
1

ATOMIC: Automatic Tool for Memristive IMPLY
based Circuit-level Simulation and Validation

Fabian Seiler∗, Peter M. Hinkel+, Axel Jantsch∗, and Nima TaheriNejad+∗
∗Technische Universität Wien (TU Wien), Austria, +Heidelberg University, Germany

fabian.seiler@tuwien.ac.at, peter.hinkel@stud.uni-heidelberg.de,
axel.jantsch@tuwien.ac.at, nima.taherinejad@ziti.uni-heidelberg.de

Abstract—Memristor-based In-Memory Computation (IMC)
is one of the promising candidates for the post-CMOS era,
which comes in many flavors. Processing in Array (PIA) is
a relatively new approach, and substantially different than
traditional CMOS-based logic design. Consequently, there is
a lack of publicly available CAD tools for memristive PIA
design and evaluation. Here, we present ATOMIC: an Automatic
Tool for Memristive IMPLY-based Circuit-level Simulation and
Validation. Using our tool, a large portion of the simulation,
evaluation, and validation process can be performed automati-
cally, drastically reducing the development time for memristive
PIA systems from multiple days to a few hours. With ATOMIC
the effect of non-idealities can be analyzed, which is important
but often unconsidered in the design phase. We evaluated State-
of-the-Art (SoA) adder algorithms and compared their stability
when calculated under non-ideal conditions. The code is available
at https://github.com/fabianseiler/ATOMIC.

I. INTRODUCTION

There is a growing emphasis on new computing technolo-
gies such as In-Memory Computation (IMC) based on mem-
ristors. This approach is a promising candidate for a More-
than-Moore era since it has the ability to circumvent the Von
Neumann bottleneck. Processing in Array (PIA) is a relatively
new flavor of IMC that is substantially different than traditional
CMOS-based logic design since it is only compatible with
stateful logic forms such as Material Implication (IMPLY) [1]
or Memristor-Aided Logic (MAGIC) [2]. We illustrated the
typical development process in Figure 1, where we focus on
IMPLY as it is the most reliable stateful logic [3]. We used
a ∨ b as an example function to showcase each step, starting
from the logic design and implementation as algorithm A,
which must be at least validated to confirm functionality.
After that, the control logic must be synthesized, which is
then used for various simulations on circuit-level to extract
relevant criteria such as the energy consumption or stability
regarding non-idealities. The control logic generation, circuit-
level simulations, and especially the analysis of non-ideal
behavior are the most time-intensive but necessary parts [4].
When carried out manually, the process can take multiple
hours to days, even for experienced researchers. As there is
a lack of publicly available Computer-Aided Design (CAD)
tools for memristive PIA design and evaluation we propose
ATOMIC, an automated Python tool to optimize the devel-
opment of IMPLY-based algorithms. With this tool, a large
portion of the validation, simulation, and evaluation process,
as well as the processing and illustration of the data, is now

Logic Design

Algorithm Design

Pseudo-Code Config File

Inputs for ATOMIC

Algorithm

Mapped
Algorithm

Algorithm Info.
Topology
Output Vectors

Validation

Algorithm Validation

Init State Space
Emulation

Control Logic Generation

Control
Logic

Simulation

Circuit-Level Simulation
Analysis

Futher Evaluation

Applications

Simulation Setup
Execute SPICE
Energy Consum.

Fully Automated Input FilesNot Automated

CL Metrics

CL Validation
Non-ideality

Visualization

Behavior-Level
Analysis

Behavior Model

Fig. 1: Design process for algorithms in memristive IMPLY
logic, with a ∨ b as example function. The green blocks are
fully automated within ATOMIC.

completely automated as highlighted in green in Figure 1.
Since real-world memristors experience non-idealities such
as variation, studying their effect is an important topic, that
is often disregarded in the State-of-the-Art (SoA). With our
tool, the analysis of non-ideal deviations can be assessed
automatically, which we utilize to compare the stability of
SoA IMPLY adder algorithms.

II. BACKGROUND

Memristors are novel devices that can store data in a
nonvolatile fashion, using their resistive states Ron and Roff ,
which can be interpreted as logical values [5]. Other ad-
vantages include low power consumption, fast writing time,
and small dimensions [4], [5]. The inherent state changes
when the applied voltage exceeds a certain threshold (von
& voff ), forming a hysteresis curve. A commonly used
model to simulate memristive circuits is VTEAM [6], which
can accurately represent memristors (< 1.5% mean squared
error [1]). The main limitation of this model is its inability
to accurately capture non-ideal behavior. The most common
and relevant deviations of real memristors are the variation of
resistive states and threshold voltages [3]. IMPLY is a stateful
logic that can be used for PIA, which was selected because
of its higher stability compared to other approaches [3], [7].
The basic structure to perform IMPLY operations is shown



2

VCOND VSET

RG

a b

(b)(a)

Fig. 2: IMPLY operation [1]: (a) Gate structure, (b) Truth table

in Figure 2(a). The two memristors are connected to a common
resistor which must fulfill the requirement Ron ≪ RG ≪
Roff . When the voltages VCOND and VSET are applied to
a and b, the operation b′ = a → b is executed. To allow
for correct operations the voltages must satisfy the condition
VCOND < VC < VSET , where VC is the inherent threshold
voltage of the memristor [1], [5]. The truth table of this
operation is shown in Figure 2(b), where the inputs correspond
to the resistive states of the memristors prior to the operation.
The initial state of the b memristor is overwritten by the
result of the operation, which increases the complexity when
designing IMPLY-based functions. There are four commonly
used IMPLY adder structures: 1) serial; 2) parallel; 3) semi-
serial; and 4) semi-parallel, that each offer distinct advantages,
rendering them competitive [7]. Here we present an automated
framework that automates a large chunk of the development
process of IMPLY algorithms in common topologies. We
present a non-ideality analysis to cover this important but often
disregarded design aspect.

III. ATOMIC FRAMEWORK

In this section, we discuss the presented ATOMIC frame-
work that automates a large part of the development pro-
cess for IMPLY-based algorithms. This pipeline includes four
steps: (A) validation of the algorithm, (B) control logic gener-
ation and topology mapping, (C) circuit-level simulation, and
(D) graphical representation of results. An overview of the
structure and project flow is illustrated in Figure 3, where
each step is executed sequentially and the specified outputs
are generated. To evaluate an IMPLY algorithm, only a config
file containing general information (.json) and a step-by-step
description of the algorithm in pseudo-code are required. The
proposed pseudo-code consists of either False or IMPLY
operations that are applied to specified memristors. This is
denoted by F⟨m1⟩ to reset memristor m1 or I⟨m1⟩,⟨m2⟩ to
evaluate m1 → m2. An example of this is illustrated in Fig-
ure 1. Memristor model and IMPLY-specific parameters can
be adjusted to individual requirements. A detailed explanation
of how to run and extend the project can be found in the
corresponding technical document [8].

A. Validation of the Algorithm

The first step in creating an IMPLY-based function is the
development of the specified boolean logical expression fB .
This function must be expressed using only the complete logic
set {→,⊥} to comply with the constraints of IMPLY logic.
We denote this expression as fIMP which shares the truth
table with fB . Another important aspect to consider is that

the initial state of an implied memristor is overwritten by the
operation’s result, which means that the sequence of operations
is highly important. We represent this sequence of operations
via the algorithm A. As the design of such algorithms is
highly complex, we introduce a procedure that emulates A
and validates the equivalence fB ≡ fIMP after the last step.
The state space consists of the number of memristors m used
in the algorithm. Each memristor is represented by a vector x⃗i

of length 2|I|, where I represents the set of input memristors.
The vector of each input memristor is initialized with a bit
pattern that corresponds to the enumerated column index of
the input in the truth table. All other memristors are marked
as uninitialized to verify if they are properly reset within A.

Each operation in the algorithm is sequentially applied to the
corresponding vectors x⃗i, which are updated accordingly. We
implemented the vectors and update functions using NumPy,
to allow for a parallelized emulation to reduce the computation
time. After the emulation of the algorithm, x⃗i of each output
memristor is equivalence checked with the specified output.
After the emulation of the algorithm, the state vector x⃗i of each
output memristor is compared to the specified output of the
algorithm. If all output states are equal to their specification,
the algorithm is considered valid. In the case that differences
occur a detailed error message and the state history after every
operation is given, to allow for fast debugging on why the
algorithm does not lead to the expected result.

B. Control Logic Generation & Topology Mapping

To evaluate the behavior of the previously validated al-
gorithms on circuit-level, the mapping of the algorithm to
a specific topology within the crossbar array [7] and the
generation of control logic is required. The control logic
consists of n steps, equal to the length of algorithm A, each
lasting a time of ∆S . For each step, all memristors that are
used in the current operation must be connected to the common
row/column of the topology via a switch. Depending on the
operation, a specific voltage must be applied to the memristors.
For IMPLY-operations, the pre-defined VSet and VCond are
applied for ∆S to the memristors specified in the pseudo-code.
This is done for every step of the algorithm.

Since we implemented the serial, semi-serial, and semi-
parallel IMPLY topologies up to two operations in parallel
are possible. The different computational sections can be
connected with additional switches outside the crossbar array,
which require additional logic signals. After determining the
operation voltages for the algorithm, the topology-specific
control logic signals in the form of Piece Wise Linear (PWL)
files are transferred to the simulator and saved to the output
folder, to allow for easy debugging.

C. Circuit-level Simulation

In this section, we explain each part of the general sim-
ulation procedure, which uses the PyLTSpice library as an
interface to SPICE, and showcase three experiments we im-
plemented on top of it.



3

Emulate
Algorithm
Confirm
Validity

Outputs

Inputs Topology & Logic
Parameter

Functional 
Validation

Functionality
Validated

True/False ?

Control Logic
Generation

Circuit-level Simulation Graphical RepresentationState
Deviations

(pickle)

Circuits & 
Netlists

Algorithm
(.txt)

Config
(.json)

Topology
(.json)

IMPLY
parameter

(.json)

PWL
(.csv)

Topology
Netlist
(.net)

Topology
Circuit
(.asc)

Waveforms
(.txt)

Waveforms
(Image)

State
Deviations

(Image)

Deviation
Scatter
(Image)

Deviation
Ranges
(.csv)

Read Algorithm
Create Control Logic
Write PWL Files

Memristor
Model
(.asc)

Set Parameters
Run Simulations
Read .raw Files
Write Deviation Files
Write Waveform Files

States
History
(.csv)

Process Deviation Data
Validate Result Vectors
Create Deviation Plots
Save Image Files

Memristor
Model

Parameter

Energy 
(.txt)

PWL
(.csv)

Waveforms
(.txt)

A B C D

Fig. 3: Overview of the ATOMIC framework and automated process.

1) Simulation Procedure: Any circuit simulation in this
project can be broken down into three parts. First, the sim-
ulation parameters are used to create a netlist of the targeted
topology for simulation. Those parameters include the input
states of the memristors as well as the values of the resistive
states, and the voltage thresholds for the memristor model.
The second part consists of executing SPICE simulations
via the PyLTSpice interface, where the updated netlist with
modified parameters and the simulator type can be selected.
After the execution is finished, the output files created by
LTSpice are stored locally to allow for debugging. In the last
step the .raw files, which contain the waveforms of all the
memristors, and the .log file are parsed, and the data is
processed for further calculations. This simulation procedure
is the underlying methodology of the following experiments.

2) Implemented Experiments: We implemented three ex-
emplary experiments that are highly important for evaluating
memristive circuits. As the non-ideality evaluation of Process-
ing in Memory (PIM) circuits is often overlooked in the SoA,
we lay additional emphasis on evaluating the impact of deviat-
ing memristor behavior. As this procedure is unfeasible when
simulated by hand, our tool provides automated scripts that
utilize the aforementioned simulation procedure to automate
this process.

Energy Consumption: As the energy consumption mea-
surements of memristive circuits are crucial for circuit-level
evaluation, we propose an automated simulation that evaluates
the energy of all possible input combinations C and provides
the average, as shown in Equation (1). This is achieved by
summing up the energy consumption for each memristor (m)
at a specific input combination c ∈ C. The energy is then
calculated by integrating the voltage-current product of the
memristor over the time (n∆S) required by the algorithm.

Energy =
1

|C|
∑
c∈C

m∑
k=1

∫ n∆S

0

(Vk × Ik) dt (1)

Deviation Experiments: We implemented automated ex-
periments that check if an IMPLY algorithm yields valid
results on circuit-level when specific properties are deviated
from the ideal model by a certain degree. We focused on

the variation of the resistive states Ron & Roff and the
threshold voltages von & voff , as those are the most prevalent
and impactful deviations. Both non-idealities can be analyzed
separately or combined. The validity of an algorithm at a
certain maximum deviation d is checked by simulating all
pairwise variations of ±d% for both parameters (resistive
states or threshold voltages). This is done for all possible
input combinations C. The maximal difference between ex-
pected and non-ideal normalized output states is denoted as
Diffmax(d). This is done for all outputs.

Diffmax(d) = max
c∈C

|out(c)− out±d(c)| (2)

Following conventions we denote an algorithm under the
deviation d valid if Dmax(d) < 0.33. With this approach,
we evaluate all potential worst-case variations and validate
them for all input combinations so that the algorithms are
thoroughly evaluated on the circuit-level. We also implemented
a combined analysis, where both the resistive states and the
threshold voltages are varied, leading to a validation matrix.
We use this approach in Section IV to compare SoA IMPLY
adder algorithms.

D. Graphical Representation

To further utilize the data gained through simulation, we im-
plemented a post-processing procedure and various illustration
methods to extract and highlight important information, such
as circuit-level validation or visualizations of the non-ideality
effect on specific input combinations. Different configurations
are available to highlight either the range of the output states
or the validity of individual combinations using a color-coded
scatter plot. The general validity of algorithms over increasing
maximum deviations d is calculated by Equation (2) and color-
coded. This illustration can give a good insight into potential
requirements for the fabrication process. To illustrate the effect
of specific deviations on a specific waveform, we included
a method that finds the minimum and maximum of each
waveform at every time step. This can be used to analyze
what parameters, such as the frequency or voltage levels,
are sensitive to non-idealities. Examples of figures of SoA
algorithms are shown in [8].



4

Fig. 4: Maximum deviation ranges that lead to valid outputs
of SoA IMPLY algorithms. Valid areas are colored in green.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, we evaluate SoA IMPLY-based serial adder
algorithms [9]–[12] using ATOMIC. All algorithms are vali-
dated and lead to the same circuit-level metrics as specified
in the original paper, so we focus on the novel non-ideality
experiments instead. We compare their stability while varying
the maximum deviation of both sets of tested parameters and
evaluate all combinations as explained in Section III-C2. We
evaluate a grid of deviation combinations and check where the
algorithms are valid for all potential inputs. The VTEAM and
IMPLY-specific parameters were chosen as presented in [12].
The resistive states Ron & Roff are varied up to ±50% in
10% steps, which is motivated by the experiments from [4],
[7]. The voltage thresholds von & voff are evaluated up to
only 6% in 1% steps, as the conducted experiments revealed
that IMPLY operations are highly sensitive to these changes.

B. Discussion

The results of the aforementioned experiments on the serial
algorithms [9]–[12] are illustrated in Figure 4 where the
maximum deviation of the threshold voltages and the resistive
states are shown on the x-axis and y-axis, respectively. The
green areas indicate that all input combinations lead to valid
outputs. If the area is colored red, at least one waveform with
maximum deviations (dstate, dthreshold) lead to an invalid or
incorrect output. The evaluated algorithms all lead to very
similar resulting valid ranges, indicating that these results are
dependent on the memristor model and IMPLY parameters.
The algorithm from Teimoory et al. [11] exhibits the highest
stability compared to the other approaches, followed by Karimi
et al. [10]. We can see that all algorithms are more sensitive
to a deviation of the threshold voltages than to the resistive
states by roughly a decade. This stems from the fact that
even a small variation of the threshold may tremendously alter
the hysteresis and, therefore, the behavior of the memristors.
While changes of the resistive states may lead to decreased

accuracy of the IMPLY operations, it still leads to good results
if the condition Ron ≪ RG ≪ Roff is still satisfied. The
most critical variation is therefore Ron + d% and Roff − d%
as the difference between the logical states decreases. Our
experiments indicate that for all algorithms, the input case
“abcin=000” is the most problematic since it always leads
to the first invalid Sum output. As this output is calculated
as Sum = Sum → 0 in all algorithms, a degradation of
the logic state of the memristor where Sum is stored may
lead to worse results This state degradation is cumulative of
previously applied operations, where our experiments indicate
that the case 1 → 0 has the highest impact on the states.

In summary, with ATOMIC, we have simulated and ana-
lyzed 4 SoA serial adder algorithms in roughly 4 hours each
and generated a detailed report showing behavioral deviations.
A comparable manual process would have taken multiple
days/weeks for each algorithm.

V. CONCLUSION

In this work, we present ATOMIC, an Automatic Tool for
Memristive IMPLY-based Circuit-level Simulation and Valida-
tion to drastically reduce development time. We implemented
a process for non-ideality experiments to tackle the lack of
available analysis tools in this area, which we use to compare
the applicability of SoA IMPLY adder algorithms, reducing
the simulation time from multiple days/weeks to a few hours.
Future work may include compatibility with other logic forms
and further automated experimentation.

REFERENCES

[1] S. Kvatinsky et al., “Memristor-based imply logic design procedure,” in
2011 IEEE 29th International Conference on Computer Design (ICCD),
2011, pp. 142–147.

[2] ——, “MAGIC; memristor-aided logic,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, Nov 2014.

[3] D. Radakovits and N. Taherinejad, “Behavioral leakage and inter-cycle
variability emulator model for rerams (BELIEVER),” CoRR, vol.
abs/2103.04179, 2021. [Online]. Available: https://arxiv.org/abs/2103.
04179

[4] F. Seiler and N. TaheriNejad, “Efficient image processing via
memristive-based approximate in-memory computing,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
2024.

[5] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–6, 04 2010.

[6] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled
memristors,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[7] F. Seiler and N. TaheriNejad, “Accelerated image processing through
imply-based nocarry approximated adders,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, 2024.

[8] F. Seiler et al., “Atomic: Automatic tool for memristive imply-based
circuit-level simulation and validation,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.15893

[9] S. G. Rohani et al., “An improved algorithm for imply logic based
memristive full-adder,” in 2017 IEEE 30th Canadian Conference on
Electrical and Computer Engineering (CCECE), 2017, pp. 1–4.

[10] A. Karimi and A. Rezai, “Novel design for a memristor-based full
adder using a new imply logic approach,” Journal of Computational
Electronics, vol. 17, 09 2018.

[11] M. Teimoory et al., “Optimized implementation of memristor-based full
adder by material implication logic,” in ICECS2014, 2014, pp. 562–565.

[12] F. Seiler and N. TaheriNejad, “An improved serial imply adder algorithm
for efficient neural network applications,” in 2025 IEEE 16th Latin
America Symposium on Circuits and Systems (LASCAS), 2025, pp. 1–5.


