
1

Carry Disregard Approximate Multipliers
Nima Amirafshar∗, Ahmad Sadigh Baroughi∗, Hadi Shahriar Shahhoseini∗§, and Nima TaheriNejad†

Abstract—Several challenges in improving the performance
of computing systems have given rise to emerging computing
paradigms. One of these paradigms is approximate computing.
Many applications require different levels of accuracy and are
error-tolerance to a certain degree. Approximate computations
can reduce the calculation complexities significantly and thus
improve the performance. Here, we propose a methodology for
designing approximate N-bit array multipliers based on carry
disregarding. We evaluate and analyze the proposed multipli-
ers both experimentally and theoretically. The proposed 8-bit
multipliers, compared to the exact multiplier, reduce the critical
path delay, power consumption, and area by 29%, 29%, and
30%, on average. Compared to the existing approximate array
architectures in the literature, they have improved 14.3%, 22.8%,
and 26.4%, respectively. Compared to the exact 16-bit multiplier,
the proposed 16-bit multipliers have reduced the delay, power
consumption, and area by 35%, 24%, and 23% on average. In
an image processing application, we have also demonstrated the
applicability of a wide range of proposed multipliers, which have
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) over 30 dB and 94%, respectively.

Index Terms—Approximate computing, carry disregard mul-
tiplier, power-efficient, image processing.

I. INTRODUCTION

One main goal of computer architecture design is to achieve
high performance. We notice a substantial growth in data
volume with different characteristics and, as a result, many
processing operations in various applications, so that the
number and variety of applications have also increased signifi-
cantly. Therefore, the architecture of today’s computer systems
is limited for processing such a significant amount of data,
leading to inefficiency. Hence, the architecture of processing
systems should be centered on data characteristics. Many
specific applications do not mandate precise calculations.
Numerous applications are inherently error-tolerant, such as
Machine Learning, Scientific Computing, Data Analytics, and
Signal Processing [1]–[6]. Also, human perceptual limitations
make it possible to use approximations in many further ap-
plications, such as Image Processing and Multimedia [7]–[9].
Therefore, approximate computing is efficient and endeavors
to achieve high efficiency in speed, area, and power or energy
consumption by compromising accuracy.

Approximate computing methods can be divided into soft-
ware, architecture, and circuit levels [10]. We can mention
Loop Perforation, Code Perforation, and Inexact Program Ver-
sions at the software level [11]. Methods such as Instruction

∗ Authors are with Iran University of Science and Technology, Tehran,
Iran. E-mail: {nima amirafshar, sadighbaroughi a}@elec.iust.ac.ir, shahho-
seini@iust.ac.ir
† Author is with Heidelberg University, Heidelberg, Germany and TU Wien,
Vienna, Austria. E-mail: nima.taherinejad@ziti.uni-heidelberg.de
§ Corresponding Author: shahhoseini@iust.ac.ir

Set Architecture (ISA) Extension [12], Approximate Accelera-
tor, and Approximate Storage are at the architectural level [13].
The circuit level also includes methods such as Voltage and
Frequency Scaling. However, one of the most common is
Inexact Hardware, which designs inaccurate numerical and
logical units [14], [15]. Multiplication is one of the most
common numerical operations. Conventional exact multipliers
have significant critical path delays and power consumption,
which, due to their repeated use in various applications, lead to
limited efficiency and increased energy consumption. Hence,
approximate multipliers have become popular and improved a
wide range of different applications.

This paper presents approximate array multipliers based
on carry disregarding. They significantly reduce power con-
sumption, critical path delay, and area compared to exact
and existing approximate multipliers. Applications are error
tolerant up to a certain level. Hence, the proposed approximate
multipliers have different error levels, and some have the high-
est accuracy compared to previous approximate multipliers.
Also, they have created a better balance between accuracy
and hardware performance criteria. The key contributions of
this paper can be summarized as follows:

1) A methodology for designing efficient approximate N-bit
array multipliers based on carry disregarding,

2) Theoretical analysis of the proposed methodology, pro-
viding equations for accuracy criteria for optimal design,

3) Design approximate 8-bit and 16-bit array multipliers
with balanced hardware efficiency and accuracy criteria,

4) Achieving the most efficient designs (mostly are Pareto
frontier) in terms of power, area, power-delay product,
and accuracy compared to recent state-of-the-art designs,

5) Evaluating proposed designs in image processing.
The rest of this paper is as follows: Section II reviews some
related works. In Section III, we investigate the background
of exact multipliers. Sections IV and V propose our 8-
bit approximate multipliers and their extension, respectively,
and Section VI theoretically analyzes the accuracy of the
proposed multipliers. We describe our experiments and results
in Section VII and make a comprehensive multidimensional
comparison with recent state-of-the-art approximate multipli-
ers in Section VIII. Also, Section IX implies the pertinence
of proposed designs in image processing application, and the
paper is concluded in Section X.

II. RELATED WORK

In general, multipliers consist of three main computation
stages: Partial Product (PP) generation, PP accumulation (re-
duction), and a final addition ascertaining the multiplication
result. There are three main architectures to accumulate PPs
and reduce them: the Carry-Save Adder (CSA) array, the Wal-
lace tree, and the Dadda tree [10]. Tree-based PP accumulation

2

has less delay than array structures. In contrast, they have more
power consumption and area than array structures due to the
more significant number of computing units and higher com-
plexity [10], [16]. The array-based multiplier has a straight-
forward, uniform, and modular architecture. Correspondingly,
such architecture mostly has less power consumption and area;
also, the development and management of this architecture
are more comprehensible and more optimal than Wallace- and
Dadda-based architectures [10], [16].

Designers employ the approximation in three vital com-
puting stages of multipliers. One of the ways is operand
truncation, which takes advantage of the fact that not all
operand bits are equally substantial. Hence, a substantially
smaller core multiplier results from merely choosing a portion
of the operand bits [17], [18]. On the other hand, we can
apply approximation during the PP accumulation stage. The
fundamental component for accumulating PPs in approximate
Wallace and Dadda multipliers is the approximate compressor,
which has undergone much research; for example, [19]–[21].

Regarding array multipliers, using approximate adders such
as approximate Full-Adder (FA), Half-Adder (HA), and com-
pressor is one of the conventional methods for applying
approximation in reducing PPs. Hence, [22] proposed an
imprecise 4:2 compressor, which by using it in an array
structure, designed an approximate 8-bit multiplier. Another
method is to design a small-scale approximate multiplier and
use it recursively to design larger ones. [23] first proposed
an approximate 2 × 2 multiplier as a building block, then
by using it, designed larger multipliers recursively. The main
idea of this paper is to change the logical function of the 2-
bit multiplier such that the approximate multiplier converts
the only available 4-bit output (i.e., 3 × 3 = 9) to show the
approximate form with 3-bit (i.e., 7). As a result, it has a
simpler circuit and lacks adders and XOR gates. [24] proposed
approximate 2-bit multipliers based on the concept of equat-
ing similar output bits and also designed larger multipliers
recursively. In exact 2-bit multiplication, Most-Significant Bit
(MSB) and Least-Significant Bit (LSB) are opposite in only
three cases. Hence, [24] removed the logic circuit related to
LSB, connected MSB to LSB, and finally managed to reduce
the maximum magnitude of the error compared to [23].

Another conventional method is PP truncation. [25] pro-
posed Broken-Array Multiplier (BAM) truncates several PPs
using Vertical Break Level (VBL) and Horizontal Break Level
(HBL) parameters. Additionally, [15] proposed the probabilis-
tic analysis-based PP array and used the proposed Propagation
and Generation (PG) function to replace numerous PPs with
different values. Afterward, some of them were truncated,
which shortened the delay. Also, it uses approximate FA
and HA for accumulating PPs and designs large multipliers
recursively. Carry propagation is the primary limiting factor for
array multipliers. Hence, [14] presented an approximate array
multiplier in which specific columns of Partial Product Unit
(Π0) disregard all generated carry, and our proposed designs
share some architectural similarity with [14].

We note that approximate compute units beyond Comple-
mentary Metal-Oxide Semiconductor (CMOS) are gaining cur-
rency as well. For instance, in [26], the authors have proposed

FA

b0

b2

a0a1a2a3a4a5a6a7

0

R3R4R5R6R7R8R9R10 R0R1R2

b1

b3

0

0

0

b5

b4

b6

0

0

0

b70

R11R12R13R14R15

Fig. 1: Conventional exact 8-bit multiplier architecture and
logic circuit of partial product unit (Π0)

highly-scalable Majority Gates (MGs) based on spin-CMOS
technology and used them to design approximate compressors.
In [27] and [9], the authors designed various approximate
adders for In-Memory Computation (IMC) using memristive
stateful logics. However, they are outside the scope of this
work, since they require technologies beyond CMOS.

III. BACKGROUND

Figure 1 shows a conventional 8-bit array multiplier whose
main component is the Π0; each Π0 consists of an AND
Gate (Λ) for single-bit multiplication and a full adder. This
multiplier has a significant critical path delay due to the high
dependence between Π0s. An n-bit array multiplier has n2

elements. Its critical path has 3n − 3 elements in which the
number of Π0s and Λs are 3n − 4 and 1, respectively. For
simplicity in calculating the critical path delay, we assume
that the delay of the Λ, OR, and XOR gates are 1, 1, and
2 cycles, respectively. Hence the critical path delay will be
12n − 15. As the multiplier scale increases (i.e., larger n),
the total number of cells increases significantly. Thus, the
dependence between Π0s continues over a larger area, leading
to a significant increase in critical path delay. For example, in
8-, 16-, 32-, and 64-bit multipliers, the total number of cells
is 64, 256, 1024, and 4096, respectively, and the critical path
delays are 81, 177, 369, and 753. Figure 1 shows the critical
path of an 8-bit multiplier in red.

In general, the Π0s depend on the adjacent Π0s due to
carry and summation inputs. However, the carry has a much
more significant effect on increasing the critical path delay.
For example, if we disregard all the carries, we will see that
these disregarding put all the columns of Π0s together inde-
pendently, and they can operate in parallel. Accordingly, the
main idea of the proposed methods in this paper is to disregard
carries. Also, we can convert large-scale multiplications into
smaller ones by using the distributive property. According to
Equation (1), we can convert an 8-bit multiplication to two
8× 4 multiplications.

A×B = A(BH × 24 +BL) = (A×BH)24 + (A×BL), (1)

where A and B are 8 bits, and BH and BL are the most-
significant bits and least-significant bits of B, respectively.
As shown in Figure 2, we can design an 8-bit multiplier

3

using two smaller 8 × 4 multipliers and a Carry Look-ahead
Adder (CLA). In this case, the two 8 × 4 multipliers operate
independently and in parallel. Eventually, the CLA determines
the final result of 8-bit multiplier. There are two advantages to
using two smaller multipliers together. First, they have a much
less critical path delay due to their smaller scale than an 8-
bit multiplier, which equals 49 cycles. On the other hand, the
parallel operation of the two 8 × 4 multipliers, which causes
their delay overlap, is the second advantage. Finally, a CLA
significantly reduces the delay due to carries propagation in
calculating the sum of the results of two 8 × 4 multipliers.
Therefore, using this structure can improve the critical path
delay, which is the basis of the proposed designs this paper.
Nevertheless, there is still dependence between Π0s in every
8× 4 multiplier. So, this is the leading cause of the delay in
the overall performance of the 8-bit multiplier. Therefore, the
paper’s primary purpose is to use approximate computing and
apply appropriate error levels in the calculations to reduce the
dependence between Π0s to achieve a better balance between
accuracy and critical path delay, power consumption, and area.

IV. PROPOSED APPROXIMATE 8-BIT MULTIPLIERS

This paper proposes approximate 8-bit multipliers that are
inspired by the multiplier of Figure 2 and based on two 8× 4
multipliers. In this architecture, 8 × 4 multipliers operate in
parallel; therefore, reducing the critical path delay in 8 × 4
multipliers significantly reduces the 8-bit multiplier delay. The
carry propagation in Π0s of 8 × 4 multipliers is the leading
reason for the strong dependence between Π0s and blocks
the possibility of parallel operation of them; hence, causing
a significant delay and an increase in power consumption.
Therefore, if we disregard carries in Π0 columns, each column
can operate in parallel independently of the other column,
reducing delay. Also, by disregarding carry, we can use simple
partial product units with less hardware complexity. Figure 3
shows our proposed partial product units. In general, we can
divide the design process into two steps. First, we must design
approximate 8×4 multipliers based on disregarding the carry.
For each 8×4 multiplier, there are many combinations of Π0s
columns to disregard the carry. Each of these creates a new
approximate 8 × 4 multiplier. In the second step, we have to
choose two multipliers from the approximate 8×4 multipliers
of the previous step, for which many combinations are possible
too. In the end, we will have a large number of approximate
8-bit multipliers, each having a different critical path delay,
power consumption, area, and levels of accuracy. This paper
aims to use approximate computing and reduce the level of
accuracy more optimally.

1) Proposed approximate 8×4 multipliers: Figure 4 shows
some of the proposed carry-disregard-based approximate 8×4
multipliers. The total number of proposed 8× 4 multipliers is
9, which are cd2 to cda. In all of them, our starting point is
to disregard the carries of the second column because the first
column has no dependence on the carry and contains only one
Λ. Therefore in all proposed approximate 8 × 4 multipliers,
we have disregarded the carries from the second column to a
specific column. Hence, in their name, there is a number in

hexadecimal form, which shows from the second column to
which column we disregard the carries. For example, the cd6
approximate multiplier (i.e., Figure 4c) disregards the carries
from the Column 2 to the Column 6. As a result, in this multi-
plier, all columns 1 to 7 operate independently and in parallel.
As stated earlier, we can use simpler and more efficient units
instead of Π0s since we disregard carries in partial product
units. Therefore, we propose three partial product units and use
them in our approximate multipliers. Figure 3 shows the logic
circuits of Carry Disregard Partial Product Unit (Π1), Half-
adder-Based Partial Product Unit (Π2), and Full-adder-Based
Partial Product Unit (Π3) as follows: The Π1 uses one Λ for
single-bit multiplication and one XOR gate for determining the
sum of Sin with Λ output. Π1 has no inputs and outputs for the
carry (i.e., Cin and Cout, respectively) and disregards them.
The Π2 has a Λ for single-bit multiplication and a half-adder
for calculating the sum of Sin with Λ output. The Π2 has a
Cout output, but the only difference with a conventional Π0 is
that it disregards the Cin input. The Π3 has two Λs for single-
bit multiplications and a full-adder for determining the sum of
Sin with the output of two Λs. This unit has the Cout output
but disregards the Cin input. The Π3 is a combination of two
Π0s, so its use reduces the two carry outputs (i.e., the Cout

outputs in the two Π0s) to one. Therefore, for example, the Π2
in Column 5 of cd3 (i.e., Figure 4b), can operate independently
and in parallel with its previous columns.

The approximate multiplier cd2 (i.e., Figure 4a) disregards
only a carry of Column 2. Therefore, the Column 2 has a Π1,
and columns 1 to 3 operate independently and in parallel. As a
result, its critical path delay is 41 cycles, less than the delay of
the exact 8× 4 multiplier (i.e., 49 cycles). In all approximate
8 × 4 multipliers in Figure 4, we show the critical path in
red. Approximate multipliers cd3 (i.e., Figure 4b), cd4, cd5,
and cd6 (i.e., Figure 4c), follow a similar procedure in their
architecture. The cd3 disregards all the carries up to Column 3,
so all the elements up to this column are Π1 type. In Column
4, there is an Π3 and an Π2. Column 5 also contains an Π2,
so other elements of this multiplier are Π0s. The approximate
multipliers cd4 and cd6 to disregard the carries up to columns 4
and 6, respectively. The critical path delay of the approximate
multipliers cd3 to cd6 is 37, 33, 29, and 25 cycles, respectively.
We can see that if we disregard the carries in more columns,
the critical path delay decreases.

The approximate multiplier cd7 (i.e., Figure 4d) up to
Column 7 disregards all the carries, and as a result, all columns
1 to 8 operate independently and in parallel. Up to Column
7, its cells are Π1s, and in Column 8, it has one Π3 and
one Π2. However, since in cd7, the first partial product unit
in Column 9 does not generate any carry, therefore, we use
a Π1. The critical path delay of the cd7 is 21 cycles. The
cd8 (i.e., Figure 4e) up to Column 8 disregards all the carries;
hence, all columns 1 to 9 operate independently and in parallel.
Therefore, columns 2 to 8 have Π1s, and in Column 9, because
the first partial product unit does not generate any carry, we use
a Π1. The cd8 also has two Π3s and one Π2 that we connect
their Cout output to the Sin input of the adjacent cell. Since
we disregard the carries in more columns, cd8 has a smaller
critical path delay, which is 13 cycles. The cd9 (i.e., Figure 4f)

4

b0

b1

b2

b3

SA3SA4SA5SA6SA7SA8SA9SA10SA11 SA0SA1SA2

b4

b6

a0a1a2a3a4a5a6a7

0

SB3SB4SB5SB6SB7SB8SB9SB10SB11 SB0SB1SB2

b5

b7

0

0

0

Carry Look-ahead Adder

0
4

R4R5R6R7R8R9R10R11R12R13R14R15 R3 R2 R1 R0

a0a1a2a3a4a5a6a7

0

0

0

0

Group AGroup B

Fig. 2: The architecture of an exact 8-bit multiplier using two exact 8×4 multipliers.

(a)

HA

(b)

FA

(c)

Fig. 3: Circuits and symbols of (a) Π1, (b) Π2, and (c) Π3

disregards all carries up to Column 9, and columns 1 to 10
operate in parallel and independently. The cd9 has two Π2s,
and we connect the Cout output of the first one to the Sin input
of the second one. Also, its other partial product units are of
the Π1 type. The cda up to Column 10 disregards all carries,
and the partial product unit in Column 11 does not generate
carry. Therefore, all its elements are of Π1 type, hence, it
has the simplest circuit among other proposed approximate
8 × 4 multipliers, which leads to lower power consumption
and smaller area. The critical path delay of the cd9 and cda
equals 7 cycles, the most negligible delay compared to all the
proposed approximate 8× 4 multipliers.

2) Approximate 8-bit Carry Disregard Multiplier (CDM8):
After designing the approximate 8×4 multipliers, we now have
to choose two multipliers for groups A and B. Therefore, we
must choose so that the final 8-bit multiplier has the least
possible delay and, at the same time, is optimal in terms
of power consumption and area. In this architecture, we can
divide the factors causing the delay in the 8-bit multiplier into
three parts: (i) The delay of the 8× 4 multiplier of Group A,
(ii) the delay of the 8 × 4 multiplier of Group B, and (iii)
the delay of CLA. Accordingly, we can minimize the final
delay when the three delays are as small as possible, and the
units operate in parallel. The two 8× 4 multipliers of groups
A and B are completely independent and operate in parallel.
Nevertheless, the CLA adder depends on the results of both.
As a result, we can say that CLA is a limiting factor. So if we
can provide the CLA input pair of bits as quickly as possible,
the CLA can start operating correctly. For example, according
to Figure 2, by producing the pairs of bits SA4 and SB0

TABLE I: Proposed approximate CDM8s

Design

C
D

M
8

44

C
D

M
8

50

C
D

M
8

62

C
D

M
8

73

C
D

M
8

74

C
D

M
8

84

C
D

M
8

95

C
D

M
8

a6

C
D

M
8

a7

C
D

M
8

a8

C
D

M
8

a9

C
D

M
8

aa

Group A cd
4

cd
5

cd
6

cd
7

cd
7

cd
8

cd
9

cd
a

cd
a

cd
a

cd
a

cd
a

Group B cd
4

E
x
a
ct

cd
2

cd
3

cd
4

cd
4

cd
5

cd
6

cd
7

cd
8

cd
9

cd
a

with a minor delay compared to each other and continuing
this process to the more significant bits, respectively, the CLA
can operate parallel to groups A and B. Therefore, to achieve
this parallelism, we must choose 8 × 4 multipliers of groups
A and B in a specific way.

Table I shows the approximate 8-bit CDM8 xy multipliers
with different ranges of accuracy, critical path delay, power
consumption, and area. The hexadecimal numbers x and y
determine the type of 8 × 4 multipliers of groups A and B
(i.e., cdx and cdy), respectively. For example, the CDM8 84
multiplier in groups A and B uses the approximate 8 × 4
multipliers cd8 and cd4, disregarding the carry up to Column 8
and Column 4, respectively. This approximate 8-bit multiplier
determines the output of Column 8 of Group A (i.e., SA7)
after 13 cycles and the output of Column 4 of Group B (i.e.,
SB3) after 13 cycles. While the exact multiplier of Figure 2
obtains the outputs of Column 8 of Group A and Column 4 of
Group B after 37 and 21 cycles, respectively, which differ by
16 cycles. Hence, the proposed multiplier CDM8 84 not only
achieves the outputs of Column 8 of Group A and Column 4
of Group B faster but also the difference between them is 0
cycle. Therefore, the CLA can calculate the sum of the two
faster. On the other hand, in CDM8s, we used simpler Π1, Π2,
and Π3, which also reduced power consumption and area.

V. EXTENSION OF PROPOSED APPROXIMATE MULTIPLIER

Figure 5 shows the architecture of the proposed approximate
16-bit multipliers. Each multiplier has four 8-bit approximate
multipliers and four approximate 8-bit adders. The four 8-
bit multipliers are independent and operate in parallel, which
reduces the critical path delay of the approximate 16-bit
multiplier. Also, each approximate adder is a smaller-scale
adder consisting of one Approximate 8-bit Carry Look-ahead
Adders (CLAx). Using such adders reduces many hardware
complexities. CLAxs only have no carry output (i.e., Cout); as

5

b0

b2

a0a1a2a3a4a5a6a7

0

S3S4S5S6S7S8S9S10S11 S0S1S2

b1

b30

(a) cd2

b0

b2

a0a1a2a3a4a5a6a7

0

S3S4S5S6S7S8S9S10S11 S0S1S2

b1

b3

(b) cd3

b0

b1

b2

b3

a0a1a2a3a4a5a6a7

0

S3S4S5S6S7S8S9S10S11 S0S1S2

(c) cd6

b0

b1

b2

b3

a0a1a2a3a4a5a6a7

0

S3S4S5S6S7S8S9S10S11 S0S1S2

0

(d) cd7

b0

b1

b2

b3

a0a1a2a3a4a5a6a7

0

S3S4S5S6S7S8S9S10S11 S0S1S2

(e) cd8

b0

b1

b2

b3

a0a1a2a3a4a5a6a7

0

S3S4S5S6S7S8S9S10S11 S0S1S2

0

(f) cd9

Fig. 4: Proposed approximate 8× 4 carry disregard multipliers

a result, the approximate adders related to the least-significant
bits (i.e., CLAx1 and CLAx2) are independent of the ap-
proximate adders in the most-significant bits (i.e., CLAx3
and CLAx4). Consequently, their parallel operation improves
the delay of the approximate 16-bit multiplier. In general,
each proposed approximate N -bit multiplier (i.e., N ≥ 16)
has four N/2-bit smaller scale multipliers (i.e., Mul 1 to
Mul 4) and four N/2-bit smaller scale approximate adders.
Each N/2-bit approximate adder is CLA-based, consisting of
N
16 − 1 exact 8-bit CLAs and one 8-bit CLAx in its most-
significant bits. The N/2-bit approximate adder disregards the
final carry; therefore, the approximate adders related to the
least-significant bits and the approximate adders in the most-
significant bits are independent and operate in parallel.

The design process of approximate N -bit multipliers (N ≥
16) is similar, and we can divide it into two steps. In the
first step, we must design the desired approximate N/2-bit
multipliers. Hence, the starting point is designing of approx-
imate 16-bit multiplier and using it recursively for the larger
multiplier. For the proposed approximate 16-bit multiplier,
we use the CDM8s that we introduced earlier. The CDM8s
have much lower critical path delay than conventional 8-bit
multipliers and operate in parallel. Hence, these factors cause
a significant reduction in the delay of the 16-bit multiplier. In
the second step, we have to choose four multipliers among
the CDM8s. There are many choices for this, each of which
creates a new approximate multiplier. Generally, the final delay
of the 16-bit multiplier depends on the delay of four 8-bit
multipliers and the delay of approximate adders (i.e., CLAxs).
Hence, we see a significant reduction in the delay of the
approximate 16-bit multiplier when these units can operate in
parallel. Nevertheless, the CLAxs can not operate in parallel
with 8-bit multipliers because CLAxs depend on the results
of 8-bit multipliers. However, each CLAx has eight pairs of
bits as inputs. Hence if we can provide the pairs of input
bits as quickly as possible, the CLAx can start the summation
process correctly. Also, another essential factor is the time
difference of providing two bits in each pair. In other words, as
regards each pair, if we can provide two bits with a negligible

CLAx1

MUL_1:
Alow×Blow

MUL_2:
Ahigh×Blow

MUL_3:
Alow×Bhigh

MUL_4:
Ahigh×Bhigh

CLAx2

CLAx3

CLAx4

High LowHigh LowHigh LowHigh Low

R7-R0R15-R8R23-R16R31-R24

88

888

88
88

8

Fig. 5: Proposed approximate 16-bit multiplier architecture

time difference, then CLAx can start its calculations sooner.
The proposed 8-bit multipliers similarly had such a situation
regarding their CLAs, which we discussed comprehensively in
Section IV and explained by mentioning an example.

Based on this, we propose fourteen approximate 16-bit
unsigned multipliers called 16-bit Carry Disregard Multiplier
(CDM16), which have different accuracy, delay, power con-
sumption, and area levels. Table II shows the type of 8-bit
multipliers in each proposed CDM16. We have named each
proposed 16-bit multiplier CDM16 wxyz, in which the hex-
adecimal digits w, x, y, and z show that we have disregarded
the carry in multipliers mul 1 to mul 4, up to which bit of
their output. Therefore, these digits determine the type of
CDM8s that we have considered for each of them. For ex-
ample, in the CDM16 b330, we used CDM8 a8, CDM8 40,
CDM8 40, and an exact multiplier for the multipliers mul 1
to mul 4, respectively. Choosing 8-bit multipliers in this way
reduces the delay of 16-bit multipliers. Also, using CDM8s
and CLAxs reduce hardware complexity and consequently
improves power consumption and area.

VI. ACCURACY ANALYSIS

A. Accuracy Criteria

Accuracy criteria indicate the error level and, consequently,
the quality of the outputs. Several criteria have been proposed
to assess the accuracy of approximate arithmetic circuits [19],
[20], [28], [29]. Let us assume that ΩP

i is the output of
the exact multiplier that calculates the multiplication of N -
bit operands Ai and Bi accurately (i.e., ΩP

i = AiBi). Also,

6

TABLE II: Proposed approximate CDM16s

Design Mul 1: Mul 2: Mul 3: Mul 4:
AlowBlow AhighBlow AlowBhigh AhighBhigh

CDM16 0000 Exact Exact Exact Exact

CDM16 3000 CDM8 40 Exact Exact Exact

CDM16 7000 CDM8 84 Exact Exact Exact

CDM16 8000 CDM8 95 Exact Exact Exact

CDM16 8330 CDM8 95 CDM8 40 CDM8 40 Exact

CDM16 b330 CDM8 a8 CDM8 40 CDM8 40 Exact

CDM16 f770 CDM8 aa CDM8 84 CDM8 84 Exact

CDM16 f880 CDM8 aa CDM8 95 CDM8 95 Exact

CDM16 f883 CDM8 aa CDM8 95 CDM8 95 CDM8 40

CDM16 fbb3 CDM8 aa CDM8 a8 CDM8 a8 CDM8 40

CDM16 fff7 CDM8 aa CDM8 aa CDM8 aa CDM8 84

CDM16 fff8 CDM8 aa CDM8 aa CDM8 aa CDM8 95

CDM16 fffb CDM8 aa CDM8 aa CDM8 aa CDM8 a8

CDM16 ffff CDM8 aa CDM8 aa CDM8 aa CDM8 aa

assume that ΩX
i is the output of the approximate multiplier,

which an error can accompany. Table III shows all the accuracy
criteria we used in this paper. Error (Ei) and Error Distance
(EDi) are primary criteria that other accuracy criteria calcu-
lated by them. All the proposed approximate multipliers are
carry-disregard-based. Therefore their output is always smaller
than the output of the exact multiplier for all possible input
combinations. Consequently, in our approximate multipliers,
Ei and EDi are equal.

B. CDM8 Accuracy Analysis

Our purpose in this section is to provide an equation for
EDi. This equation can determine the EDi for all possible
input combinations for any design of CDM8. Also, by obtain-
ing EDi, we can easily calculate other accuracy criteria. The
CDM8 xy multipliers have two 8× 4 multipliers in groups A
and B (i.e., cdx and cdy), then an exact CLA calculates the
summation of the 8×4 multipliers output. Therefore, according
to the Equation (2), EDi for each CDM8 xy (i.e., ED8

xy) is
equal to the sum of the product of the EDi of 8×4 multipliers
(i.e., EDcdx

and EDcdy
) in own weight. First, we determine

the EDcdx of the Group A 8× 4 multiplier. The cdx contains
11 columns, which ignores all the carries from Column 2 to
Column x. Therefore, in the first step, for each combination
of inputs, we determine the number of carries that Column 2
to Column x generate independently (i.e., without propagating
the carries from one column to the adjacent column). In the
second step, for each column, we multiply the number of
generated carries (i.e., Ck(Ai, Bi)) by its weight and calculate
the sum of their results. Hence, Equation (3) calculates EDcdx

.

ED8
xy = EDcdx + 24 × EDcdy (2)

EDcdx(Ai, Bi) =
x∑

k=0

2k × Ck(Ai, Bi) (3)

In Equation (3), k = 0 indicates that the 8× 4 multiplier does
not disregard any carries and thus will work accurately; hence
for k = 0, the C0(Ai, Bi) is 0. We want to determine the
number of carries generated by each column for each input
combination (i.e., Ck(Ai, Bi)). Pair of logical ones in each
column generate a carry independently. Therefore, the number

of generated carries in each column equals the integer part of
the division of the number of logical ones by two. That is,

Ck(Ai, Bi) =

⌊
L1 k(Ai, Bi)

2

⌋
, (4)

where L1 k(Ai, Bi) determines the number of logical ones in
column k per Ai and Bi inputs. If we determine the summation
of the logical ones and logical zeros in each column, then we
get the number of logical ones in that column. Based on this,
Equation (5) determines the number of carries each column
generates for each input combination.

Ck(Ai, Bi) =

0 k = 0, 1

⌊
1
2

∑k−1
n=0 ak−n−1bn

⌋
2 ≤ k ≤ 4

⌊
1
2

∑3
n=0 ak−n−1bn

⌋
5 ≤ k ≤ 8

⌊
1
2

∑3
n=k−8 ak−n−1bn

⌋
9 ≤ k ≤ 11

(5)

Where k is the column number of the cdx, a0 − a7 and b0 −
b3 are Ai and Bi input bits, respectively. Also, calculating
the EDcdy is entirely similar to the EDcdx so that we can
determine the number of generating carries in each column of
the cdy (i.e., C∗

k(Ai, Bi), according to Equation (6).

C∗
k(Ai, Bi) =

0 k = 0, 1

⌊
1
2

∑k−1
n=0 ak−n−1bn+4

⌋
2 ≤ k ≤ 4

⌊
1
2

∑3
n=0 ak−n−1bn+4

⌋
5 ≤ k ≤ 8

⌊
1
2

∑3
n=k−8 ak−n−1bn+4

⌋
9 ≤ k ≤ 11

(6)

Where k is the column number of the cdy multiplier, a0 − a7
and b4− b7 are Ai and Bi input bits, respectively. As a result,
we can calculate the EDcdy according to Equation (7) for the
inputs Ai and Bi. Consequently, we can calculate the ED8

xy

according to Equation (8).

EDcdy (Ai, Bi) =

y∑
k=0

2k × C∗
k(Ai, Bi) (7)

ED8
xy(Ai, Bi) =

x∑
k=0

2k × Ck(Ai, Bi)

+ 24 ×
y∑

k=0

2k × C∗
k(Ai, Bi) (8)

C. CDM(N − bit) Accuracy Analysis

This section aims to provide an equation for EDi for all
possible input combinations for any design of CDM(N − bit)
(for N ≥ 16). We first determine the EDi equation for any
design of CDM16 and then generalize it for CDM(N − bit)
multipliers. In general, the EDi of each CDM16 is due to
the EDi of the four CDM8s and the EDi of the four CLAxs.
Therefore, the EDi of each CDM16 is equal to the sum of the

7

TABLE III: Accuracy criteria

Accuracy Criteria Equation Description

Error (Ei) Ei = ΩP
i − ΩX

i
Refers to the difference between the exact multiplier’s output and the
approximate multiplier’s output [28].

Error Distance (EDi) EDi = |Ei| = |ΩP
i − ΩX

i | Represents the absolute value of Ei [19], [20], [28], [29].

Mean Error Distance (MED) 1
22N

∑22N

i=1 EDi Refers to the average of EDi for all possible input combinations [19], [29].

Relative Error Distance (REDi) EDi/Ω
P
i ∀ΩP

i ̸= 0
Refers to the ratio of EDi to the output of the corresponding exact
multiplier that is not equal to zero [20], [28], [29].

Mean Relative Error Distance (MRED) 1
22N

∑22N

i=1 REDi
Refers to the average of REDi for all possible input combinations [19],
[20], [28], [29].

Normalized Mean Error Distance (NMED) MED/(2N − 1)2
Refers to the average of EDi divided by the most considerable exact
multiplier output, i.e., (2N − 1)2 [19], [20], [28], [29].

Probability of Correctness (PC) #ΩC/22N
Refers to the ratio of the number of correct outputs of the approximate
multiplier to the total number of possible outputs. #ΩC is the number of
correct outputs of the approximate multiplier [20], [28].

Number of Effective Bits (NoEB) 2N − log2(1 +
√
MSE)

MSE is the mean squared error obtained as the average of ED2
i for all

possible input combinations, i.e., MSE = 1
22N

∑22N

i=1 ED2
i [20], [28].

product of each CDM8s error distance and the CLAxs error
distance in their corresponding weight. That is,

ED16 = ED8
X1Y 1 + 28(ED8

X2Y 2) + 28(ED8
X3Y 3)

+ 216(ED8
X4Y 4) + 28(EDCLAx L) + 216(EDCLAx M), (9)

where ED8
XiY i is the error distance of each CDM8,

EDCLAx L is the error distance of the least-significant part
approximate adders of the CDM16 (i.e., CLAx1 and CLAx2),
and EDCLAx M is the error distance of the most-significant
part approximate adders of the CDM16 (i.e., CLAx3 and
CLAx4). Therefore, we have to first calculate the ED8

XiY i

for each approximate 8-bit multiplier, which is possible using
Equation (8). Next, we have to obtain the EDi of the ap-
proximate adders (i.e., EDCLAx L and EDCLAx M). Hence,
we must determine the least-significant and most-significant
parts of each MUL 1 to MUL 4 output. The output of
these four multipliers can be calculated by Equations (10)
to (13). According to Equation (14), we can separate their
most-significant part and least-significant part (i.e., Rmi H

and Rmi L), where ri 0 to ri 15 are the bits of the MUL i
multiplier output. As a result, according to Equation (15),
by dividing the output of each multiplier by 28, the integer
part of the division result will be the most-significant part
of the desired multiplier output. By obtaining the most-
significant part, we can easily calculate least-significant part
using Equation (16).

MUL 1 : Rm1 = ALBL − ED8
X1Y 1(AL, BL) (10)

MUL 2 : Rm2 = AHBL − ED8
X2Y 2(AH , BL) (11)

MUL 3 : Rm3 = ALBH − ED8
X3Y 3(AL, BH) (12)

MUL 4 : Rm4 = AHBH − ED8
X4Y 4(AH , BH) (13)

Rmi =

15∑
n=0

2n × ri n = 28 ×Rmi H +Rmi L

= 28
15∑

n=8

2n−8 × ri n +

7∑
n=0

2n × ri n (14)

Rmi H =
⌊Rmi

28

⌋
(15)

Rmi L = Rmi − 28 ×Rmi H (16)

The CLAxs work like a exact 8-bit CLA, except that they
disregard the last generated carry, which weights 28. Hence,
to calculate the EDCLAx L, we need to obtain the number
of carries that the CLAx1 and CLAx2 disregard. According
to Equation (17), by dividing the sum of the Rm1 H , Rm2 L,
and Rm3 L by the weight of the last generated carry (i.e., 28),
the integer part of the division result is the number of carries
which the CLAx1 and CLAx2 disregard. In the same way,
according to Equation (18), we can get the number of carries
that the CLAx3 and CLAx4 disregard.

NCLAx L(Ai, Bi) =
⌊Rm1 H +Rm2 L +Rm3 L

28

⌋
(17)

NCLAx M (Ai, Bi) =
⌊Rm2 H +Rm3 H +Rm4 L

28

⌋
(18)

Hence, by Equation (19), we can calculate the EDCLAx L.
It is equal to the product of the number of carries that
the CLAx1 and CLAx2 disregard (i.e., NCLAx L) by the
weight of those carries (i.e., 28). Similarly, Equation (20)
calculates the EDCLAx M . Finally, using Equation (21), we
can calculate the error distance of each CDM16. The EDi

of each CDM(N − bit) (for N ≥ 16) is equal to the sum
of the product of each MUL 1 to MUL 4 error distance and
the approximate adders error distance in their corresponding
weight. The weight corresponding to MUL 1 to MUL 4 are 1,
2N/2, 2N/2, and 2N , respectively, and the weight correspond-
ing to approximate adders in the least-significant and most-
significant parts are 2N/2 and 2N , respectively. According to
Equations (22) and (23), we can determine the most-significant
and least-significant parts of each MUL 1 to MUL 4 output.
Similar to the 16-bit multipliers, we can get the error distance
of each CDM(N − bit). Hence, Equation (24) can easily
calculate EDN for N ≥ 16.

EDCLAx L(Ai, Bi) = 28 ×NCLAx L(Ai, Bi) (19)

EDCLAx M (Ai, Bi) = 28 ×NCLAx M (Ai, Bi) (20)

8

ED16 = ED8
X1Y 1 + 28(ED8

X2Y 2 + ED8
X3Y 3) + 216(ED8

X4Y 4)

+ 216(
⌊⌊Rm1

28

⌋
+Rm2 − 28

⌊
Rm2
28

⌋
+Rm3 − 28

⌊
Rm3
28

⌋
28

⌋
)

+ 224(
⌊⌊Rm2

28

⌋
+

⌊
Rm3
28

⌋
+Rm4 − 28

⌊
Rm4
28

⌋
28

⌋
) (21)

Rmi H =
⌊Rmi

2N/2

⌋
(22)

Rmi L = Rmi − 2N/2 ×Rmi H (23)

EDN =

EDMUL1 + 2
N
2 (EDMUL2 + EDMUL3) + 2N (EDMUL4)

+ 2N (
⌊⌊Rm1

2
N
2

⌋
+Rm2 − 2

N
2

⌊
Rm2

2
N
2

⌋
+Rm3 − 2

N
2

⌊
Rm3

2
N
2

⌋
2

N
2

⌋
)

+ 2
3N
2 (

⌊⌊Rm2

2
N
2

⌋
+

⌊
Rm3

2
N
2

⌋
+Rm4 − 2

N
2

⌊
Rm4

2
N
2

⌋
2

N
2

⌋
) (24)

VII. EXPERIMENTS AND RESULTS

A. Hardware Efficiency Criteria

Critical path delay, power consumption, and area are the
main criteria for hardware evaluation and analysis. On the
other hand, combining these main criteria and considering
them together is very important. Therefore, we consider Power
Delay Product (PDP), Power Area Delay Product (PADP),
Power Delay Error Product (PDEP), and Power Area Delay
Error Product (PADEP) criteria for a more comprehensive
evaluation and analysis of different designs. In PDEP and
PADEP criteria, we use MRED for error.

B. Experimental setups

We used Verilog HDL to describe the proposed approximate
multipliers and the ISE Design Suite-Xilinx to verify them.
The Genus Synthesis Solution was then used to synthesize the
proposed designs with 45-nm NanGate technology. Afterward,
we analyzed the three primary hardware efficiency criteria:
critical path delay, power consumption, and area. For evalu-
ating the accuracy, we determined all the mentioned accuracy
criteria in Section VI-A using Python for the proposed 8-bit
and 16-bit multipliers for all possible input combinations (i.e.,
216 and 232, respectively).

C. Results
Table IV, shows the results of our evaluations regarding

the hardware efficiency and accuracy criteria for the proposed
unsigned 8-bit multipliers. Compared to the exact unsigned
8-bit multiplier (denoted as “Exact8” in Table IV), CDM8s
improve the essential hardware efficiency criteria, i.e., critical
path delay, power consumption, and area, by 29%, 29%, and
30%, respectively. Among all proposed CDM8s, CDM8 51
has the highest delay, power consumption, and area (improved
by 15.7%, 8.8%, and 10.4%, respectively, compared to the
Exact8). However, it has the lowest MRED, which is 0.0039.
The lowest power consumption and area belong to CDM8 aa

(improved by 51.5% and 48.1%, respectively, compared to the
Exact8). Nevertheless, has the highest MRED is 0.2145 among
all the CDM8s. Meanwhile, the CDM8 95 with MRED of
0.0518 has the lowest critical path delay, which has improved
it by 36% compared to the exact multiplier and significantly
reduced power and area by 31.9% and 33.3%, respectively.

The PDP indicates the energy efficiency, and the PADP
evaluates the energy efficiency and area together. CDM8s have
improved them by 48.1% and 64.8%, respectively. CDM8 aa
has the best PDP and PADP, mainly because of its lower
power consumption and area than all CDM8s. Also, the
PDEP evaluates the energy efficiency and MRED together.
The PADEP, the product of PDP, Area, and MRED, evaluates
all these criteria together. CDM8 51 has the lowest PDEP
and PADEP, mainly due to its very low MRED compared to
all CDM8s. Also, all the CDM8s have a completely accurate
result in most different input combinations, and their errors
are significantly less in cases with inaccurate results.

Table V, shows the results of our evaluations for the
proposed unsigned 16-bit multipliers. Compared to the exact
unsigned 16-bit multiplier (denoted as “Exact16” in Table V),
CDM16s improve the critical path delay, power consumption,
and area by 35%, 24%, and 23%, respectively. Among all
CDM16s, CDM16 0000, CDM16 3000, CDM16 7000, and
CDM16 8000 have the highest delay, power consumption,
area, PDP, and PADP, respectively, but have the least MRED,
which is 0.009806. However, compared to the Exact16, they
improved mentioned hardware criteria by 24%, 8%, 6%, 30%,
and 34%, on average. The CDM16 ffff and CDM16 fffb
have the lowest power consumption, area, PDP, and PADP,
respectively, but have the highest MRED among all CDM16s.
Compared to the Exact16, they improved the hardware criteria
along with the delay by 42%, 43%, 65%, 60%, and 40%,
on average. CDM16 f880 and CDM16 fbb3 have the lowest
delay among all CDM16s. These two multipliers have reduced
the delay by 43% compared to Exact16 and have improved
the power, area, PDP, and PADP by 30%, 30%, 60%, and
72%, on average. Also, among all CDM16s, CDM16 f880 and
CDM16 fbb3 have the best PDEP and PADEP, respectively.

VIII. COMPARISON AND DISCUSSION

Table IV shows the hardware efficiency and accuracy
criteria of some existing approximate unsigned 8-bit array
multipliers in the literature that we intend to compare with
the CDM8 multipliers. CDM8s have reduced the critical path
delay, power consumption, and area by 14.3%, 22.8%, and
26.4% on average compared to the other approximate array
multipliers in Table IV; CDM8s have also improved PDP,
PADP, PDEP, and PADEP by 37.1%, 52.7%, 37.5%, and
64.1% respectively. Regarding the accuracy criteria, CDM8s
have improved MRED by 17.6%. Therefore, as the results
show, the CDM8s have improved both the accuracy and the
hardware efficiency.

Regarding the power consumption and PDP, [30] obtained
the best result, followed by the three proposed multipliers
CDM8 aa, CDM8 a9, and CDM8 a8, respectively. [30] Com-
pared to them have improved power consumption, PDP, and

9

TABLE IV: Hardware efficiency and accuracy criteria of the proposed 8-bit multipliers and comparable literature.
Proposed Hardware efficiency criteria Accuracy criteria
Method Area(µm2) Power(µW) Delay(nS) PDP PADP PDEP PADEP MED NMED MRED NoEB PC (%)

Exact8 * 300.6 85.61 0.76 65.064 19558 0 0 0 0 0 16 100
CDM8 44 257.7 76.777 0.65 49.905 12860 0.653 168.344 97.75 0.00150 0.0133 8.49 52.9
CDM8 51 269.2 78.071 0.641 50.043 13472 0.195 52.405 14.25 0.00022 0.0039 11.29 59.57
CDM8 62 253.2 74.851 0.584 43.713 11068 0.349 88.434 35.25 0.00054 0.0081 10.10 51.1
CDM8 73 237.5 70.826 0.563 39.875 9470 0.644 152.946 89.25 0.00137 0.0164 8.87 42.52
CDM8 74 227.7 66.27 0.529 35.057 7982 0.834 189.982 157.25 0.00242 0.0241 8.08 37.09
CDM8 84 216.3 62.704 0.522 32.731 7080 1.030 222.873 225.25 0.00346 0.0319 7.63 33.58
CDM8 95 200.6 58.337 0.486 28.352 5687 1.448 290.511 441.25 0.00678 0.0518 6.66 29.05
CDM8 a6 193.1 55.601 0.502 27.912 5390 2.108 407.034 777.25 0.01195 0.0766 5.81 26.40
CDM8 a7 183.8 52.056 0.502 26.132 4803 2.793 513.305 1321.25 0.02032 0.1084 5.00 24.63
CDM8 a8 171 48.724 0.502 24.459 4182 3.731 638.008 2409.25 0.03705 0.1548 4.09 23.06
CDM8 a9 166.2 47.57 0.505 24.023 3992 4.581 761.388 3689.25 0.05673 0.1936 3.36 22.43
CDM8 aa 156.1 41.548 0.548 22.768 3554 4.809 750.668 4713.25 0.07248 0.2145 2.85 22.26
Other approximate 8-bit array multipliers in the literature

[14] 278.7 82.5 0.65 53.6 14955 0.096 26.77 5.75 0.00008 0.0018 12.42 67.58
[15] 301.6 143.5 0.77 110.5 33340 3.13 943.52 397.95 0.00612 0.0283 NR† 30.27
[30] 217.3 40 0.53 21.2 4607 1.71 371.76 578.72 0.0089 0.0807 NR† NR†

[25] 349.3 50.6 0.58 29.3 10251 7.42 2590.49 1664.64 0.0256 0.2527 NR† NR†

* Exact unsigned 8-bit multiplier (using two exact 8×4 multipliers).
† Not Reported.

TABLE V: Hardware efficiency and accuracy criteria of the proposed 16-bit multipliers.

Method Hardware efficiency criteria Accuracy criteria
Area(µm2) Power(µW) Delay(nS) PDP PADP PDEP PADEP MED NMED MRED NoEB PC (%)

Exact16 * 1348.4 501.4 1.35 677 912718 0 0 0 0 0 32 100
CDM16 0000 1318.6 479.9 1.03 494 651714 4.84 6390 8222699 0.001914 0.009806 7.98 19.61
CDM16 3000 1298.9 473.3 1.02 486 631316 4.76 6190 8222699 0.001914 0.009806 7.98 13.85
CDM16 7000 1237.7 453.1 1.02 464 575408 4.55 5642 8222699 0.001914 0.009806 7.98 8.19
CDM16 8000 1225.2 448.2 1.02 459 563364 4.50 5524 8222699 0.001914 0.009806 7.98 7.55
CDM16 8330 1183.9 436.9 0.94 411 486725 4.03 4777 8222766 0.001914 0.009815 7.98 5.12
CDM16 b330 1155.5 427.3 0.94 402 464574 3.94 4560 8222766 0.001914 0.009816 7.98 4.49
CDM16 f770 1022.5 375.9 0.79 300 306769 2.99 3059 8223980 0.001914 0.009974 7.98 2.04
CDM16 f880 990.6 365.1 0.77 284 281707 2.86 2842 8225459 0.001915 0.010089 7.98 1.81
CDM16 f883 970.6 359.3 0.78 280 272696 3.08 2993 8609497 0.002 0.010976 7.95 1.63
CDM16 fbb3 905.7 335.1 0.77 259 234914 2.97 2692 8610775 0.002 0.011462 7.95 1.33
CDM16 fff7 825.1 306.0 0.81 249 205814 6.69 5525 23076674 0.005373 0.026846 6.66 1.07
CDM16 fff8 809.2 301.8 0.81 245 199047 8.70 7047 36831042 0.008575 0.035407 5.92 1.04
CDM16 fffb 773.3 289.0 0.81 235 182165 18.44 14262 156630850 0.036469 0.078296 3.59 1.00
CDM16 ffff 767.9 289.0 0.81 235 180910 25.39 19501 307625794 0.071626 0.107794 2.35 0.99

* Exact 16-bit multiplier (using four exact 8-bit multipliers).

MRED by 12.8%, 10.7%, and 55.9%, respectively. However,
those three proposed multipliers are the best in terms of area
and PADP. They are also among the best in terms of delay.
Hence, compared to [30], they have improved by 24.3%,
15.1%, and 2.3%, respectively. Regarding critical path delay,
CDM8 95 is the best, which is 8.3% better compared to [30].
Also, CDM8 95 has a higher accuracy than [30], which im-
proved it by 35.8%. On the other hand, most multipliers [14],
[15], and [25] have the highest delay, power consumption,
area, PDP, and PADP; Hence, compared to [14], [15], and
[25], the three mentioned proposed multipliers are 22.7%,
50.2%, 46.9%, 63.2%, and 80% better, respectively.

Regarding the MRED, PC, PDEP, and PADEP, the [14]
has obtained the best results, followed by the four proposed
multipliers CDM8 51, CDM8 62, CDM8 73, and CDM8 44.
[14] compared to them, improved MRED, PC, PDEP, and
PADEP by 82%, 23.8%, 79.1%, and 76.8%, respectively,
which shows an insignificant error of [14]. Nevertheless,
those four proposed multipliers have more acceptable results

in power consumption, delay, area, PDP, and PADP, which
have improved by 9%, 8%, 9%, 15%, and 22%, respectively,
compared to [14].

In the following, we intend to compare the CDM8s with
other approximate multipliers with different architectures. We
selected about 80 approximate multipliers of recent years [15],
[17]–[19], [21]–[25], [29]–[45]. All these existing approximate
multipliers are 8-bit, unsigned, and synthesized under 45 nm
NanGate technology by reference papers. The architecture of
the selected multipliers is different, so that we can divide
them into four types: compressor-based multipliers [19], [21],
[22], [31]–[33], [36], [37], [40]–[44], array multipliers [14],
[15], [22]–[25], [30], logarithmic multipliers [29], [38], [39]
and operand truncation-based multipliers [17], [18], [29], [34],
[35], [39].

Figure 6 shows the power consumption, area, delay, and
PDP of approximate multipliers in terms of MRED. Also, for
each plot, we delineated the Pareto front to show the designs
with the highest efficiency. Hence, the four proposed mul-

10

0 1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

500
[31]

[31]

[31]

[32]

[30]

[31]

[31]

[15]

[32]

[24]

[31]

[31]

[33]
[17]

[31]

[32]

[29]

[15]

[34]

[35]

[36]

[37]

[23]

[17]
[38]

[39]

[18]

[39]

[19]

[30]

[31]

[17]

[17]

[31]

[39]

[35]

[40]

[18]

[41]

[31]

[41]

[32]

[29]
[25]

[18]

[39]

[36]

[30]

[42][15]

[30][29]

[38]

[29] [30]

P
ow

er
(µ

W
)

0 1 2 3 4 5 6 7 8 9 10 11

200

300

400

[31]

[32]

[31]
[31]

[15]

[32]

[24]

[31] [31]

[33]

[31]

[32]

[30][29]

[15]

[34]

[29]

[35]

[36]

[23]

[17]

[38]

[39]

[18]

[29]

[39]

[30]

[31]

[17]

[17]

[31]

[39]

[35]

[18]
[30]

[41]

[31]

[32]

[29]

[25]

[39]

[42][15] [31]

[31]

[38]

[18]A
re
a
(µ

m
2
)

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5
[30]

[31]

[30]

[31]
[31]

[15]

[24]

[31]

[31]

[33]

[17]

[31]

[30]

[29]

[15]

[34]

[29]

[35]

[38][36]

[37]

[23]

[17]

[38]
[39]

[18]

[29]
[39]

[19]

[30]

[31]

[17]

[17]
[31]

[39]

[35]

[40]

[18]

[30]

[41]

[41]

[29]
[25]

[18]

[39]

[36][42]
[15]

[31]
[31]

[32] [32] [32]

[31][32]D
el
a
y
(n

S
)

0 1 2 3 4 5 6 7 8 9 10 11
0

100

200

300

400

[31]

[32]

[30]

[31]

[31]
[15]

[32]

[24]

[31][31]

[33]

[17][31]

[32]
[30] [29]

[15]

[34]

[35]

[36]

[37]

[23]

[17]

[39]

[18]

[39]
[30]

[31]

[17]

[17]

[31]

[39]

[35]

[40]

[18]

[30]

[41]

[31]

[41]

[32]

[29]
[25]

[18]

[39]

[36]

[42]
[15]

[31] [31]

[29]

[38][38]

[29]

[19]

MRED (×10−2)

P
D
P

(f
J
)

Compressor-based
Array

Logarithmic
Operand truncation

CDM8

Fig. 6: Comparison of power consumption, area, delay, and
PDP versus MRED for the approximate 8-bit multipliers.

tipliers, CDM8 51, CDM8 62, CDM8 73, and CDM8 74,
are placed on the Pareto front of the power consumption.
Regarding the area, the CDM8 51, CDM8 62, CDM8 73,
CDM8 74, CDM8 84, CDM8 95, CDM8 a6, and CDM8 a7
are placed on the Pareto front. Regarding the delay, we see that
compressor-based multipliers have the lowest delay and are
placed on the Pareto front of critical path delay. Nevertheless,
it should be noted that the CDM8s have the lowest delay after
the compressor-based multipliers. Compared to them, CDM8s
have far less power, area, and PDP, and they are among
the best designs in terms of this criteria. Also, in terms of
PDP, the CDM8 51, CDM8 62, CDM8 73, and CDM8 74,
are the most optimal designs and are placed on the Pareto
front of PDP. Therefore, we can conclude that the CDM8s,

TABLE VI: Gaussian smoothing 3× 3 kernel [46]

Original Modified
0.095 0.118 0.095 97 121 97

0.118 0.148 0.118 121 151 121

0.095 0.118 0.095 97 121 97

TABLE VII: Performance of 8× 8 approximate multipliers in
Gaussian smoothing

Design SSIM (%) PSNR (dB)

[14] CDM8 40 99.99 63.04

Proposed CDM8 44 99.89 52.24
CDM8 51 99.98 60.11
CDM8 62 99.95 56.66
CDM8 73 99.89 52.95
CDM8 74 99.86 51.38
CDM8 84 99.73 48.02
CDM8 95 99.07 41.52
CDM8 a6 98.40 37.27
CDM8 a7 94.46 30.78
CDM8 a8 81.60 22.38
CDM8 a9 67.15 15.77
CDM8 aa 67.15 15.77

[28]

N8-L1 97.85 41.70
N8-L2 97.66 39.50
N8-5 97.98 43.00
N8-6 97.98 43.00

[47]*
Ax8 1 97.96 43.00
Ax8 2 97.85 39.20
Ax8 3 97.25 35.60

[48]*
AxRM1 97.97 43.00
AxRM2 97.90 41.50
AxRM3 97.85 41.20

[49] SSM m4 94.39 26.80
SSM m4 u3 96.41 38.90

[50]*
DT2 97.67 42.31
DT4 97.67 42.31
DT8 97.37 35.61

* Reported by [28].

whether compared to array multipliers or other conventional
architectures, are either the best or part of the best in many
evaluation criteria; hence, CDM8s have a better balance.

IX. CASE STUDY: IMAGE PROCESSING

One of the most frequently considered error-resistant ap-
plications is image processing, and several papers test their
suggested circuits in this setting. This paper assesses the
use of image blurring in image processing. This application
assists in clarifying the scope of applicability for the proposed
designs. Low pass filtering in image processing generates
image smoothing, which eliminates the abrupt spatial changes
in the image. The low-pass filter alters a sliding kernel, which
investigates each pixel individually concerning neighboring
pixels. Each pixel must be processed via several multiplica-
tions, the number of which depends on the kernel size. The
weighted average of the adjacent pixels serves as the affected
pixel’s actual value. Additionally, since the human eye cannot
see insignificant fragments, image blurring is an application
that can tolerate errors.

11

Exact8

PS
N

R
 (d

B
)

SSIM (%)

CDM8_40PS
N

R
=6

3.
04

 d
B SSIM=99.99%

CDM8_44PS
N

R
=5

2.
24

 d
B SSIM=99.89%

CDM8_51PS
N

R
=6

0.
11

 d
B SSIM=99.98%

CDM8_62PS
N

R
=5

6.
66

 d
B SSIM=99.95%

CDM8_73PS
N

R
=5

2.
95

 d
B SSIM=99.89%

CDM8_74PS
N

R
=5

1.
38

 d
B SSIM=99.86%

CDM8_84PS
N

R
=4

8.
02

 d
B SSIM=99.73%

CDM8_95PS
N

R
=4

1.
52

 d
B SSIM=99.07%

CDM8_a6PS
N

R
=3

7.
27

 d
B SSIM=98.40%

CDM8_a7PS
N

R
=3

0.
78

 d
B SSIM=94.46%

CDM8_a8PS
N

R
=2

2.
38

 d
B SSIM=81.60%

CDM8_a9PS
N

R
=1

5.
77

 d
B SSIM=67.15%

CDM8_aaPS
N

R
=1

5.
77

 d
B SSIM=67.15%

Fig. 7: Gaussian smoothing of images obtained with proposed 8-bit multipliers.

The aim of this study is to investigate the impact of approx-
imating more partial product units (Π0s) on the performance
of Gaussian smoothing. The performance is measured by the
Peak Signal-to-Noise Ratio (PSNR) and the Structural Similar-
ity Index Measure (SSIM). This study focuses on comparing
the performance of the proposed 8-bit approximate multipliers.
We take the output image of the exact 8-bit multiplier, in which
Group A and Group B have exact partial product units (Π0), as
the baseline in our comparison. Therefore, PSNR and SSIM
values of the output images of proposed 8-bit approximate
multipliers are calculated regarding the output image of the
exact 8-bit multiplier.

A. Experimental Setup

In this paper, a two-dimensional rotationally symmetric 3×
3 Gaussian low-pass filter with a standard deviation of 1.5
operates as the kernel considered for image smoothing, similar
to [21]. The kernel’s floating-point values are rounded after
being multiplied by 210. In this fashion, the kernel values are
appropriate for the 8-bit input multipliers.

As in [46], the initial and revised kernels are presented in
Table VI. A Gaussian smoothing filter involving the proposed
multipliers has been performed to blur a test image. The resul-
tant images are presented in Figure 7. The same processing has
also been conducted utilizing an exact multiplier to compare
proposed designs adequately.

The precise equivalent of proposed multipliers as well as
exact multiplier were written in Python. These codes have the
same accuracy criteria as Table IV. These codes are embedded
into the multiplication process of Gaussian smoothing where
the 8-bit 128×128 input image incorporates convolution with
the modified kernel presented in Table VI.

B. Metrics

Quantitative measurement of each proposed multiplier’s
competence in image smoothing is represented by the SSIM
and PSNR. When evaluating the quality of images in image
processing, it is important to consider both the PSNR and the
SSIM.

While PSNR is a commonly used metric for image quality
assessment, it has some limitations. Specifically, PSNR is sen-
sitive to small changes in pixel values and may not accurately
reflect the perceived quality of an image. This is because
PSNR only considers the mean squared error between the
original and reconstructed images, without taking into account
the structural similarity between the images.

On the other hand, SSIM takes into account the structural
information of the image, by comparing local patterns of
pixel intensities rather than just the overall pixel values.
As a result, SSIM is a more perceptually relevant measure
of image quality. It has been shown in several studies that
SSIM correlates more closely with human perception of image
quality than PSNR [51].

Therefore, by considering both PSNR and SSIM in image
processing, we can obtain a more comprehensive evaluation of
image quality. This can help ensure that the resulting images
are not only technically accurate but also visually appealing
to the human eye.

C. Results

Figure 7 shows the output images of Gaussian smoothing
utilizing proposed 8-bit multipliers. Except for CDM8 a8,
CDM8 a9, and CDM8 aa, the other multipliers have accept-
able PSNR and SSIM over 30 dB and 94%, respectively. Con-
sequently, CDM8 40 [14] to CDM8 a7 show their capability
in image processing applications.

Figure 7 indicate that increasing the number of approxi-
mated partial product units leads to a degradation in the PSNR
and SSIM. CDM8 44, which approximates four columns of
the least significant bits of both Group A and Group B,
shows more approximation compared to CDM8 51, resulting
in a slightly worse performance in the case study. CDM8 73,
which has more carry-disregarded columns in Group A but
approximates three columns in Group B, shows the closest
performance to CDM8 44. The study infers that Group B
approximation primarily contributes to the accuracy and per-
formance degradation.

The study shows that as the number of approximated
columns in both Group A and Group B increases, the perfor-
mance degradation is more significant. However, the degra-

12

dation is subtle from CDM8 44 to CDM8 95. The study
concludes that with more hardware efficiency (see Table IV),
it is possible to maintain acceptable performance in Gaussian
smoothing, achieving over 41 dB and 99% of PSNR and
SSIM, respectively. CDM8 a6 and CDM8 a7 maintain an
acceptable performance level in the case study, with slightly
noticeable performance drops. Since all columns of Group A
for both proposed approximate multipliers are approximated,
their performance in the study is slightly dropped, yet with
PSNR and SSIM of over 30 dB and 94%, respectively.

In summary, the study demonstrates that increasing the
number of approximated partial product units affects the
performance of proposed 8-bit approximate multipliers in
Gaussian smoothing, particularly in Group B approximation.
However, with more hardware efficiency, it is possible to
maintain acceptable performance in Gaussian smoothing even
with a higher number of approximated partial product units
e.g. using CDM8 73 instead of CDM8 44 which experiences
more hardware efficiency with similar performance in our case
study. In comparison with other 8-bit approximate multipliers
in the literature with same case study, the proposed 8-bit
approximate multipliers CDM8 44 to CDM8 84 maintain
more PSNR and SSIM as shown in Table VII.

X. CONCLUSION

This paper proposes a methodology for designing approxi-
mate array multipliers based on carry disregard. Carries can be
ignored in various ways, and each method leads to different
results regarding the criteria of accuracy and hardware. As
shown by our application case-study, a smaller number of carry
disregard, does not necessarily lead to a more accurate and
better performing multiplier. In other words, by judiciously
selection the location of carry disregard, it is possible to
disregard a larger number of carries (and thus gain better speed
and smaller area) while gaining a better performance in terms
of overall accuracy and suitability for the application. Thus,
the essential point is to choose a suitable way to disregard
the carries, which depends on the architecture of multipliers.
Our study also shows that the absolute value of approximation
metrics for the multiplier, does not necessarily predicts its
performance in the end application entirely accurate, even
though it is a good general indicator and a ball-park estimator.
this method simplifies computing units and reduces hardware
complexity. Therefore, it causes a significant improvement in
hardware efficiency criteria. Compared to the exact multiplier,
the proposed 8-bit approximate multipliers have improved
critical path delay, power consumption, and area by 29%, 29%,
and 30% on average. Also, compared to the existing approx-
imate array architectures in the literature, they have reduced
the delay, power consumption, and area by 14.3%, 22.8%,
and 26.4% on average. The proposed 16-bit approximate mul-
tipliers have improved critical path delay, power consumption,
and area by 35%, 24%, and 23% compared to the exact
multiplier. The proposed multipliers generally have different
accuracy levels, creating an acceptable and better balance be-
tween hardware efficiency and accuracy criteria. The proposed
designs are based on conventional CMOS technology, while

nowadays, we witness the emergence of new technologies such
as spin-CMOS and memristive in-memory computing. It is
expected that the difference in the basic technology will lead
to different results. Within the same technology, CMOS in our
case, the use of smaller-scale technologies brings about better
results. We conducted image processing utilizing proposed 8-
bit multipliers and demonstrated their PSNR and SSIM. Most
of them are applicable in image blurring and have PSNR and
SSIM over 30 dB and 94%, respectively.

For future work, we plan to use multi-operand approximate
adders like compressors in the process of PP reduction. Hence,
the compatibility of our proposed methodology with these
types of adders gives us the idea of combining them, and
we predict that we will achieve better results. In addition, as
for the final summation step in the process of multiplication,
there are various types of adders, such as CSA and Parallel
Prefix Adder (PPA), which we intend to investigate their effect.
On the other hand, different applications have different error
tolerances, so dynamically adjusting the accuracy level of the
proposed multipliers in various applications is one of our
future works.

REFERENCES

[1] W. Liu et al. A retrospective and prospective view of approximate
computing [point of view]. Proceedings of the IEEE, 108(3), 2020.

[2] P. Schober et al. Sound source localization using stochastic computing.
In Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[3] M. L. Pasini and M. P. Laiu. Anderson acceleration with approximate
calculations: applications to scientific computing, 2022.

[4] N. TaheriNejad and S. Shakibhamedan. Energy-aware adaptive approxi-
mate computing for deep learning applications. In 2022 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pp. 328–328, 2022.

[5] P. Schober et al. Stochastic computing design and implementation of
a sound source localization system. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 13(1):295–311, 2023.

[6] H. Anzt et al. Approximate Computing for Scientific Applications, pp.
415–465. Springer International Publishing, 2022.

[7] S. E. Fatemieh et al. Approximate in-memory computing using mem-
ristive imply logic and its application to image processing. In IEEE
ISCAS, pp. 1–5, 2022.

[8] C. Ossimitz and N. TaheriNejad. A fast line segment detector using
approximate computing. In IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1–5, May 2021.

[9] S. E. Fatemieh et al. Fast and compact serial imply-based approximate
full adders applied in image processing. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 13(1):175–188, 2023.

[10] H. Jiang et al. Approximate arithmetic circuits: A survey, characteriza-
tion, and recent applications. Proceedings of the IEEE, 108(12), 2020.

[11] Q. Xu et al. Approximate computing: A survey. IEEE Design & Test,
33(1):8–22, 2016.

[12] A. S. Baroughi et al. Axe: An approximate-exact multi-processor
system-on-chip platform. In 2022 25th Euromicro Conference on Digital
System Design (DSD), pp. 60–66, 2022.

[13] S. Mittal. A survey of techniques for approximate computing. ACM
Comput. Surv., 48(4), mar 2016.

[14] N. Amirafshar et al. An approximate carry disregard multiplier with
improved mean relative error distance and probability of correctness. In
Euromicro Conference on Digital Systems Design (DSD), pp. 1–7, 2022.

[15] H. Waris et al. Hybrid partial product-based high-performance ap-
proximate recursive multipliers. IEEE Trans. Emerg. Topics Comput.,
10(1):507–513, 2022.

[16] H. Jiang et al. A review, classification, and comparative evaluation of
approximate arithmetic circuits. ACM JTEC, 13(4), 2017.

[17] S. Hashemi et al. Drum: A dynamic range unbiased multiplier for
approximate applications. In IEEE/ACM ICCAD, pp. 418–425, 2015.

[18] S. Vahdat et al. Tosam: An energy-efficient truncation- and rounding-
based scalable approximate multiplier. IEEE TVLSI, 27(5), 2019.

13

[19] P. J. Edaoovr et al. Approximate multiplier design using novel dual-stage
4:2 compressors. IEEE Access, 8:48337–48351, 2020.

[20] A. G. M. Strollo et al. Comparison and extension of approximate 4-2
compressors for low-power approximate multipliers. IEEE Transactions
on Circuits and Systems I: Regular Papers, 67(9):3021–3034, 2020.

[21] D. Esposito et al. Approximate multipliers based on new approximate
compressors. IEEE Transactions on Circuits and Systems I: Regular
Papers, 65(12):4169–4182, 2018.

[22] Y.-J. Chang et al. Imprecise 4-2 compressor design used in image
processing applications. IET Circuits, Devices & Systems, 13(6), 2019.

[23] P. Kulkarni et al. Trading accuracy for power with an underdesigned
multiplier architecture. In 24th Int. Conf. on VLSI Design, 2011.

[24] S. Rehman et al. Architectural-space exploration of approximate
multipliers. In IEEE/ACM ICCAD, pp. 1–8, 2016.

[25] H. R. Mahdiani et al. Bio-inspired imprecise computational blocks for
efficient vlsi implementation of soft-computing applications. IEEE TCAS
I: Regular Papers, 57(4):850–862, 2010.

[26] H. Jiang et al. Non-volatile approximate arithmetic circuits using
scalable hybrid spin-cmos majority gates. IEEE Transactions on Circuits
and Systems I: Regular Papers, 68(3):1217–1230, 2021.

[27] S. Muthulakshmi et al. Memristor augmented approximate adders and
subtractors for image processing applications: An approach. AEU -
International Journal of Electronics and Communications, 91, 05 2018.

[28] E. Zacharelos et al. Approximate recursive multipliers using low power
building blocks. IEEE Transactions on Emerging Topics in Computing,
10(3):1315–1330, 2022.

[29] P. Yin et al. Design and analysis of energy-efficient dynamic range
approximate logarithmic multipliers for machine learning. IEEE Trans-
actions on Sustainable Computing, 6(4):612–625, 2021.

[30] V. Mrazek et al. Evoapprox8b: library of approximate adders and mul-
tipliers for circuit design and benchmarking of approximation methods.
In DATE, pp. 258–261, 2017.

[31] M. S. Ansari et al. Low-power approximate multipliers using encoded
partial products and approximate compressors. IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, 8(3):404–416, 2018.

[32] S. D. S. and N. M. Sk. Low power, high speed approximate multiplier
for error resilient applications. Integration, 84:37–46, 2022.

[33] Y. Guo et al. Design of power and area efficient lower-part-or
approximate multiplier. In TENCON-IEEE Region 10 Conference, 2018.

[34] S. Vahdat et al. Letam: A low energy truncation-based approximate
multiplier. Computers & Electrical Engineering, 63:1–17, 2017.

[35] S. Narayanamoorthy et al. Energy-efficient approximate multiplication
for digital signal processing and classification applications. IEEE TVLSI,
23(6):1180–1184, 2015.

[36] S. Venkatachalam and S.-B. Ko. Design of power and area efficient
approximate multipliers. IEEE TVLSI, 25(5):1782–1786, 2017.

[37] M. Ha and S. Lee. Multipliers with approximate 4–2 compressors and
error recovery modules. IEEE Embedded Systems Letters, pp. 6–9, 2018.

[38] W. Liu et al. Design and evaluation of approximate logarithmic
multipliers for low power error-tolerant applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 65(9):2856–2868, 2018.

[39] M. S. Kim et al. Efficient mitchell’s approximate log multipliers
for convolutional neural networks. IEEE Transactions on Computers,
68(5):660–675, 2019.

[40] K. Manikantta Reddy et al. Design and analysis of multiplier using
approximate 4-2 compressor. AEU - International Journal of Electronics
and Communications, 107:89–97, 2019.

[41] O. Akbari et al. Dual-quality 4:2 compressors for utilizing in dynamic
accuracy configurable multipliers. IEEE TVLSI, 25(4):1352–1361, 2017.

[42] C.-H. Lin and I.-C. Lin. High accuracy approximate multiplier with
error correction. In IEEE ICCD, pp. 33–38, 2013.

[43] A. Momeni et al. Design and analysis of approximate compressors for
multiplication. IEEE Transactions on Computers, 64(4):984–994, 2015.

[44] A. Gorantla and D. P. Design of approximate compressors for multipli-
cation. J. Emerg. Technol. Comput. Syst., 13(3), apr 2017.

[45] R. Zendegani et al. Roba multiplier: A rounding-based approximate
multiplier for high-speed yet energy-efficient digital signal processing.
IEEE TVLSI, 25(2):393–401, 2017.

[46] E. Zacharelos et al. Approximate recursive multipliers using low power
building blocks. IEEE Trans. Emerg. Topics Comput., 10(3), 2022.

[47] H. Waris et al. Hybrid partial product-based high-performance approx-
imate recursive multipliers. IEEE Transactions on Emerging Topics in
Computing, 10(1):507–513, 2022.

[48] H. Waris et al. Axrms: Approximate recursive multipliers using high-
performance building blocks. IEEE Transactions on Emerging Topics
in Computing, 10(2):1229–1235, 2022.

[49] A. G. M. Strollo et al. Approximate multipliers using static segmenta-
tion: Error analysis and improvements. IEEE Transactions on Circuits
and Systems I: Regular Papers, 69(6):2449–2462, 2022.

[50] F. Frustaci et al. Approximate multipliers with dynamic truncation for
energy reduction via graceful quality degradation. IEEE Transactions
on Circuits and Systems II: Express Briefs, 67(12):3427–3431, 2020.

[51] Z. Wang et al. Image quality assessment: from error visibility to struc-
tural similarity. IEEE Transactions on Image Processing, 13(4):600–612,
2004.

Nima Amirafshar received his B.Sc. degree in
electrical engineering from Ferdowsi University of
Mashhad (FUM), Mashhad, Iran, in 2019. He is
currently an M.Sc. student in the School of Elec-
trical Engineering at the Iran University of Science
and Technology (IUST), Tehran, Iran. His areas of
interest include computer architecture, approximate
computing, and digital circuit design.

Ahmad Sadigh Baroughi received his M.Sc. degree
in electrical engineering from Tabriz University,
Tabriz, Iran, in 2018. His areas of interest include
systems on chip, approximate computing, and digital
system design. He has published three conference
papers on high performance computing and approx-
imate hardware design.

HadiShahriar Shahhoseini received his B.Sc. de-
gree in electrical engineering in 1990; his M.Sc.
degree in electrical engineering in 1994; and his
Ph.D. in electrical engineering in 1999. He is an
associate professor in the school of electrical engi-
neering at the IUST. He has published more than 200
papers from his research works in scientific journals
and conference proceedings. His areas of research
include high-performance computing, computer net-
working and approximate computing.

Nima TaheriNejad (S’08-M’15) received his Ph.D.
degree in electrical and computer engineering from
The University of British Columbia (UBC), Vancou-
ver, Canada, in 2015. He is currently a Full Professor
at Heidelberg University, Heidelberg, Germany and
affiliated with TU Wien (formerly known also as
Vienna University of Technology), Vienna, Austria.
His areas of work include in-memory computing,
cyber-physical and embedded systems, systems on
chip, memristor-based circuit and systems, self-*
systems, and health-care. He has published three

books, three patents, and more than 90 articles. Dr. Taherinejad has served
as a reviewer and an editor of many journals and conferences. He has also
been an organizer and a chair of various conferences and workshops. He has
received several awards and scholarships from universities, conferences, and
competitions he has attended. This includes the Best University Booth award
at DATE 2021, First prize in the 15th Digilent Design Contest (2019) and in
the Open-Source Hardware Competition at Eurolab4HPC (2019) as well as
Best Teacher and Best Course awards at TU Wien (2020).

