor [16], [19], [26], [30], [36].

Fig. 1. IMPLY operation [16]: (a) Gate structure, (b) Truth table.

An IMPLY operation is typically denoted by a → b, where
the inputs correspond the the resistive state of the memristors.
This operation is controlled by a short pulse of VC O N D and
VSET , where the state of the b-memristor is overwritten by the
result [16], [30]. The truth table of this operation is presented
in Figure 1(b).

B. IMPLY-Based Full Adders

IMPLY based adders can be divided into three categories:
serial, parallel, and hybrid topologies. Hybrid forms, such as
semi-serial or semi-parallel, aim to achieve a better balance
between speed and area usage. In the following, we briefly
review the key properties of each topology and refer the
readers to the cited references for further details.

1) Serial: The serial topology consists of memristors in the
same row or column of a crossbar array and can only perform
either an IMPLY or a FALSE operation per cycle [16], [17],
[27]. This structure is shown in Figure 2(a) and requires 22n
steps and 2n + 3 memristors for a n-bit calculation [27].

2) Parallel: The parallel topology consists of multiple rows
that are not connected, which enables the parallelization of
operations [19], [26]. Via switches each row can be connected
to a shared c-memristor, which serves for computing and
propagating the carry-out. Not all steps can be parallelized due
to the dependency on the previous bit. This structure is shown
in Figure 2(b) and requires 5n + 16 steps, 4n + 1 memristors,
and n external switches for an n-bit addition.

3) Semi-Serial: The semi-serial topology is a hybrid struc-
ture that consists of two parallel rows with inputs. Both can be
connected to the work and carry memristors via switches [25],
[28]. This structure, shown in Figure 2(c), requires 10n +

2 steps, 2n + 6 memristors, and 12 additional switches for
a n-bit addition.

4) Semi-Parallel: The semi-parallel topology consists of
two parallel rows, with one input and a work memristor each
(c-memristor at the second row) [24]. The two rows can
be connected via a switch to perform operations “between
sections”. This structure can be seen in Figure 2(d) and
requires 17n steps, 2n + 3 memristors, and 3 switches for
n-bit.

Table I provides an overview of the different topologies,
in which memristor usage and computing time are listed.

C. Approximate Computing (AxC)

The core methodology of AxC entails the redefinition of
logic by eliminating or changing gates or individual tran-
sistors and formulating a new truth table. This leads to an
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Fig. 2. IMPLY-based topologies: (a) Serial [27], (b) Parallel [19],
(c) Semi-Serial [25], (d) Semi-Parallel [24].

TABLE I
COMPARISON OF IMPLY STRUCTURES FOR AN EXACT N-BIT ADDITION

improvement in performance metrics such as energy con-
sumption, area usage, and processing time. The trade-off
for this is the accuracy of the calculations [2], [10], [37],
[38]. To evaluate the occurring inaccuracy we employ error
metrics, namely Error Distance (ED), Error Rate (ER), Mean
Error Distance (MED), NMED and Median Relative Error
Distance (MRED) [6], [10], [14], [35], [38]. Due to the
nature of AxC, only error-resilient applications such as image
processing, machine learning, pattern recognition, and robotics
are viable [2], [7], [8], [10], [11]. A common quality metric in
image processing is the Peak Signal-to-Noise Ratio (PSNR),
which represents the noise level. In the SoA a PSNR of
over 30dB is considered acceptable [37], [39]. Quality metrics
such as Structural Similarity Index Measure (SSIM) and Mean
Structural Similarity Index Measure (MSSIM), which repre-
sent structural similarity, are employed for assessing image
quality. This is done to consider the relevance of structural
context for the human visual system [40], [41].

There exist many different approximations in CMOS [5],
[12], [14], [42] and other technologies [43], [44]. Recently,
there has been a surge in popularity of approximated full
adders based on memristors. This trend was initiated by
the Memristor Ratioed Logic (MRL)-based approximations
introduced in [45] and [46]. IMPLY based approximate full
adders in the serial topology have been proposed in [29] and
[35]. They simplified the truth table via specific input vectors
to reduce the steps and energy consumption by up to 42%
and 68%. In [34] approximated adders based on NAND gates
are proposed and optimized in the serial structure. In [6] we
proposed an approximated adder in the semi-serial topology
that reduced the steps and energy consumption by up to 29%
and 34%. Here we propose two algorithms for the serial,
parallel, semi-serial, and semi-parallel topology. They are

significantly faster and more energy efficient than the SoA,
while also increasing the image quality in most of the cases.

III. PROPOSED ALGORITHMS

A. Methodology

A major approach in designing approximated circuits
is redefining approximate logic functions based on exact
logic [2]. This is done by omitting or changing components
from the exact circuit or using a modified truth table [2], [38].
As we are working on IMPLY-based topologies, we are only
able to use IMPLY and FALSE operations. Since these two
functions collectively form the complete logic set {→, ⊥}, it is
feasible to emulate Boolean logic using only them [27], [47].
An inversion can be emulated with just one IMPLY operation,
represented as a = a → 0 . This requires a prerequisite of
another memristor that has been reset beforehand. OR and
NAND are the only functions that can be emulated with two
IMPLY operations, making them particularly suitable targets
for approximations. The state-of-the-art (SOA) IMPLY-based
approximations were developed to reduce the number of steps
while keeping the ER for Sum and Cout to a minimum [6],
[34], [35].

In this study, our aim is not to minimize the ER but rather
to concentrate on devising the fastest adder that maintains
acceptable quality. Inspired by the approach from [12] we
designed and implemented two IMPLY-based algorithms for
different adder topologies. We are thereby utilizing the effi-
cient OR emulation that only requires two IMPLY operations.
We devised two algorithmic approaches for the serial, semi-
serial, parallel, and semi-parallel structure. Throughout the rest
of this work, we will denote the algorithms based on their
topology combined with IMPLY-based NoCarry (NC) for the
base, or NoCarry+ for the advanced implementation. This
name was chosen since the carry-out is not propagated (e.g.
SINC and SINC+ for the Serial IMPLY-based NoCarry(+)
algorithm). The base version only consists of OR combinations
between the a and b inputs to set the Sum for each bit.
The carry-in is completely disregarded and no carry-out is
produced or propagated. So the Cout is set to logical ‘0’. The
logical equations for the NoCarry version are

C NC
out,i = 0 (1)

Sum NC
i = ai + bi = ai → bi . (2)

In our second implementation, we advanced the basic
version by changing the last approximated bit. We calculate
the Sum and Cout with the same equations up until the last
approximated full adder. At this last bit, we still disregard the
carry-in, but produce a carry-out to propagate. To achieve a
lower chance of propagating the false Cout to the exact bits,
this time we set the Cout to be a AND b. The logical equations
for this extended implementation are

C NC+

out,i =

{
0 i < k

ai bi = ai → bi i = k
(3)

Sum NC+

i = ai + bi = ai → bi , (4)

with k approximated and n − k exact adders embedded in an
RCA. For each algorithm proposed, we ensured that the Sum

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TABLE II
TRUTH TABLE OF NOCARRY AND NOCARRY+

TABLE III
REDUCED TRUTH TABLE OF NOCARRY AND NOCARRY+

is stored in the b-memristor, thus guaranteeing compatibility
with exact adders. The truth table of both the standard and
advanced implementations can be seen in Table II, with the
erroneous places marked in red. The ER of Sum is 4

8 for both
implementations, while the ER of Cout is 4

8 for the NoCarry
and only 2

8 for the advanced NoCarry+ adder. Since we want
to embed our full adder as the lower bits in an RCA, the carry-
in is the Cout of the previous bit. Since the Cout is set to ‘0’ for
all but the last adder in the advanced form, the carry-in is also
‘0’. With this property of omitted carry propagation, we can
reduce the truth table to a form where only a and b can vary
and c = 0. The reduced truth table can be seen in Table III
where the ER of Sum is reduced to 1

4 . The ER of Cout is
also reduced to 1

4 for the NoCarry adder, while the NoCarry+

adder has no erroneous Cout place at all in the reduced truth
table. With this reduced form, only when both a and b are
logical ‘1’ an error occurs. It is important to note here that
the actual truth table is not reduced. This reduced truth table
is used as a visualization technique to highlight which inputs
can occur at each approximated bit.

B. Serial Topology: SINC/SINC+

The serial IMPLY topology consists of memristors placed
in the same row or column of a crossbar array which are
connected to the same resistor [16], [27]. As only one
computational area exists, parallelization is not possible, and
operations are executed consecutively. The complete algorithm
of SINC can be seen in Table IV. In the first step, we reset the
work memristor to guarantee the correct functionality. In the
second step, we calculate the inversion of a and store it in the
work memristor. After that, we save the Sum result, which is
a + b, in the b-memristor.

The exact procedure of the SINC+ algorithm can be seen
in Table V, which has the same approach as the other version.
Their difference lies in the operations highlighted in blue,
which are only computed only once in the final approximated
adder. We therefore need an additional work memristor w2.
It is used to save the inversion of b before the Sum is stored
in the b-memristor in the third step. After that, we calculate

TABLE IV
EXACT PROCEDURE OF THE SINC ALGORITHM IN THE SERIAL TOPOLOGY

TABLE V
EXACT PROCEDURE OF THE SINC+ ALGORITHM IN THE SERIAL

TOPOLOGY. OPERATIONS COLORED IN BLUE ARE ONLY
PERFORMED ONCE AT THE LAST APPROXIMATED

BIT OF SINC+

ab and store the inversion in the c-memristor. With this, the
Cout is equal to ab and can be used for the calculation of
higher bits. For the SINC algorithm, we require 3n steps
and 2n + 1 memristors for an n-bit calculation. The SINC+

algorithm needs 3n + 3 steps and 2n + 2 memristors but
exhibits a better error-reduction behavior as we will see in
later sections.

C. Parallel Topology: PINC/PINC+

The parallel topology consists of n different serial topolo-
gies. Each of them can be connected to a shared c-memristor
via CMOS switches [19]. In this structure, each bit can be
computed in parallel. The only steps that cannot be executed
simultaneously are those dependent on the carry-in, as they
rely on the outcome of the preceding bit. The exact procedure
of PINC and PINC+ is the same as the serial implementations
from Table IV and Table V. The operations in blue are
again only used in the last bit of the PINC+ variant. But
instead of calculating each bit sequentially, we compute them
simultaneously. Since the PINC and PINC+ algorithms do
not depend on the carry-in, we can completely parallelize
each approximated bit. The exact parallel algorithm from [19]
first calculates 12 carry-independent steps. So both PINC and
PINC+ are executed before the carry-dependent section of the
first exact algorithm begins. We visualized this in Figure 3,
where we implemented the PINC+ algorithm for the lower
bits in an RCA configuration. We can see that the total number
of steps only depends on the number of exact adders n − k.
The same is true for the PINC algorithm. The PINC algorithm
only requires 3 steps and 3n memristors for an n-bit addition.
The PINC+ adder needs 6 steps and 3n + 1 memristors.

D. Semi-Serial Topology: S-SINC/S-SINC+

The semi-serial topology [25] consists of two parallel rows
with the a and b inputs. Both rows can be connected to the
carry and work memristors via switches. We will denote the
rows with the a-memristors and the b-memristors as Section I
and Section II, following the original article [25]. The S-SINC
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Fig. 3. Number of steps of an RCA in the parallel topology with k PINC+

adder and n − k exact adder from [19].

TABLE VI
EXACT PROCEDURE OF THE S-SINC ALGORITHM IN THE SEMI-SERIAL

TOPOLOGY. OPERATIONS COLORED IN BLUE ARE
ONLY EXECUTED ONCE

TABLE VII
EXACT PROCEDURE OF THE S-SINC+ ALGORITHM IN THE SEMI-SERIAL

TOPOLOGY. RED OPERATIONS ARE ONLY CALCULATED ONCE.
OPERATIONS COLORED IN BLUE ARE ONLY PERFORMED

AT THE LAST APPROXIMATED BIT

algorithm can be seen in Table VI, where we reduced the
steps required per bit down to two. This was done with a
work memristor switching scheme, where w1 and w2 are used
for the calculation alternately. The unused work memristor is
reset in parallel to this. An additional step before the first bit
is required to reset both work memristors.

The S-SINC+ algorithm is shown in Table VII. We expand
on the S-SINC approach and calculate the Cout = ab with
two additional steps. For the last approximated bit, both
work memristors are used in parallel. S-SINC requires 2n +

1 steps, and the S-SINC+ algorithm 2n + 3 steps for an n-
bit calculation. The S-SINC algorithm uses 2n +2 memristors
and 4 switches. The advanced approach (S-SINC+) needs an
additional memristor and two additional switches for the Cout .

E. Semi-Parallel Topology: S-PINC/S-PINC+

The semi-parallel topology [24] consists of two parallel
rows (sections) with either the input memristors a and b.
Each section also contains a work memristor. Additionally,
the c-memristor is located in Section II of the circuit. Each
section of the circuit can be connected to a resistor via switches
(S1 for Section I, and S3 for Section II). With a third switch
(S2), the sections can be connected to each other to exchange
information. We will refer to this as a calculation “between
sections”. For more detailed information on the semi-parallel
topology please see [24]. The S-PINC algorithm can be seen
in Table VIII, which is very similar to SINC. The difference
is that the last step is computed between the sections. This

TABLE VIII
EXACT PROCEDURE OF S-PINC IN THE SEMI-PARALLEL TOPOLOGY

algorithm requires 3n steps and 2n + 1 memristors for a n-bit
calculation.

In the S-PINC+ algorithm, we use an additional work
memristor to save the inversion of b in parallel to the S-PINC
steps. After that, we need two steps to calculate ab and
save it in the c-memristor. With this, the algorithm needs
2n + 3 memristors and 3n + 2 steps for an n-bit addition.
The exact procedure with the switch states can be seen in
Table IX.

IV. CIRCUIT-LEVEL SIMULATION

A. Circuit Simulation Setup

To verify the functionality of the algorithms we simulated
them at the circuit-level via LT-SPICE. For this, we used a
model based on the Voltage-controlled ThrEshold Adaptive
Memristor (VTEAM) model [36] implemented in SPICE [25],
[48]. In this model, the parameters are set similarly to Table X,
which were derived by fitting the model to a real discrete
Knowm memristor [49]. This increases our confidence in
the practical relevance of our circuit simulations and allows
us to compare our work more easily with others who have
used the same model. Similar to the differences between
discrete and integrated CMOS devices, discrete memristors
lead to slower operations and increased power consump-
tion. It is reasonable to expect the integrated memristor
devices to have a significantly better operational speed and
power efficiency. Due to the lack of access to integrated
memristors, we use measurement-fitted models to ensure a
realistic and practical implementation of our proposed circuits.
We chose the IMPLY specific parameters similar to Table XI
to allow for a direct and fair comparison to SoA papers such
as [6], [19], [27], and [35].

B. Simulation Results

1) NoCarry: We simulated all NoCarry implementations in
their corresponding topology and evaluated all the possible
input combinations of the reduced truth table from Table III.
We only evaluated these cases, since Cout = 0 is true for
every approximated bit. Our theoretical calculations agree with
the simulation results for every implementation we present.
Since SINC, PINC, and S-PINC are very similar if we only
evaluate one bit, the resulting waveforms are almost identical.
They only differ slightly in energy consumption, which is
explained in more detail in Section V. The simulation results
for these algorithms can be seen in Figure 4. In the first step
of every case from 0 − 30µs the work memristor w1 is set
to logical ‘0’ via a False(w1) operation. Then the inversion
of a is calculated from 30 − 60µs, which is saved in w1.
In the last step, the result of the NoCarry algorithm is
stored in the b-memristor in the period of 60 − 90µs. Each
approximated bit does not depend on the preceding bits, so the
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TABLE IX
EXACT PROCEDURE OF S-PINC+ IN THE SEMI-PARALLEL TOPOLOGY. OPERATIONS COLORED IN BLUE ARE ONLY PERFORMED AT THE LAST

APPROXIMATED BIT

TABLE X
VTEAM SETUP PARAMETER

TABLE XI
IMPLY LOGIC PARAMETER

c-memristor is unused until the first exact full adder. Since the
S-SINC algorithm uses a work memristor switching scheme,
as explained in Section III-D, the simulation results differ from
other implementations. We choose not to plot this algorithm
since most of the cases can be seen in the 4-bit S-SINC+

simulation in Figure 6. The results again agree with our
theoretical calculations.

2) NoCarry+: As explained in Section III, the NoCarry+

algorithms differ from NoCarry only in the last approximated
bit. In this last bit Sum = a + b and Cout = ab. Since the
previous bits are already discussed in Section IV-B.1 we only
discuss the last bit in this section. We validated all possible
cases and the results again agree with our theoretical calcu-
lations. Since the PINC+ algorithm is a parallelized version
of SINC+, the results waveforms are also equal. We assume
the c-memristor to be at logical ‘0’ since this algorithm only
follows bits that are calculated with the NoCarry algorithms.
We plotted a correct case (“ab = 10”) and the erroneous case
(“ab = 11”) in Figure 5. Each step from Table V corresponds
to 30µs. Different from SINC, the inversion of b is this time
stored in w2 at 60 − 90µs. After this Sum = a + b is saved
in the b-memristor at 90 − 120µs. The resulting Cout = ab is
then saved in the c-memristor at 150 − 180µs.

We simulated the S-SINC+ algorithm in a 4-bit variant,
to better illustrate our memristor switching scheme from
Table VII. The memristors are initialized as w j := w1 and
wk := w2. The resulting waveforms are shown in Figure 6.
From 0 − 30µs both work memristors are reset to logical ‘0’.
After that three bits with different combinations are calculated,
where each bit needs 60µs. The Sumi results are stored in the
bi -memristor at 90, 150, and 180µs. The fourth bit requires
four steps since the S-SINC+ algorithm from Table VII is
applied. As the input combination is “ab = 11”, the incorrect
(by design) Sum = 1 is stored between 270 − 300µs. The
correct Cout = 1 is saved between 300 − 330µs in the c
memristor.

Fig. 4. Simulation of the SINC, SPINC, and PINC adder. Sum saved in the
b-memristor at 90µs: (a) “ab” = “00”, (b) “ab” = “01”, (c) “ab” = “10”,
(d) “ab” = “11” (incorrect case).

The results of S-PINC+ are shown in Figure 7, where the
correct case “ab = 00” and the erroneous case “ab = 11” are
presented. The Sum result is again stored in the b-memristor
at 60 − 90µs. In comparison to the S-PINC algorithm, two
additional steps are required to calculate the Cout , which is
saved in the c-memristor at 90 − 150µs.

C. Further Experiments

We conducted additional experiments to validate the pro-
posed full adders’ functionality at circuit-level. We embedded
each algorithm as the lower four bits in an 8-bit RCA
configuration. The corresponding exact algorithm of the topol-
ogy implements the higher bits. We evaluated all possible
input combinations. The results agree with our theoretical
calculations. Since with our approach, each approximated
bit is independent from its predecessor this was expected.
Our NoCarry+ implementations propagate a carry-in to the
exact adders, which also does not lead to any false results.
Since memristors are non-ideal devices a deviation in Ron
and Rof f from their nominal values can be expected in
practice. To encompass this non-ideality in our experiments,
we repeated our simulations with deviations from ±5% to
±20%. The results align with previous experiments, indicat-
ing that our algorithms are functional despite such practical
non-idealities. Since we validated the functionality of the
fundamental building blocks (adders) at circuit-level, for more
complex system-level evaluations that use these building
blocks, we will use a behavioural-level model in the rest of
this paper.

V. ERROR ANALYSIS

Error metrics such as MED, NMED, and MRED are used
to evaluate and compare the erroneous behavior of approx-
imated adders [6], [35]. The exact definition can be seen in
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Fig. 5. Simulation results of SINC+/PINC+ for two input combinations
(a) “ab = 10”, (b) “ab = 11” (Sum incorrect).

Fig. 6. 4-bit simulation of S-SINC+, with a3−0 = “0011” and b3−0 =

“0101”. Each step takes 30µs. Sum results are stored in the b-memristors
at 90, 150, 210, and 330µs. Cout is only calculated for the last bit between
270-330µs.

Fig. 7. Simulation results of S-PINC+ for two input combinations
(a) “ab = 00”, (b) “ab = 11” (Sum incorrect).

Equation (5) - Equation (7), with detailed information in [10],
[13], and [38].

M E D =
1

22n ·

22n∑
i=1

|SU MExact − SU MAx |i (5)

N M E D =
M E D

2n+1 − 1
(6)

M RE D =
1

22n ·

22n∑
i=1

|SU MExact − SU MAx |i

SU MExact,i
(7)

We created a behavioural-level MATLAB model, where we
embed the approximated adders as lower bits in an RCA. The
approximation degree k/n denotes that k adders based on our
algorithms are implemented as the lower bits out of a total
of n bits. We evaluated the error metrics of these partially
approximated RCA for 8/16/32-bit at varying approximation
degrees, with Cin = ‘0’. The results of the MED, NMED, and
MRED for all the aforementioned combinations are shown in
Table XII.

A. Error Metrics for 8-Bit RCA

For the 8-bit case, we applied all 65536 different input
combinations to partially approximated RCA. We repeated this
procedure with different approximation degrees. We observe
that the MED and thus also the NMED is roughly doubled
per additional approximated bit. The NoCarry+ approximation
exhibits better NMED and MRED than the NoCarry variant for
all approximation degrees over 1/8. The difference between
these two approaches is increasing exponentially for all metrics
evaluated. This implies that the NoCarry+ adder produces
progressively lower relative errors as the approximation degree
increases. With an approximation degree of 8/8 both approx-
imations exhibit very good error-containing behavior. They
display a MRED of roughly 0.21 for the NoCarry and 0.17 for
the NoCarry+ adders. This indicates that the error relative to
the exact results averages 21% and 17% of the exact values.

B. Error Metrics for 16/32-Bit RCA

To analyze the 16-bit and 32-bit RCA, we generated one
million random combinations for the inputs. We did this
since a complete evaluation would require 22n combinations,
which is computationally expensive. So the results for the
16/32-bit error metrics may underlie a stochastic deviation.
We again evaluated a partially approximated RCA with vary-
ing approximation degrees. We presented the results of the
error metrics in Table XII in such a way that they include
the same percentage of approximated adders in each row.
With this, we can see that with fewer approximated adders
the 16/32-bit systems yield much lower error metrics. The
difference increases with a rising approximation degree but
diminishes when only approximated adders are used. This
indicates that a full adder with a higher number of bits yields
much lower errors.

VI. CIRCUIT-LEVEL COMPARISON

We compare the algorithms proposed in this work with
the exact full adders from [19], [24], [25], and [27] and the
approximated adders from [6], [34], and [35]. We evaluated
various relevant circuit-level metrics such as speed, energy
consumption, and area usage. We define an improvement of
the parameter P in the rest of this work by Equation (8).

I mprovement =
Pworse − Pbetter

Pworse
× 100% (8)
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TABLE XII
ERROR METRICS OF THE PROPOSED ALGORITHMS EMBEDDED IN A8/16/32-BIT RCA WITH DIFFERENT APPROXIMATION DEGREES

A. Comparison to Exact Adders

1) Energy Consumption: We used the LT-SPICE energy
consumption tool for all proposed algorithms. Our simulation
encompassed all feasible input combinations of a full adder.
We present the mean values over all simulations. The last
bit of the NoCarry+ adders in the different topologies were
calculated separately. The first step of the S-SINC/S-SINC+

algorithms was also evaluated on its own. The result of
0.2591nJ was defined as the average of the possible input
state combinations of the work memristors. We recreated
the exact algorithms from [24], [25], [27], and [19] with
specific simulation values we used in this work to have a fair
comparison. The formulas for the NoCarry implementations in
an RCA structure, with k approximated and n total adders, are
illustrated in Equation (9) to Equation (12), measured in nJ.

ESI NC (n, k) = 0.7230k + 4.8250(n − k) (9)
EP I NC (n, k) = 0.7230k + 4.0772(n − k) (10)

ESSI NC (n, k) = 0.5714k + 3.8435(n − k) + 1.0617 (11)
ES P I NC (n, k) = 0.6372k + 4.8339(n − k) (12)

Since the NoCarry+ implementations differ only for the last
approximated bit, the energy consumption remains the same
except for the increase in energy usage for this bit. The energy
consumption of the SINC+, PINC+, S-SINC+, and S-PINC+

algorithms is increased by 0.7844nJ, 0.7844nJ, 0.8024nJ, and
0.9287nJ respectively. The proposed approach saves up to
54% of energy when compared to the corresponding exact
algorithm. The improvements based on Equation (8), to the
corresponding exact algorithms are shown in Table XIV. The
overall most energy-efficient adder is SINC, followed by
PINC.

2) Number of Steps: The second important metric at circuit-
level is the number of steps (clock cycles) required per bit.
These represent the delay of the calculation. The required
steps of the NoCarry and NoCarry+ implementations, with k
approximated out of n total adders, are shown in Equation (13)
to Equation (16). The additional steps of the NoCarry+

implementations are marked in blue.

SSI NC = 3k + 22(n − k) (+3) (13)
SP I NC = 5(n − k) + 18 (14)

SSSI NC = 2k + 10(n − k) + 3 (+2) (15)
SS P I NC = 3k + 17(n − k) (+2) (16)

With the approach from this paper up to 54% of the steps
are savable with an approximation degree of 5/8. PINC and
PINC+ are the fastest and only require a mere 33 steps for an
8-bit addition. It is worth noting that the parallel algorithms
from this work are the only implementations that require the
same number of steps. This is attributed to the property of the
parallel topology, where only a small portion of the steps need
to be computed sequentially. We illustrated this in Figure 3.
Any approximation with k = 5 would achieve the same results
if the longest carry-chain of the lower bits were under 12 steps.
The SINC+ and S-PINC+ require three more steps than the
associated NoCarry implementation. The S-SINC+ only needs
two additional cycles. All of our proposed implementations
reduce the number of steps by at least 43% compared to the
corresponding exact algorithms. The speed improvements for
all implementations can be seen in Table XIV.

3) Area Usage: Another comparison point at circuit-level
is the area required per bit. This is evaluated by comparing
the number of memristors and CMOS switches. In the serial,
semi-serial, and semi-parallel topology, the work resistors are
reused. So they depend on the exact algorithms. This means
that no improvements can be achieved here. In the parallel
adder structure, each row is calculated separately. Thus, we can
reduce the number of memristors in each approximated bit.
The PINC algorithm saves 1 memristor per approximated
bit. PINC+ also saves 1 memristor per bit, besides the
last approximated one. The number of switches can also
only be reduced in the parallel topology. Each approximated
bit in PINC does not require a switch since they do not
calculate the carry-out. This is explained in more detail in
Section III-C. The most area-efficient are all algorithms in
the serial topology since they only require 2n + 3 memristors
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TABLE XIII
CIRCUIT-LEVEL COMPARISON TO SOA FULL ADDER

and no switches. An overview of the improvements in com-
parison to the corresponding exact algorithms can be seen in
Table XIV.

B. Comparison to Approximated Adders

In this section, we only compare our work to the SoA
IMPLY-based approximated adders from [6], [34], [35]. We do
this, since the disparity to other logic forms, such as MRL
approximations [45], [46], is too significant to make a fair
and meaningful comparison. A complete overview of different
circuit-level comparison points can be seen in Table XIII. All
of the following comparisons are made with an approximation
degree of 5/8.

1) Energy Consumption: The SINC and SINC+ from this
work require less energy than any SoA approximated adders in
the serial topology. Our approaches require 18% − 33% less
energy than the SIAFA adders from [35] and 17% − 21%
less than the SAFAN adder from [34]. In the semi-serial
topology, our S-SINC and S-SINC+ implementations are 22%
and 26% more efficient than the adder from [6]. To our
knowledge, we presented the only approximated adders in
the parallel and semi-parallel topology. So the comparison
is not 100% fully fair, due to them being implemented in a
different topology. Compared to SoA adders our semi-parallel
and parallel approaches are 10%−41% more energy efficient.

2) Number of Steps: Compared to the adders from [34] and
[35], our algorithms in the serial topology require 17%−30%
less steps. The semi-serial adders from this work improve
the speed to [6] by 22% − 26%. If we compare all of the
proposed adders to the SoA an improvement of up to 72% is
reached. Our serial implementations are 28% − 31% slower
than the semi-serial adders from [6]. The reason is that the
serial topology is intrinsically 53% slower than the semi-serial
topology [25]. We plotted the energy consumption and the
number of steps of the SoA and the proposed algorithms in
Figure 8(c). We grouped the approximations corresponding
to their exact algorithms. We can see that the NoCarry
and NoCarry+ implementations are at the Pareto front and
drastically improve over the SoA.

TABLE XIV
CIRCUIT-LEVEL IMPROVEMENTS TO EXACT SOA ADDERS

WITH n = 8, k = [1, 5]

3) Area Usage: All the approximated algorithms are
embedded in an RCA as the lower bits. So the number
of memristors and switches depends on the exact algorithm
used for the higher bits. Since for the serial and semi-serial
topology, we used the same exact algorithms as the SoA, the
area usage is also equal. From an area consumption point of
view, our approach cannot improve the SoA. The proposed
parallel implementations require 24%−37% more memristors
than SoA approximations. Compared to algorithms in the serial
topology, our parallel implementations also require additional
switches.

4) Error Metrics: We compared our approaches to the
SoA via the error metrics MED, NMED, and MRED. Our
algorithms outperform the SoA at every approximation degree.
We plotted the NMED and MRED for an 8-bit adder with
varying approximation degrees in Figure 8(a) and Figure 8(b).
It is noticeable that at k ≤ 4 the different approximations
show very similar results. At k = 5, NoCarry and NoCarry+

exhibit a NMED lower than SoA by 12%−56% and a MRED
lower by 27% − 64%. This difference in NMED and MRED
rises exponentially to 25% − 76% and 64% − 81% when
all adders are approximated. This indicates that the proposed
adders show a much better error-reduction behavior than the
SoA approximations.

VII. APPLICATION IN IMAGE PROCESSING

One of the most prevalent applications of AxC is
image processing. It has an inherent resilience to errors
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Fig. 8. Comparison to SoA Ax adders: (a) NMED, (b) MRED, (c) Energy
consumption to No. of steps with k/n = 5/8.

TABLE XV
AVERAGE QUALITY METRICS OF IMAGE PROCESSING APPLICATIONS

and versatile applicability across various domains such as
medicine, robotics, and automation [44]. Given the inherent
computational complexity of these applications, adopting an
approximated approach holds promise for significant improve-
ments in speed and energy efficiency. These are important
as they are critical considerations in this domain. We sim-
ulated the proposed approaches on the behavioral level with
varying approximation degrees. We evaluated common appli-
cations such as image addition and grayscale filtering. For
both of these, we introduce datasets with common exam-
ple images [50]. We further optimized our algorithms for
image subtraction and evaluated them over the background
subtraction dataset from [51]. To validate our approaches on
more complex tasks, we embed our approximated adders in
multipliers and use them for Gaussian smoothing. We used the
common quality metrics PSNR and MSSIM. In the literature,
a PSNR threshold of 30dB is deemed acceptable for the
human visual system [37]. The average quality results over
the corresponding dataset of all simulated applications are
presented in Table XV.

A. Image Addition

One of the fundamental image processing applications is
the addition of images, often used in tasks such as masking or
enhancement [14]. We used the RCA with varying approx-
imation degrees to add every pixel of two 8-bit grayscale
images and half the result. For the image addition dataset [50],
we combined 21 common images with varying content from
humans to landscapes and resized them to 256 × 256 pixels.
We calculated 100 additions with random pairings and noted
the average quality results with the corresponding deviation.
We can see in Table XV that with up to 5/8 approximated
adders, both proposed approaches reach the 30dB threshold of
PSNR. With six adders approximated the NoCarry+ algorithm
reaches the PSNR threshold on average. However, with a
standard deviation of 1.21 dB, it remains impractical for
many image combinations. It is interesting to notice that with
only one NoCarry adder the addition is calculated with full
accuracy. This is attributed to the reduced error propagation
of incorrect cases and the rounding errors in addition. We can
also observe that the deviation of the quality metrics rises with
a higher approximation degree. The results of an example addi-
tion with 5/8 approximated adders are shown in Figure 9 (a-c).

B. Gray-Scale Filter

The grayscale filter transforms a colored RGB image into
a grayscale by adding the three color spaces pixel-wise,
via two additions. Common applications of the gray-scale
filter include medical imaging and computer vision. Since
in common grayscale conversion methods, the colors are not
equally weighted we first added the red and blue pixels and
halved this result. We then added the green color space to
the result, to better represent that green is a more relevant
color to the human visual system. We evaluated the SoA
and the proposed adders over our gray-scale filtering dataset.
We included 21 common images with varying content from
animals to groceries and different sizes. A more detailed
explanation can be found in [50]. We can see in Table XV that
the gray-scale filter yields worse results than image addition.
Since our algorithms are OR-based, adding three numbers
leads to a higher chance of the erroneous case occurring.
This then leads to worse results. With up to 5/8 approximated
adders this application reaches the 30dB PSNR threshold.
We represented this by an example in Figure 9.

C. Image Subtraction

Image subtraction is commonly used for surveillance and
motion detection, subtracting images in a sequence. The
subtraction procedure is normally implemented by inverting
the subtrahend bitwise and then adding it to the minuend.
The carry-in is set to logical ‘1’. Since the proposed adders
in this work do not depend on the carry-in, it is set to ‘0’.
For this application, we can further optimize our NoCarry
approximation to save additional steps and energy. Instead of
inverting the bits of the minuend, we use the properties of
IMPLY logic to simplify the approximated subtraction.

Our approximation is based on ai OR bi , which is equivalent
to ai → bi in IMPLY logic. When we now not invert ai
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Fig. 9. Example Results: Exact, NoCarry 5/8 Ax FA, NoCarry+ 5/8 Ax FA
for (a-c) image addition of rice + cameraman [52], (d-f) grayscale filter of
peppers [52].

Fig. 10. Image subtraction examples of “highway” dataset [51] with exact,
NoCarry 5/8 Ax FA, NoCarry+ 5/8 Ax FA: (a-c) image 1, (d-f), image 143,
(g-i) image 420.

beforehand we can simplify the approximated bits of the
subtraction to Subi = bi − ai ≈ ai → bi . With this approach,
we reduce the required memristors from 3n (depending on the
topology) to only 2n for n approximated bits. The number of
steps for SINC and S-PINC is also reduced from 3n down to
n. Considering the saved steps for not inverting the minuend,
the savings would be increased by an additional step for each
bit. This method is applicable to the serial, parallel, and semi-
parallel topology. This optimization does not work for the
semi-serial implementation since the a and b memristors can
not be directly connected.

We simulated this application on the background subtraction
dataset, called “highway”, from [51]. It includes 439 images
which we converted to grayscale beforehand. We then sub-
tracted the background image from each entry with image
subtraction. We see in Table XV that with approximation
degrees of up to 5/8, both approaches meet the 30dB PSNR
requirement. The NoCarry+ adder surpasses the threshold
with six approximated adders. But with a deviation of over

TABLE XVI
AVERAGE IMAGE QUALITY COMPARISON TO SOA WITH 5/8

APPROXIMATED ADDERS OVER DIFFERENT DATASETS

1dB, this still does not lead to acceptable results for many
images. We showed three example results of our experiments
in Figure 10. We can see that they are rather indistinguishable
from the exact results.

D. Application-Level Comparison

1) Comparison With Exact Adders: For image addition
and the gray-scale filter, acceptable results were reached
with approximation degrees of up to 5/8. We will now look
at the gains at circuit-level. The proposed adders can save
6% − 54% of steps and 7% − 54% of energy depending on
the approximation degree and topology. This was calculated
by summing up the gains for each pixel. For the addition
of two 256 × 256.8-bit images in Figure 9, our approach
saves up to 1.4mJ of energy and 6 million steps. For the
512×512 grayscale conversion example, we were able to save
up to 11mJ and 50 million steps. This is significantly higher
because this operation consists of two addition operations and
the image is four times the size.

In image subtraction, our NoCarry algorithm can be further
optimized so that it only requires one step per approximated
bit. We simulated the average energy consumption of a →

b for the serial, parallel, and semi-parallel topologies. The
optimized approximated serial and parallel algorithms require
0.4618nJ and the semi-parallel 0.4609nJ. When embedded
in an RCA with 5/8 approximated adders, the total energy
is 16.7840nJ in the serial, 14.5406nJ in the parallel, and
16.8062nJ in the semi-parallel topology. The number of steps
for this configuration is 71 for the serial and 56 for the
semi-parallel adder. The number of required cycles for the
parallel topology is unchanged due to the dependency on the
exact bits. We explained this in more detail in Section III-C.
The RCA with 5/8 optimized approximated adders need up
to 57% less energy and up to 60% fewer steps compared
to the exact algorithms. With our optimization an additional
performance improvement for our already efficient approach
is possible. For the examples from the “highway” dataset [51]
our serial approach achieves the highest gains. The energy
consumption is reduced from 3mJ to 1.3mJ and the number
of steps from 13.5 to 5.5 million, which is a substan-
tial performance improvement. This is especially useful for
resource-constrained applications.

2) Comparison With Approximated Adders: We compare to
the IMPLY-based approximations from [6], [34], and [35].
We evaluated with 5/8 approximated adders since this setup
still leads to acceptable image qualities. For image addition
and grayscale filtering our approaches are 9% − 43% more
energy efficient and require up to 72% fewer steps. This gain is
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explained in more detail in Section VI-B. In image subtraction,
our approximation is implemented even more efficiently. Our
approach can improve energy efficiency by 19% − 46% when
compared to other approximations.

We evaluated the SoA adders over the proposed datasets for
addition and grayscaling and the “highway” dataset from [51]
to achieve a fair comparison. In Table XVI, we presented
the average results for each approach with 5/8 approxi-
mated adders. For the image addition dataset, our NoCarry
and NoCarry+ approaches surpass the SoA solutions. Our
approaches improve over the best PSNR result of [6] by 1dB
and 3.4dB, which is a significant increase. Our adders also
outperform the SoA in terms of MSSIM in which the NoCarry
approach yields the best results. In the grayscaling application
our NoCarry+ approach exhibits the best PSNR results with
32.34dB, whereas NoCarry yields the best MSSIM. The PSNR
of NoCarry does not improve over SoA adders in this case.
The most significant improvement was achieved in image
subtraction. Our approximations yield a higher average PSNR
by at least 3dB and 4dB for NoCarry and NoCarry+ while
improving the MSSIM too.

E. Gaussian Smoothing

The previously covered image-processing applications can
executed with just one adder structure. With this case study,
we intend to validate the applicability of our partially approxi-
mated RCA on a more complex application. We embedded our
approximated adders with varying approximation degrees in an
unsigned array multiplier, which is explained in [10] and [38].
When separating the rows of an unsigned 8×8 array multiplier,
seven 8-bit additions are required to sum them up. These
additions can be implemented with an approximated RCA.
We will denote the approximation degree with the 7-tuple K =

(k7, . . . , k1), representing the approximation degree ki/8 for
the i-th row starting from the top. The i-th row consists of the
logical AND connection between the binary input vector a7−0
and bi . We choose to implement Gaussian smoothing since it
is often used for image denoising and as a pre-processing stage
for various machine learning and computer vision tasks. It is a
common procedure that can tolerate errors too [53]. We used
a two-dimensional rotationally symmetric 3×3 Gaussian low-
pass filter with a standard deviation of 1.5 that we convolve
with the input image. We follow the example from [53] and
[54] and choose our kernel as shown in Table XVII, since it
is considered appropriate for an 8-bit multiplier [54].

We blurred the test image “boat” using the proposed array
multiplier with varying K. We evaluated our algorithms and
SoA approximations from [6], [34], and [35]. The image
quality for some example configurations is presented in
Table XVIII. When the whole row is approximated both
approaches from this paper have equal results. Since for the
advanced approach Cout = ab and b = 0 for the highest
bit per row, no carry-out is ever produced. Our NoCarry and
NoCarry+ approaches are superior to the SoA in both PSNR
and MSSIM. With five out of seven additions completely
approximated (K5) both of our approaches outperform the
SoA by at least 10dB in PSNR. Even with five additions

Fig. 11. Gaussian smoothing of “boat”: (a) Original image, (b) Exact
multiplier, (c) Both (K5), (d) No Carry (K544), (e) No Carry+ (K544),
(f) Both (K6).

TABLE XVII
GAUSSIAN SMOOTHING 3 × 3 KERNEL [53], [54]

TABLE XVIII
IMAGE QUALITY OF GAUSSIAN SMOOTHING WITH AN APPROXIMATED

ARRAY MULTIPLIER

fully and the other additions half approximated (K544), our
advanced approach reaches 32.85dB. This indicates that even
when most of the full adder units in the multiplier use our
NoCarry+ approach the result is still acceptable. We illustrated
the results of our approaches with different K in Figure 11.
Our results indicate, that up to 86% of an array multiplier
can be approximated, while still achieving acceptable results.
This example aims to show the applicability of the proposed
algorithms to more complex tasks.

VIII. CONCLUSION

In this work, we presented two approximated addition
concepts for implementation using memristive IMPLY logic
and mapped them to a total of eight algorithms on the serial,
parallel, semi-serial, and semi-parallel topology. We applied
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them in in-memory image processing and showed their bene-
fits. We utilized the unique advantages of each adder structure
to reduce the number of steps, energy, and area consumption.
Our approach reduces 8% − 54% of the energy consumption,
6%−54% of the steps, and up to 12% of memristors, compared
to the exact adders. Compared to other approximated adders,
our approach is 9%−43% more energy efficient and improves
the speed by up to 72%. We achieved this while yielding a
higher accuracy, in terms of both NMED and MRED. To our
knowledge, we present the first approximated adders in the
semi-parallel and parallel topology, with which were able to
decrease the number of steps of an 8-bit addition to only 33.

We embedded our adders as the lower bits of an RCA,
verified their functionality, and assessed the error metrics.
We applied these partially approximated RCAs in different
real-world image processing applications. For image addition
and grayscale filtering, we proposed new datasets to diversify
our experiments. We achieved acceptable PSNR results of
over 30dB with up to 5/8 approximated adders. We improved
the energy consumption by 9% − 43%, the number of steps
by up to 72%, and the image quality by up to 3.4dB of
PSNR when compared to SoA approximations. In the image
subtraction application, we optimized our NoCarry algorithm
so that it only requires one cycle per approximated bit. With
this, we increased the energy efficiency by up to 57%. Our
approach also yields significantly improved image quality over
SoA approximations by 3dB−10dB of PSNR. We integrated
our approximated adders in an array multiplier and evaluated
them on Gaussian smoothing, as an example of more complex
end applications. Our results indicate that up to 86% can be
approximated with the proposed method, while still achieving
acceptable results. An in-depth analysis of more application-
specific approximations and their design are domains of future
research.
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