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Abstract— Noise is a significant challenge in wearable Elec-
trocardiography (ECG), as it can distort the ECG waveform
and lead to inaccurate signal interpretation. Among noise
sources, Motion Artifcats (MA)s are particularly difficult to
mitigate due to their unpredictable time-frequency character-
istics. Unlike electromagnetic interference, MAs often overlap
with critical spectral components of the ECG signal, making
their reduction in preprocessing especially challenging. In this
work, we propose IDNoise, a Machine Learning (ML)-based
approach for detection and identification of noise in ECG
recordings. Our method leverages a comprehensive feature set,
including morphological, statistical, and concatenated features,
to train ML models capable of distinguishing various noise
types and estimating their Signal to Noise Ratio (SNR). We
evaluate the proposed algorithms in terms of execution time,
energy consumption, and memory usage, which are critical
resource usage metrics when designing solutions for wearable
devices. We demonstrate that IDNoise, when using concatenated
features, can detect the noise type in binary classification with
an accuracy of 80.52% and an F1-score of 80.44%. It can
also detect the noise type in 4-class classification with an
accuracy of 67.91% and an F1-score of 67.89%, and identify the
SNR level in 7-class classification with an accuracy of 44.80%
and an F1-score of 44.57%. While the use of concatenated
features necessitates, during the feature extraction phase, an
increase in computational overhead of a factor up to 7.5 times
(execution time, energy consumption, and memory usage). The
computational overhead for prediction and loading the models
remain comparable to that of individual features.

I. INTRODUCTION

Wearable healthcare technology is bringing about a no-
table transformation in healthcare paradigms. Such systems
can be used for continuous monitoring of individuals, which
provides a more comprehensive and real-time view of their
health [1], [2]. By adopting wearable technology, healthcare
professionals can remotely monitor patients, particularly
those with chronic conditions, without the need for frequent
in-person visits. Exploiting the data collected by wearables
supports personalized services and tailored healthcare in-
terventions that can lead to more effective and efficient
healthcare outcomes [3], [4].
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Wearable systems enhance early detection of health issues
by continuously monitoring subtle changes in metrics, en-
abling timely medical interventions and preventive measures,
which can reduce healthcare costs through remote monitoring
and early interventions [5]–[9]. These devices, particularly
through real-time tracking of vital signs like Electrocardio-
gram (ECG) signals, play a crucial role in detecting and
managing cardiovascular conditions, offering early warnings
for irregular heart rhythms and other health concerns [10].

However, various types of noise at different intensities
corrupt the ECG signal, making the output of wearable
devices unreliable. Moreover, efficient execution time is
crucial for timely interventions [11], [12]. Memory man-
agement is equally important, as inefficient memory usage
can compromise data integrity, reduce storage capacity, and
increase energy consumption [13], [14]. Additionally, power
shortages can disrupt operations, potentially causing missed
critical health data, which can have significant consequences
[15]. The strain on hardware due to poor energy management
and prolonged device use can further reduce the durability
of wearable devices, leading to premature failure [11], [16].

In [17], the noise in ECG recordings is classified into
four categories based on their origins. These four classes are
outlined as: i) Electrode Motion (EM): This noise emerges
from intermittent mechanical forces acting on the electrode.
ii) Baseline Wander (BW): This noise originates from the
motion of the subject or the leads. iii) Muscle Artifact: This
noise arises from muscle activity, such as contractions or
movement. iv) Power Line Interference (PLI): This noise re-
sults from the electromagnetic interference of the alternating
supply [18]. As discussed by the authors in [17], PLI can be
easily removed using a digital filter and can be ignored.

In this work, we refer to muscle artifact and EM as
Motion Artifact (MA). Compared to minimizing electromag-
netic interference, reducing MAs is more challenging due to
their unpredictable time-frequency characteristics. Adaptive
filtering is widely used [19]–[21], although effective; but it
is difficult to determine if the noise estimation from the ref-
erence signal converges accurately to the actual noise in the
recorded signal. Incorrect convergence can remove random
components and distort the ECG waveform. For example,
the authors in [22] proposed an adaptive MA reduction
method using an improved Recursive Least Squares (RLS)
adaptive filter, where the Impedance Pneumography (IP)
signal serves as a reference for MAs in ECG signals. Their
ECG-IP acquisition system, designed to measure both signals
simultaneously, achieved high correlation (∥r∥ > 0.6) and
effectively reduced MAs with minimal signal distortion, as



demonstrated by real noisy ECG data analysis.
Nagai et al. in [23] proposed a Stationary Wavelet Trans-

form (SWT) algorithm to remove MAs from ECG signals
captured with non-contact electrodes. Applying the algorithm
on the ECG signals with the MAs showed an improvement
in correlation coefficients from 0.71 to 0.88 after artifact
removal, demonstrating the algorithm’s effectiveness. How-
ever, wavelet transform is limited by the need for optimal
thresholds, which can vary and be difficult to obtain, leading
to inconsistent performance.

The Empirical Mode Decomposition (EMD) and its vari-
ance also have been applied to noisy ECG signals to reduce
the effect, however, MAs are correlated with both low-
and medium-frequency Intrinsic Mode Functions (IMFs) in
EMD. Therefore, EMD-based methods, such as the one in
[24], [25], that do not effectively address medium-frequency
IMFs may result in insufficient denoising.

Zou et al. in [26] proposed QRS detection based Motion
Artifact Removal algorithm (QRSMR) that targets the QRS
complexes in motion-contaminated ECG signals, preserving
these key segments while filtering out noise. The approach
detects and repairs irregular QRS complexes, removes base-
line wander by interpolating between Q- and S-peaks, and
applies a moving average to denoise intervals between com-
plexes, retaining P- and T-waves. Testing on simulated noisy
ECG signals showed an improvement in correlation with
clean signals from 40% to nearly 80%, demonstrating the
method’s enhanced noise removal capabilities.

The authors in [27] proposed an automatic ECG noise
detection and classification method using moving average
filtering, feature extraction, and a multistage decision-tree
algorithm. Dynamic amplitude range and autocorrelation
peak features were used to detect and classify low-frequency
(baseline wander, abrupt change) and high-frequency (power
line interference, muscle artifacts) noise. Testing demon-
strates an average sensitivity of 97.88%, positive productivity
of 91.18%, and accuracy of 89.06%.

Addressing the challenges of wearable healthcare devices
requires effective management of time, energy, and mem-
ory. Reducing energy consumption extends battery life and
reduces hardware strain, enhancing device durability [11],
[16]. Efficient memory management ensures data integrity
and optimizes storage while minimizing energy consumption
[13], [14]. Furthermore, memory-efficient algorithms im-
prove data sharing and interoperability with healthcare sys-
tems [13]. Profiling execution time, energy consumption, and
memory usage is key to improving monitoring performance,
enhancing user experience, and ensuring wearable devices’
long-term reliability and functionality. None of the available
research has simultaneously addressed the detection of both
noise types and SNR levels in ECG signals, along with
performance profiling. In this paper, we use statistical and
morphological features to detect noise types and SNR levels,
while also profiling the performance of various adapted
Machine Learning (ML) models and features. We compre-
hensively profile time, energy, and memory, providing a more
holistic approach to improving wearable device performance.

The rest of this paper is organized as follows: Section
II elaborates on the dataset and methodology. Section III
reports and discusses the results. Finally, we conclude the
paper in Section IV.

II. MATERIALS AND METHODS

In this section, we elaborate on the dataset, methods, and
algorithms we use for noise detection in ECG signals, along
with the techniques used to measure the time, energy, and
memory required to implement these algorithms.

A. Dataset

We use MIT-BIH Arrhythmia Dataset [28], [29] in our
experiments to evaluate IDNoise. This dataset comprises 48
half-hour two-channel recordings of ECG signals from 47
subjects. In accordance with [30], we treat the recordings of
this dataset as clean signals. We employ the WFDB software
package [31] to contaminate the recording according to [17],
[30]. Employing the default settings of the WFDB software
and specifying the type and intensity of noise, starting
after the initial 5 minutes of each recording, two-minute
intervals of noise are introduced, alternating with two-minute
clean segments. We then segment the signals into 10-second
intervals (windows). Therefore, we have 4 classes of signals
(including muscle artifact, EM, BW corrupted signals, and
the clean signal), 7 classes of signals based on the SNR level
(including -6 dB, 0 dB, 6 dB, 12 dB, 18 dB, 24 dB, and the
clean signal), and 19 classes of signals based on both the
type of noise and the SNR level (3 different types of noise,
each with 6 different SNR levels, and the clean signal).

B. Feature Extraction

We extract different types of features from the data in-
cluding statistical and morphological features. For the mor-
phological, we use two approaches: 1) raw morphological
features, 2) processed morphological feature.

1) Statistical Features
Statistical features provide insights into their distribution

and variability. These features include the mean, variance,
kurtosis, skewness, energy, entropy, and maximum auto-
correlation. Additionally, we analyze the mean, variance, and
maximum of the signal’s histogram [32], [33].

2) Morphological Features
These features describe the shape, pattern, and specific

attributes of signals. Since noise can corrupt the shape and
pattern of the ECG signal, we use the vital-sqi [34] open-
access Python toolbox to pinpoint the locations of peaks in
the signal. These peak locations offer insights into the time
intervals between peaks, which we regard as morphological
features [32], [35].
1. Raw Morphological Features: The pattern of distances
between detected peaks differs among various classes. For
example, in signals affected by MA, some peaks might not
be detected, leading to a unique distance pattern compared to
other classes. To standardize the feature vectors, we perform
the following steps: 1) Sort the features in each feature vector
in descending order. 2) Compute the mean (µ) and standard
deviation (σ) of the vectors. 3) Define the length of the



TABLE I: LIST OF FEATURES

Statistical Features
Mean Variance

Kurtosis Skewness
Energy Entropy

Maximum Auto-correlation Histogram’s Mean
Histogram’s Variance Histogram’s Maximum

Raw RR Features
Sorted RR intervals

Processed RR Features (HRV Features)
SDNN RMSSD
PNN50 LF (Low Frequency)

HF (High Frequency) LF/HF Ratio
SD1 SD2

Num peaks Mean NNs

feature vectors as l = ⌊µ⌋+⌊σ⌋. 4) Zero-pad feature vectors
shorter than l and truncate the last samples in feature vectors
longer than l [32], [35].
2. Processed Morphological Features: Using the raw
morphological features (RR-intervals, also known as NN
intervals), we also calculate some Heart Rate Variability
(HRV) features using pyhrv library in python [36] as follows:
1) SDNN (Standard Deviation of successive normal heart-
beats or NN intervals): Measures overall heartbeat variability
over a period. 2) RMSSD (root mean square of successive
differences): Reflects short-term variations in heart rate, in-
fluenced by parasympathetic activity. 3) pNN50 (percentage
of successive NN intervals differing by > 50ms): Indicates
the proportion of intervals with significant differences, re-
lated to parasympathetic activity. 4) LF (Low Frequency):
Represents power in the low-frequency range (0.04 to 0.15
Hz) of the HRV spectrum, associated with both sympathetic
and parasympathetic activity. 5) HF (High Frequency): Rep-
resents power in the high-frequency range (0.15 to 0.40 Hz)
of the HRV spectrum, primarily linked to parasympathetic
activity. 6) LF/HF Ratio: Indicates the balance between
sympathetic and parasympathetic nervous system activity.
7) SD1 (Standard Deviation 1): Reflects short-term, calcu-
lated from the Poincaré plot. 8) SD2 (Standard Deviation 2):
Reflects long-term HRV, also derived from the Poincaré plot.
9) Num peaks (Number of Peaks): The count of detected
peaks in the heart rate signal, indicating significant heart
rate changes. 10) Mean NNs (Mean of NN intervals): The
average duration between successive R-wave peaks in the
ECG, representing the average heart rate. After feature
extraction, we normalize them to ensure a consistent scale
across all features, which improves the performance and
convergence of ML models. A summary of the statistical
and morphological features used is provided in Table I.

C. Classification

In this study, we conduct the multi-class classifications as
follows: i) classification of noisy vs. clean signals (binary)
ii) classification with respect to the type of noise (4 classes),
iii) classification with respect to SNR level (7 classes)
iv) classification with respect to type of noise and SNR level
(19 classes).

To achieve this, we employ linear Support Vector Machine
(SVM) and SVM with a Radial Basis Function (RBF)

kernel, Random Forest (RF) , XGBoost (XGB) , Extremely
Randomized Tree (ERT) , Decision Tree (DT) , and Gradient
Boosted Decision Trees (GB) [37] classifiers to train our
predictive model [32], [35]. We implement these classifiers
using scikit-learn with the following parameters.

For the ensemble learning models, including RF, GB,
XGB, and Extremely Randomized Trees (ERT), as well
as DT, we set the parameters n estimators, random state,
max depth, and max leaf nodes to 100, 42, 500, and 15,
respectively. For linear and RBF SVM, we set random state,
C, and gamma to 42, 0.1, and 0.001, respectively. These
parameter settings are chosen to reduce memory usage for
storing the models, as compared to using the default settings.

D. Classification Performance Metrics

We employ widely used accuracy and F1-score classifica-
tion performance metrics for the evaluation of our trained ML
models. For multi-class classification, if we have C classes,
for accuracy, we simply calculate the proportion of correct
predictions to all predictions, and for F1-score, we calculate
the weighted average:

Weighted F1-score =

∑C
i=1 F1-scorei × Supporti∑C

i=1 Supporti
, (1)

Accuracy =
TP + TN

TP + FP + TN + FN
, (2)

where Supporti represents the support (the number of
true instances) for class i, and F1-scorei is the F1-score for
class i. Additionally, TP , TN , FP , and FN refer to true
positives, true negatives, false positives, and false negatives,
respectively.

Before training and validating our models, we ensure
data balance across all classes. Therefore, the metrics are
computed with equal weight for the various classes.

E. Time, Energy, and Memory

For each type of feature, execution time, energy con-
sumption, and memory usage of the steps for inference of
a 10 second window of data were measured. We perform
all experiments on Linux (Ubuntu 22.04.4 LTS), running on
the hardware platform (Table II). We know that the resource
metric values are different on a wearable device, which has
stricter energy and computational constraints. However, our
work provides valuable insights into the relative trade-offs
between different ML models and feature types. For example,
models or features that are computationally expensive on a
laptop are likely to remain so on a wearable device.

We use Python version 3.10.12. We measure time and
memory using Python built-in module timeit [38] and trace-
malloc [39]. Tracemalloc allows the current memory usage
and as well as the peak memory usage to be measured. For
energy consumption measurements we use the Running Av-
erage Power Limit (RAPL) [40] interface, available on Intel
processors, which has been validated by Intel and reported
in several papers [41]–[43]. It allows simple monitoring of
energy consumption accurately without any power meters.
RAPL is split into several power domains such as package,



TABLE II: FEATURES OF HARDWARE PLATFORM.

Feature Specification

Processor
13th Gen Intel(R) Core (TM)

i9-13900
CPU Family 6 Model 183

Clock Frequency Max: 5.6 GHz
Min: 0.8 MHz

Architecture x86 64
Type Desktop

Sockets 1
Cores per Socket 24

L3 Cache 36 MiB

Memory 32 GB
32 GB LPDDR4X

energy used by cores, DRAM, and platform. Our platform
does not support the DRAM domain. We use the Linux
powercap framework [44], which allows the energy counters
(in µJ) in each domain of the Intel RAPL to be read with
privileged access in Linux.

For different types of classification (Noise, SNR, and
Noise-SNR), we measure the time, energy, and current and
peak memory used by the cores as well as the platform
energy, and report the units in seconds (s or ms), bytes (B),
and joules (J or mJ), respectively.

We perform the measurements for each of the following
steps: feature extraction, feature normalization, loading the
classification model, and prediction. In addition, we profile
feature extraction for each feature type. We report feature
extraction, feature normalization, and prediction resource us-
ages per window and carry all the measurements separately,
when no other programs are running.

III. RESULTS AND DISCUSSION

A. Experimental Results

We evaluate the performance of different ML models on
the data for each individual feature and for the concatenated
features, referred to as concatenated features in various
scenarios as follows:

1) Prediction of the (Type of) Noise
2) Prediction of SNR Level
3) Prediction of Type of Noise and SNR Level
The results are shown in Table III. As we can see,

using the concatenated features, among the different ML
models, XGB outperforms the others with accuracy and F1-
score of 67.91% and 67.89% for detection of noise type
classes, 44.80% and 44.57% for detection of SNR values
classes, and 40.87% and 40.27% for detection of noise-
SNR classes. Also, RBF SVM achieves an 80.52% accuracy
and an 80.44% F1-score for classifying clean signals versus
noisy signals (EM, MA, and BW-corrupted ECG signals) on
average. For other feature types, we can still observe that
XGB performs better compared to other ML models. This
demonstrates the applicability of XGB in the classification of
noise-corrupted signals. Statistical features appear to perform
better than morphological features, but concatenated features
lead to even better accuracy.

Fig. 1: Time, energy and memory needed for feature ex-
traction per window (same for Noise, SNR, and Noise-
SNR classification types) for different type of features. The
standard deviations are negligible.

B. Experimental Results for Execution Time, Energy Con-
sumption, and Memory Usage

To perform an inference, we first extract the features,
normalize them, and then use the ML model for prediction.
The ML model is loaded only once for all inferences of the
same classification type. Our goal is to profile resource usage
for each step of an inference and analyze it thoroughly.

Feature Extraction per Window: In Figure 1, the gain in
accuracy obtained by using concatenated features comes at
a cost in comparison to the other features. Table IV presents
the time, energy, and memory when using concatenated
features, compared to each individual feature type. In this
table, as well as in subsequent figures, we report only
platform energy since it inherently includes core energy.
Similarly, we focus on current memory usage, as it provides
more meaningful variations across different ML models and
classification classes compared to peak memory usage. How-
ever, peak memory usage remains a critical metric for devices
with constrained resources. The data in the table highlight
the trade-offs of using concatenated features compared to
other feature types in terms of time, energy, and memory:

• Execution Time: Concatenated features exhibit the high-
est execution time, taking 7.6 times longer than statis-
tical features and significantly more time compared to
RR and Raw RR features.

• Energy Consumption: Similarly, concatenated features
show the highest energy consumption, consuming 7.2
times more energy than statistical features.

• Memory Usage: For memory usage, concatenated fea-
tures also require the most resources, with 7.0 times
higher memory usage compared to RR features.

Despite these costs, concatenated features lead to significant
improvements in classification accuracies.

Feature Normalization: For feature normalization, con-
catenated features result in higher time, energy, and memory
requirements compared to other feature types, following
a trend similar to that observed during feature extraction.
However, there are no significant differences across the
classification classes: Noise, SNR, and Noise-SNR. Because
the execution time and energy consumption during feature
normalization are at least 1000 times smaller than during



TABLE III: PERFORMANCE OF IDNOISE FOR PREDICTION OF DIFFERENT TYPES OF SIGNALS

Feature,
Class Metric ML Models

XGB ERT RF Linear SVM RBF SVM GB DT

Statistical Noise accuracy 60.16 ± 1.51 54.61 ± 0.92 57.55 ± 1.19 47.53 ± 1.14 43.45 ± 1.00 55.76 ± 0.89 54.36 ± 1.48
f1 score 60.07 ± 1.46 53.65 ± 0.86 56.99 ± 1.12 46.32 ± 1.13 42.28 ± 0.71 55.18 ± 0.90 54.12 ± 1.35

Statistical SNR accuracy 38.30 ± 1.70 37.72 ± 1.92 38.38 ± 2.04 29.33 ± 0.88 36.18 ± 0.81 34.96 ± 0.93 31.02 ± 1.17
f1 score 37.85 ± 1.57 37.60 ± 1.84 38.16 ± 1.96 27.54 ± 0.89 34.45 ± 0.56 33.91 ± 0.72 31.17 ± 1.12

Statistical Noise-SNR accuracy 32.00 ± 2.07 30.70 ± 2.23 31.60 ± 2.22 23.45 ± 1.52 28.60 ± 1.72 27.96 ± 1.97 24.24 ± 1.33
f1 score 31.57 ± 2.28 30.34 ± 2.45 31.28 ± 2.47 22.56 ± 1.56 27.92 ± 1.73 27.52 ± 2.10 24.10 ± 1.30

Raw RR Noise accuracy 53.11 ± 2.20 50.19 ± 1.42 51.45 ± 1.35 41.86 ± 2.23 49.80 ± 2.31 48.93 ± 2.61 41.95 ± 1.13
f1 score 52.58 ± 2.04 49.50 ± 1.52 51.20 ± 1.46 37.04 ± 1.25 48.56 ± 1.78 47.34 ± 2.02 41.36 ± 1.15

Raw RR SNR accuracy 33.13 ± 1.04 33.36 ± 0.71 33.54 ± 0.78 24.69 ± 1.17 30.02 ± 1.30 30.94 ± 0.38 25.45 ± 0.87
f1 score 31.65 ± 0.81 32.99 ± 0.72 33.02 ± 0.80 17.07 ± 0.30 25.31 ± 0.60 27.59 ± 0.03 25.35 ± 0.91

Raw RR Noise-SNR accuracy 24.55 ± 1.29 26.09 ± 1.47 26.08 ± 1.39 15.21 ± 0.78 19.84 ± 1.14 20.62 ± 1.29 18.62 ± 0.91
f1 score 22.78 ± 1.61 24.13 ± 1.78 24.29 ± 1.69 10.14 ± 0.83 16.43 ± 1.12 18.95 ± 1.44 18.32 ± 0.91

RR Noise accuracy 50.93 ± 2.47 45.69 ± 1.69 47.07 ± 1.96 46.80 ± 1.98 51.18 ± 2.00 50.34 ± 2.14 39.58 ± 1.49
f1 score 50.27 ± 2.20 45.02 ± 1.90 46.88 ± 2.16 44.65 ± 1.12 49.78 ± 1.63 48.71 ± 1.77 38.94 ± 1.60

RR SNR accuracy 31.85 ± 1.40 29.40 ± 1.38 30.03 ± 1.38 29.17 ± 1.31 31.81 ± 1.27 31.33 ± 1.31 24.13 ± 1.05
f1 score 29.92 ± 1.03 29.16 ± 1.30 29.65 ± 1.25 22.36 ± 0.82 25.89 ± 0.79 27.50 ± 0.86 24.12 ± 1.02

RR Noise-SNR accuracy 25.18 ± 1.04 22.51 ± 1.21 23.36 ± 1.22 14.75 ± 0.82 11.61 ± 0.85 21.20 ± 1.21 20.96 ± 1.36
f1 score 23.72 ± 1.14 19.02 ± 1.25 20.46 ± 1.17 9.21 ± 0.70 5.14 ± 0.52 19.56 ± 1.32 18.78 ± 1.27

Concatenated Noise accuracy 67.91 ± 2.35 63.55 ± 2.46 65.64 ± 2.55 56.37 ± 2.26 65.40 ± 3.08 63.55 ± 2.16 55.00 ± 1.81
f1 score 67.89 ± 2.45 63.19 ± 2.75 65.51 ± 2.71 55.60 ± 2.01 65.32 ± 3.08 63.40 ± 2.10 54.88 ± 1.97

Concatenated SNR accuracy 44.80 ± 1.74 43.80 ± 1.93 44.49 ± 2.24 35.00 ± 1.34 41.23 ± 1.48 40.67 ± 1.54 35.25 ± 0.83
f1 score 44.57 ± 1.74 43.72 ± 2.00 44.31 ± 2.26 33.13 ± 1.26 40.30 ± 1.48 40.02 ± 1.35 35.37 ± 0.88

Concatenated Noise-SNR accuracy 40.86 ± 3.39 33.25 ± 2.77 36.06 ± 3.69 28.29 ± 1.89 14.71 ± 1.06 36.60 ± 2.96 31.85 ± 2.58
f1 score 40.27 ± 3.60 31.97 ± 2.95 35.08 ± 3.95 26.79 ± 1.78 9.38 ± 0.65 36.05 ± 3.17 31.42 ± 2.77

Concatenated Noise accuracy 79.21 ± 3.31 66.17 ± 3.43 71.63 ± 3.55 79.63 ± 3.05 80.52 ± 3.11 80.46 ± 2.53 69.07 ± 2.84
(binary: clean vs. noisy) f1 score 79.01 ± 3.54 62.13 ± 4.95 69.65 ± 4.57 79.55 ± 3.00 80.44 ± 3.21 80.41 ± 2.55 67.13 ± 3.64

* Due to limited space and similar trends to other classification types, we omit results for using other feature types in the binary classification task.

TABLE IV: TIME, ENERGY, AND MEMORY NEEDED FOR
FEATURE EXTRACTION PER WINDOW FOR DIFFERENT
TYPES OF FEATURES.

Feature Execution Energy Memory
Class Time (ms) Consumption (mJ) Usage (B)
Statistical 0.796 33 417
RR 3.108 125 202
Raw RR 2.180 78 707
Concatenated 6.085 235 1422

feature extraction, and memory usage is less than 5 times
that of feature extraction. Overall, feature normalization has
a negligible impact on resource consumption.

Prediction per Window for each ML Model: The usage
metrics for prediction per window for each ML model are
displayed in Figure 2. Execution time differences among
feature types vary by a factor of up to approximately 2.0
for each ML model. For example, for noise classification in
the case of XGB, execution times range from 0.000352ms
(Concatenated) to 0.000523ms (Raw RR), a factor of 1.49.
Similarly, for RBF SVM, the times range from 3.6049ms
(Statistical) to 6.3709ms (Concatenated), a factor of 1.77.
These differences show that execution time across feature
types remains reasonably consistent for each model.

For energy consumption per window, the differences
among feature types vary by a factor of up to approximately
2.1 for each ML model. For example, for noise classifi-
cation using RBF SVM, energy consumption ranges from
148.26mJ (RR) to 290.31mJ (Concatenated), a factor of
1.96. For lightweight models such as XGB, the variations
are smaller, ranging from 41.90mJ (Statistical) to 83.45mJ
(Raw RR), a factor of 1.72. These observations suggest that
differences in energy consumption remain reasonably small
between feature types for each ML model.

Memory usage per window remains nearly constant across
all feature types for each ML model, with negligible vari-
ations, as it depends on the model’s structure rather than
the input features. In contrast, execution time and energy
consumption show slight variations due to differences in
feature dimensionality and computational complexity. This
effect is most noticeable in SVM models, where predictions
involve more floating-point computations due to the kernel
function and support vector selection. Although these models
load only the relevant support vectors during prediction -
reducing memory usage - the increased computational load
results in higher time and energy costs.

For each individual inference, the total time for feature
extraction, feature normalization, and prediction within a 10-
second window stays below 20 ms, regardless of feature type,
ML model, or classification type. This makes the system well
suited for real-time applications. Although the linear SVM
and RBF SVM models exhibit the highest execution times
and energy consumption, their memory usage is slightly
lower than most of the other ML models.

Loading the Model: Although the ML model is typically
loaded once for all inferences of the same classification
type, we include it in the discussion to account for sce-
narios where the model is not retained in memory between
inferences. Each inference involves feature extraction and
normalization, and prediction. The time, energy, and memory
required to load an ML model can vary significantly, ranging
from over 1000 times to just 10 times that needed for
prediction, depending on the feature type and ML model.
Consequently, the time, energy, and memory required to
load the model cannot always be ignored. For each ML
model, the differences in time, energy consumption, and
memory usage across different feature types remain within



a factor of 5, regardless of the classification type. In some
cases, concatenated features even result in a lower energy
consumption. Memory usage shows a consistent pattern
across feature types and classification types, with linear SVM
and RBF SVM requiring the most memory. Consequently,
using concatenated features does not necessarily increase the
time, energy, or memory requirements to load the ML model.
The key factors in selecting a suitable feature type and ML

Fig. 2: Usage metrics for prediction per window for different
feature types across various ML models for Noise classifi-
cation. We do not report the plots for SNR and Noise-SNR
classifications as they exhibit similar trends.

model include inference accuracy (Table III), feature extrac-
tion costs (Table IV) and time, energy, and memory values
during both inference and model loading. Balancing accuracy
improvements against computational costs is essential for
choosing the most suitable solution for a specific application.
In addition, energy and memory requirements must align
with the constraints of the target hardware platform. To
illustrate this decision-making process, we present three
scenarios.

Scenario 1: If achieving high accuracy is the top priority,
the most suitable ML model for multi-class classification is
XGB since it offers the highest accuracy compared to the
other ML models, regardless of feature type and classfication
type. Specifically, it offers an increase in accuracy for Noise
classification from 60.16 for Statistical, 53.11 for Raw RR,
50.93 for RR to 67.91 for Concatenated features. However,
choosing concatenated features requires accommodating an
increase in execution time, energy consumption, and memory
usage for feature extraction. Additionally, if the goal is
to perform binary classification for detecting noisy signals

regardless of the type of noise, RBF SVM and GB are the
most suitable options.

Scenario 2: If accuracy as well as execution time
have high priority, we should consider using statistical fea-
tures (or even other features) and the DT model. This com-
bination offers a 7 to 160 times improvement in execution
time compared to other models. Furthermore, DT has the
lowest energy consumption and memory usage during both
prediction and model loading. Therefore, it is well-suited for
applications that require speed, and where limited battery and
memory resources can be traded for reduced accuracy.

Scenario 3: If memory usage is the primary concern for
a given application, then RR features are preferred, as they
have the lowest memory requirements, for feature extraction
and prediction. However, the associated accuracy loss varies
depending on the feature type, the classification type, and
the ML model, with a loss ranging from 17% to 48%.

Concatenated features offer improved accuracy, but this
gain must be weighed against the associated costs in exe-
cution time, energy consumption, and memory usage. The
costs of each step leading to inference per window should
be analyzed for each classification class and ML model.

IV. CONCLUSION AND FURTHER WORK

Wearable devices are prone to different types of noise.
Noise-corrupted signals increase the number of false posi-
tives in wearable outputs, leading to decreased user trust.
Consequently, true alarms and recommendations from the
device may be ignored due to a lack of confidence in
its accuracy, which can threaten the user’s health. In this
paper, we proposed a noise type and SNR level detection
method for ECG signals, allowing the identification of clean
ECG signals versus 3 different noise types that corrupt the
signal at 6 SNR levels for each noise type. To achieve
this, we used statistical and morphological features, as well
as their concatenated forms, to train various ML models.
By distinguishing between clean and noisy signals, we can
reduce false positive alarms in wearable devices, thereby
improving the functionality of the devices.

We find that, although concatenated features deliver better
accuracy, they lead to increased execution time, energy
consumption, and memory usage during feature extraction
phase. During the prediction, concatenated features do not
lead to significant changes in time and resource consumption
for the Noise, SNR, and Noise-SNR classification types
and the considered set of ML models. With the help of
the scenarios, we illustrate the possible trade-offs involved
in selecting the feature type and ML model for a given
application and/or target hardware with given execution time,
energy, and memory constraints.

These results offer a solid baseline for selecting efficient
ML models and feature sets when transitioning to wearable
platforms. The next step in this work is to investigate
more possibilities to improve accuracy, execution time, en-
ergy consumption, and memory usage. This will involve
adapting and implementing current algorithms on resource-
constrained hardware platforms.
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