
PRIM: Hybrid Array-Compressor Multipliers with
Carry Disregard and OR-based Approximation

Nima Amirafshar1 ID , Gulafshan Gulafshan1 ID , Hadi Shahriar Shahhoseini2 ID , and Nima TaheriNejad1,3 ID

1Institute of Computer Engineering (ZITI), Heidelberg University, Germany,
2School of Electrical Engineering, Iran University of Science and Technology, Iran,

3Institute of Computer Technology (ICT), Technische Universität Wien (TU Wien), Austria
Email: {nima.amirafshar, gulafshan, nima.taherinejad}@ziti.uni-heidelberg.de, shahhoseini@iust.ac.ir

Abstract—This paper introduces an efficient new 4:1 com-
pressor that uses carry disregard and OR-based approximation,
leading to the development of 13 approximate unsigned multipli-
ers. The proposed multipliers, 8-bit array-comPressor oR-based
carry dIsregard Multipliers (PRIM8s) demonstrate significant
improvements in area, power, delay, and Power-Delay-Product
(PDP) by an average of 29%, 31%, 25%, and 47%, compared to
the exact multiplier. In the approximate multiplier literature, with
our hardware, we establish new Pareto fronts for most criteria.
The effectiveness of the proposed multipliers for noise reduction is
demonstrated in an image-processing application using a low-pass
Gaussian filter. On average, PRIM8s reduce power consumption
and improve speed by 32.36% and 19.01% compared to the exact
multiplier, while also enhancing image quality, as indicated by a
0.14% increase in Structural Similarity Index Measure (SSIM).

Index Terms—Approximate multipliers, OR-based carry dis-
regard compressor, energy efficiency, image processing.

I. INTRODUCTION

In recent years, the inherent error tolerance in applications
like machine learning, scientific computing, and signal pro-
cessing has allowed for the use of approximate arithmetic,
particularly in fundamental operations like multiplication [1]–
[4]. This trend is further supported by the limitations of
human perception in areas such as image processing and
multimedia [5]. Approximate multipliers can enhance perfor-
mance and reduce hardware complexity while maintaining
acceptable accuracy levels. Multiplication involves generating
Partial Products (PPs), accumulating them, and performing a
final addition. PP accumulation is typically the most hardware-
intensive stage. Various approximation techniques have been
proposed for unsigned multipliers, including logarithmic de-
signs, operand truncation, and tree-based architectures [6], [7].
While tree structures offer speed, they consume more power
and area. In contrast, array multipliers typically apply approx-
imation techniques by using simplified Half Adders (HAs)
or Full Adders (FAs), and by disregarding carries in specific
columns of PPs [1], [8], [9]. In this paper, we introduce a
new class of carry disregard unsigned multipliers that combine
compressor and array architectures. These designs disregard
carries and replace XOR gates with OR gates for PP sum-
mation, which simplifies the hardware and naturally balances
the error introduced, eliminating the need for a compensator
unit to correct errors. We present 13 approximate multipliers

b7:b4

SA11:SA4

a7:a0 4
b3:b0

R15:R4

8

12-bit Adder

Group B

(𝟖 × 𝟒𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓)

Group A

(𝟖 × 𝟒𝑴𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒆𝒓)

12SB11:SB0

4

SA3:SA0

R3:R0
12

4 8

4
0

(a) Exact unsigned 8-bit multiplier

a7 a6 a5 a4 a3 a2 a1 a0

b0

b2

b1

b3

0

FA

𝑎𝑖

𝑆𝑖𝑛

𝑏𝑖𝑏𝑖

𝐶𝑖𝑛
𝐶𝑜𝑢𝑡

𝑆𝑜𝑢𝑡
𝑎𝑖

𝑏𝑖𝑏𝑖

𝑎𝑖

𝑃
𝑎𝑖

SA0

SA1

SA2

SA3SA4SA5SA6SA7SA8SA9SA10SA11

Λ

Π0

(b) Exact 8 × 4 multiplier and the circuit of Partial
Product Unit (Π0)

Fig. 1: Exact 8-bit multiplier using two exact 8×4 multipliers.

with varying error levels, demonstrating an improved trade-off
between accuracy and efficiency.

The key contributions in this paper are: (1) The design
of a new approximate 4:1 compressor and partial product
units, employing carry disregard and OR-based partial product
accumulation, (2) Proposing a new methodology for designing
approximate hybrid array-compressor multipliers, (3) Devel-
oping highly efficient approximate 8-bit unsigned multipliers,
with most positioned on the Pareto fronts of hardware criteria,
outperforming many recent approximate multipliers in the
literature, (4) Analyzing the impact of our designs in an
image processing application. The remainder of this paper
is structured as follows: Section II reviews the preliminaries.
In Section III, we introduce our 8-bit approximate unsigned
multipliers. Section IV presents the experimental results and
a comprehensive comparison with recent approximate multi-
pliers. Section V explores the application of our designs in
image processing, and the paper concludes in Section VI.

II. PRELIMINARIES

The conventional design of multipliers typically uses an
array architecture, where partial product units perform bit-
wise multiplication and accumulate PPs. An 8-bit unsigned
array multiplier consists of 8 rows of PPs, with each row
containing 8 partial product units. While array multipliers
feature a uniform and modular structure that reduces power

https://orcid.org/0009-0000-4361-8095
https://orcid.org/0000-0002-0640-7878
https://orcid.org/0000-0002-6042-0993
https://orcid.org/0000-0002-1295-0332

𝑎𝑖

𝑆𝑖𝑛

𝑏𝑖𝑏𝑖

𝑆𝑜𝑢𝑡

𝑎𝑖

𝑎𝑖𝑆𝑖𝑛

𝑆𝑜𝑢𝑡𝑎𝑖

𝑏𝑖𝑏𝑖

(a) Π1 1

𝑆𝑖𝑛 𝑎𝑖

𝑎𝑖

𝑏𝑖𝑏𝑖

𝑏𝑗𝑏𝑗

𝑎𝑗

𝑎𝑗 𝑆𝑜𝑢𝑡
𝑆𝑖𝑛

𝑆𝑜𝑢𝑡

𝑎𝑗
𝑏𝑗

𝑏𝑖
𝑎𝑖

𝑏𝑖
𝑎𝑖

𝑎𝑗
𝑏𝑗

(b) Π1 2

𝑆𝑖𝑛 𝑎𝑖

𝑎𝑖

𝑏𝑖𝑏𝑖

𝑏𝑗𝑏𝑗

𝑎𝑗

𝑎𝑗

𝑆𝑜𝑢𝑡

𝑏𝑘𝑏𝑘

𝑎𝑘

𝑆𝑖𝑛

𝑆𝑜𝑢𝑡

𝑎𝑗
𝑏𝑗

𝑏𝑖
𝑎𝑖

𝑏𝑖
𝑎𝑖

𝑎𝑗
𝑏𝑗

𝑎𝑘𝑏𝑘

𝑏𝑘

(c) Π1 3

Half-Adder

𝑆𝑖𝑛

𝑏𝑖
𝑎𝑖

𝐶𝑜𝑢𝑡

𝑆𝑜𝑢𝑡

𝑏𝑖

𝑎𝑖

𝑎𝑖𝑆𝑖𝑛

𝑆𝑜𝑢𝑡𝑎𝑖

𝑏𝑖𝑏𝑖
𝐶𝑜𝑢𝑡

(d) Π2

Full-Adder

𝑆𝑖𝑛

𝑆𝑜𝑢𝑡

𝐶𝑜𝑢𝑡
𝑎𝑗
𝑏𝑗

𝑏𝑖
𝑎𝑖

𝑏𝑖
𝑎𝑖

𝑎𝑗
𝑏𝑗

𝑎𝑖𝑆𝑖𝑛

𝑆𝑜𝑢𝑡

𝑎𝑖

𝑏𝑖𝑏𝑖

𝐶𝑜𝑢𝑡

𝑎𝑗

𝑎𝑗

𝑏𝑗𝑏𝑗

(e) Π3

Fig. 2: Circuits and representations of optimized partial product units.

a7 a6 a5 a4 a3 a2 a1 a0

b1

b3

b2

b0

SA3

0

SA4SA5SA6SA7SA8SA9SA10SA11 SA2 SA1 SA0

ΛΠ0

Π1

Π2

Π3

(a) G4

a7 a6 a5 a4 a3 a2 a1 a0

b1

b3

b2

b0

SA3SA4SA5SA6SA7SA8SA9SA10SA11 SA2 SA1 SA0

(b) G8

a7 a6 a5 a4 a3 a2 a1 a0

b1

b3

b2

b0

SA3SA4SA5SA6SA7SA8SA9SA10SA11 SA2 SA1 SA0

(c) G9

Fig. 3: Proposed approximate 8× 4 multipliers.

consumption and area, they suffer from increased critical path
delay due to carry propagation. This delay results from the
high interdependence among partial product units, requiring
each unit to wait for its adjacent unit to generate a carry output.
To address this issue, the structure illustrated in Figure 1a,
which presents an 8-bit unsigned array multiplier using two
exact 8 × 4 multipliers organized into groups A and B,
reduces critical path delay for each group (highlighted in
red in Figure 1b) and allows for parallel operation. The
final multiplication result is achieved using a 12-bit adder.
Each 8× 4 multiplier comprises Partial Product Units (Π0s),
with each Π0 containing an AND Gate (Λ) for single-bit
multiplication and one FA for PPs summation. Although
this architecture improves delay without sacrificing accuracy,
the dependency between Π0s within each group remains.
To address this challenge, we propose several approximate
multipliers based on this structure, incorporating effective
approximation techniques to significantly reduce hardware
complexity while maintaining acceptable accuracy.

III. PROPOSED APPROXIMATE UNSIGNED MULTIPLIERS

In this paper, we propose 8-bit array-comPressor oR-based
carry dIsregard Multipliers (PRIM8s) based on the structure
illustrated in Figure 1. By disregarding carries from Column 1
up to a specified column in each 8× 4 multiplier, the approx-
imate columns can operate in parallel, significantly improving
critical path delay. This approach also allows for simpler
partial product units, resulting in reduced power consumption
and area. Figure 2 shows the optimized partial product units.
Our OR-based Carry Disregard Partial Product Units (Π1s)
are designed without carry inputs or outputs in columns where
carry propagation is disregarded. Π1 1 and Π1 2 (Figures 2a
and 2b) use Λs for bit-wise multiplication and OR gates for
summing the PPs. Figure 2c presents Π1 3, our approximate
4:1 compressor that accumulates four PPs using three Λs and
three OR gates while disregarding all carries. By incorporating

OR gates into the Π1s, we reduce hardware complexity and
improve the error balance from carry disregard. For example,
when Π1 3 computes the sum of four bits, an odd count of 1s
results in Sout = 1 in both OR-based and XOR-based units,
while an even count (not zero) yields Sout = 0 in the XOR-
based unit but 1 in the OR-based unit, compensating for the
error from ignored carries. Π2 and Π3 (Figures 2d and 2e)
are further optimized units that operate without carry inputs,
as they are used after the carry disregard columns. Π2 uses a
single HA for summing PPs, while Π3 combines two Π0s to
compute the sum of three PPs.

We developed all 10 possible configurations for the 8 × 4
multiplier based on carry disregard, labeled Gx, where x
indicates the last column up to which carries are disregarded.
In this paper, we focus on approximations applied only to
Group A, as it occupies the least significant part of the 8-
bit multiplier in Figure 1a, thus introducing minimal error.
Figure 3 illustrates several of the proposed approximate 8× 4
unsigned multipliers. For Group A, we selected configurations
G4 through Ga (where “a” represents the hexadecimal value
10). G1 is an exact multiplier, as Column 1 does not generate
any carry, while G2 and G3 offer minor hardware improve-
ments. Configuration G4 (Figure 3a) disregards carries up to
Column 4, incorporating Π1 1, Π1 2, and an approximate
4:1 compressor (Π1 3) in those columns. The two subsequent
columns use one Π3 and two Π2 units, as these units do not
require carry inputs. Configurations G5 through G7 mirror
G4 but increase the number of Π1 3 compressors to 2, 3,
and 4, respectively, with G7 replacing the last partial product
unit in the second row with an Λ since it handles only a
single PP, similar to G8 and G9 in Figures 3b and 3c. In
G8 and G9, we further streamline the number of units by
employing additional Π3 and Π2 units. Among all proposed
configurations, Ga has the simplest structure, disregarding
all carries across columns and consisting solely of Π1s. For
the 12-bit adder in Figure 1a, we selected a Ripple Carry

TABLE I: Hardware and accuracy results of proposed PRIM8s.

Multipliers Area
(µm2)

Power
(µW)

Delay
(nS)

PDP
(fJ) MRED MED NMED NoEB PC

(%)
Exact8 * 301 85.6 0.760 65.1 0 0 0 16 100
PRIM8 41R12 270 75.5 0.622 47.0 0.0010 3.3 0.00005 13.03 68.3
PRIM8 51R12 257 70.2 0.628 44.1 0.0022 8.4 0.00012 11.91 59.6
PRIM8 61R12 241 64.7 0.613 39.7 0.0041 18.5 0.00028 10.86 53.3
PRIM8 71R12 227 60.5 0.631 38.2 0.0071 38.7 0.00059 9.83 48.7
PRIM8 81R12 210 56.8 0.608 34.5 0.0115 79.2 0.00121 8.82 44.9
PRIM8 91R12 201 54.9 0.608 33.4 0.0153 123.2 0.00189 8.12 43.4
PRIM8 a1R12 196 53.5 0.602 32.2 0.0173 155.2 0.00238 7.67 42.9
PRIM8 51R11 252 68.6 0.628 43.1 0.0028 11.1 0.00017 11.64 53.6
PRIM8 61R10 233 62.3 0.616 38.4 0.0062 29.4 0.00045 10.42 41.1
PRIM8 71R9 216 56.1 0.636 35.7 0.0120 68.8 0.00105 9.30 31.5
PRIM8 81R8 195 50.1 0.610 30.6 0.0210 150.3 0.00231 8.23 24.3
PRIM8 91R7 182 45.5 0.610 27.8 0.0311 263.7 0.00405 7.39 21.1
PRIM8 a1R6 175 41.9 0.590 24.7 0.0407 400.7 0.00616 6.74 19.8
* Exact unsigned 8-bit multiplier (using two exact 8×4 multipliers).

Adder (RCA) due to its lower circuit complexity compared to
other types of adders. We introduced two classes of PRIM8s,
depending on whether an exact or approximate 12-bit RCA
is used. The first class, PRIM8 x1R12, employs an exact
12-bit RCA (R12). In this naming scheme, the parameter x
represents the type of approximate 8× 4 multiplier (Gx) used
in Group A, while the digit “1” indicates that Group B uses an
exact multiplier (G1). The second class, PRIM8 x1R(16−x),
for 5 ≤ x ≤ 10, applies our approximation method to the
12-bit RCA. In this class, carries in the 12-bit adder are
disregarded, and OR gates are used for addition from Bit 0
up to a specific bit that corresponds to the last carry-disregard
column in Group A. The remaining bits are processed using
a (16 − x)-bit exact RCA. For example, in PRIM8 51R11
(x = 5), G5 is used in Group A, which disregards carries
up to Column 5, corresponding to Bit 0 of the 12-bit adder.
Therefore, we used an OR gate and disregarded the carry
for Bit 0 of the adder, while the remaining 11 bits are
processed using an exact 11-bit RCA (R11). In summary, this
paper presents 13 approximate 8-bit unsigned multipliers with
varying levels of approximation. Our experiments demonstrate
that these multipliers provide significant improvements in
hardware efficiency compared to exact and recent approximate
multipliers found in the literature.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup & Results

The proposed approximate multipliers were designed in
Verilog HDL and synthesized with Cadence Genus v2018,
using 45nm NanGate technology, to assess their critical path
delay, power consumption, and area. Table I presents the
experimental results of PRIM8s. Mean Relative Error Distance
(MRED), Mean Error Distance (MED), Normalized Mean
Error Distance (NMED), Number of Effective Bits (NoEB),
and Probability of Correctness (PC) are accuracy metrics
calculated across all possible input configurations (i.e., 65,536
for 8-bit multipliers) [8]. Compared to the exact multiplier
(Exact8 in Table I), PRIM8s improved area, power, delay, and
Power-Delay-Product (PDP) by an average of 27%, 32%, 19%,
and 45%, with an average MRED of 0.0133. For the first class
of multipliers (PRIM8 R12), there are average improvements
of 24%, 27%, 19%, and 41% in area, power, delay, and PDP,
respectively, with an average MRED of 0.0084. The most
hardware-efficient multiplier in this class is PRIM8 a1R12,
which reduces area, power, delay, and PDP by 35%, 37%,
21%, and 50%, compared to Exact8. In the second class,

where approximate 12-bit RCAs are employed, the multipliers
show greater hardware efficiency than those in the first class,
though with a slight reduction in accuracy, as indicated by an
average MRED of 0.019. These designs, compared to Exact8,
improved area, power, delay, and PDP by 31%, 37%, 19%, and
49%. Notably, PRIM8 a1R6 is the most efficient multiplier in
the second class and among all PRIM8s, delivering substantial
gains of 42%, 51%, 22%, and 62% in area, power, delay, and
PDP, compared to Exact8.

B. Comparison

For a fair evaluation of the proposed PRIM8s, we compared
them against 86 other recently developed approximate 8-
bit unsigned multipliers, all synthesized using 45 nm Nan-
Gate technology, as reported in the reference papers. These
multipliers encompass various architectures, which we have
grouped into four main categories: compressor-based, array,
logarithmic, and operand truncation. Figure 4 shows the power,
delay, area, PDP, and Power-Delay-Area-Product (PDAP) of
these multipliers plotted against their MRED values, with the
Pareto front highlighting the most efficient designs. Figure 4
illustrates that all PRIM8s, except for PRIM8 91R7, are
positioned on the Pareto front in terms of power consumption.
For delay, while only PRIM8 41R12 is on the Pareto front,
the remaining PRIM8s still demonstrate competitive speed.
Although compressor-based multipliers lead the Pareto front
in delay, they perform poorly in terms of power, area, PDP, and
PDAP. In contrast, for area, PDP, and PDAP (key indicators
of overall hardware efficiency) nearly all PRIM8s, except for
PRIM8 71R9, are on the Pareto front. Overall, PRIM8s rank
among the top designs, achieving a more favorable balance
between hardware efficiency and accuracy compared to other
approximate designs in the literature.

V. CASE STUDY: IMAGE PROCESSING

A low-pass Gaussian filter smooths images by reduc-
ing high-frequency noise while preserving low-frequency de-
tails [8], [10]. This is achieved by convolving the image
with a 3 × 3 Gaussian kernel, as defined in Equation (1).
Since multiplication is fundamental to the convolution process,
the proposed PRIM8s replace exact multipliers to enhance
computational efficiency. This case study uses an 8-bit color
image (Figure 5a), initially converted to grayscale to retain
essential details, as shown in Figure 5b. Gaussian noise with
zero mean and 1% variance is then added to the grayscale
image, depicted in Figure 5c. After that, the noisy image is
processed using the Gaussian filter implemented with exact
multiplier and PRIM8s as shown in Figures 5d to 5f.

fG =
1

1023

 97 121 97

121 151 121

97 121 97

 (1)

Table II presents key performance metrics, including Maxi-
mum Error Distance (Max ED), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index Measure (SSIM),
for filtered images generated by Exact8 and PRIM8s, along
with comparisons to the original grayscale image. In Table II,

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

[11]

[11]

[9]

[12]

[9]

[13]

[9]

[11][11]

[14]

[12]

[9]

[15]

[11]

[9]

[11]

[16]
[17]

[11]

[12]

[9]

[13]

[18]

[14]

[19]

[18]

[20]

[9]

[21]

[22]

[23]

[17]

[24]

[25]

[26]

[18] [25]

[27]

[9]

[13]

[17]

[17]

[11]

[25]

[20]

[28] [9]

[26]

[29]

[11]

[29]
[18]

[21]

[13]

[30] [14]

[24]

[13]

P
ow

er
(µ

W
)

Compressor-based
Array

Logarithmic
Operand truncation

PRIM8

0 1 2 3 4 5 6 7 8 9

0.5

1
[11]

[9][8]

[13]

[8]

[11]
[11]

[14]

[8]

[15]

[11]
[8]

[11]

[16]

[17]

[11]

[8]

[13]

[18]

[14]

[19]

[18]

[20]

[24]

[8]

[21]

[22]

[23]

[17]

[24]
[25]

[26]

[18]
[25]

[27]

[8]

[13]

[11]

[17]

[17]
[11]

[25]

[20]

[28]
[8]

[26]

[13]

[29]

[11]

[29]

[18]

[21]

[30]
[14]

[11]
[11]

[12] [12] [12]

[12]

D
el
a
y
(n

S
)

0 1 2 3 4 5 6 7 8 9

200

300

400 [11]

[11]

[9]

[12]

[8]
[8]

[11]
[11]

[14]

[12]

[8]

[15]

[11]

[8]

[11]

[16]

[11]

[12]

[8]

[13][18]

[14]

[19]

[18]

[20]

[24]

[8]

[23]

[24]

[25]

[26]

[18]

[25]

[8]

[13]

[11]

[17]

[17]

[11]

[25]
[20]

[8]
[26]

[13]

[29]

[11]

[12]

[18]

[30][14]

A
re
a
(µ

m
2
)

0 1 2 3 4 5 6 7 8 9
0

50

100

150

200

[11]

[11]

[11]

[9]

[12]

[8] [8]

[11]

[11]
[14]

[12]

[8]

[15]

[11]

[8]

[11]

[16]

[17]
[11]
[12]

[8]

[13]

[18]

[14]

[18][8]

[21]

[22]

[23]

[17]

[24]

[25]

[26]

[18]
[25]

[8]

[13]

[11]

[17]

[17]

[11]

[25] [28] [8]

[26]

[13]

[29]

[11]

[29]

[12]

[18]

[30]
[14]

[24]

[27]

P
D
P

(f
J
)

0 1 2 3 4 5 6 7 8 9
0

20

40

60 [11]

[11]

[9]

[12]

[8] [8]

[11]
[11]

[14]

[12]

[8]

[11]

[8]

[11]

[16]

[11]

[12]

[8]

[13]

[18]

[14]

[18]

[24]
[8]

[17]

[24]

[25]

[26]

[18]
[25]

[27]

[8]

[13]

[11]

[17]

[17]

[11]

[25]

[20]

[8]

[26]

[13]

[29]

[11]

[12]

[18]

MRED (×10−2)

P
D
A
P

(×
1
0
3
)

Fig. 4: New Pareto fronts for hardware criteria versus MRED.

SSIM(Ex, Apx) indicates that the structural differences be-
tween filtered images using Exact8 and PRIM8s are insignifi-
cant, with a maximum of 0.23%. Figures 5e and 5f highlight
the best and worst filtered image qualities among PRIM8s,
showing minimal visual differences and only a 0.22% struc-
tural difference, SSIM(Ex, Apx), thereby justifying the omis-
sion of intermediate cases. Table II demonstrates that PRIM8s
reduce power consumption and improve speed by an average
of 32.36% and 19.01% compared to Exact8 while enhancing
image quality, with a 0.14% increase in SSIM(Y, Ex/Apx).
This improvement in image quality is due to filtering applied

(a) (b) (c)

(d) (e) (f)

Fig. 5: Image Processing Examples; (a)-(c) before Gaussian
filtering, (d)-(e) after filtering.

TABLE II: Performance metrics of Gaussian low pass filter
design using exact and approximate multiplier

Max ED PSNR (dB) SSIM (%) PSNR (dB) SSIM (%) Power Delay
Multipliers Ex, Apx Ex, Apx Ex, Apx Y, Ex/Apx Y, Ex/Apx (W) (µS)

Exact8 0 ∞ 100 28.91 64.07 102.03 149.42
PRIM8 41R12 2 63.31 99.99 28.93 64.12 89.06 122.29
PRIM8 51R12 2 60.82 99.97 28.89 64.01 82.81 123.46
PRIM8 61R12 2 57.82 99.95 28.98 64.42 76.32 120.52
PRIM8 71R12 3 55.22 99.93 29.95 64.21 71.36 124.05
PRIM8 81R12 4 53.58 99.92 28.91 64.16 67.00 119.53
PRIM8 91R12 4 53.25 99.91 28.88 63.98 64.76 119.53
PRIM8 a1R12 4 53.18 99.91 28.91 64.21 63.11 118.35
PRIM8 51R11 2 58.83 99.96 28.95 64.29 80.92 123.46
PRIM8 61R10 3 54.49 99.91 28.92 64.33 73.49 121.11
PRIM8 71R9 3 51.07 99.87 28.91 64.05 66.17 125.04
PRIM8 81R8 5 48.06 99.87 28.86 64.11 59.10 119.93
PRIM8 91R7 6 45.74 99.85 28.91 64.34 53.67 119.93
PRIM8 a1R6 8 42.68 99.77 28.82 64.47 49.42 115.99

Ex: Filtered image with exact multiplier, Apx: Filtered image with
approximate multiplier, Y: Grayscale image

to a noisy image (Figure 5c) rather than to the noise-free
grayscale image (Figure 5b). Due to the presence of random
noise, it is unpredictable whether filtering with exact hardware
would perform better than approximate hardware. Notably, the
approximation technique can enhance image quality compared
to the exact hardware, depending on the noise intensity, type,
and the specific approximate multiplier used.

VI. CONCLUSION

In this paper, we introduced a new methodology for
designing approximate hybrid array-compressor multipliers
(PRIM8s). Our experiments demonstrate that by appropriately
integrating the advantages of both architectures, we can create
more efficient multipliers. We also showed that employing two
different approximation methods, which introduce errors in
opposite directions (positive and negative), not only enables
further hardware optimizations but also controls the error
level without requiring an additional compensator. Accord-
ingly, we developed a new 4:1 compressor that disregards all
carries and uses OR-based approximation for its sum output.
Consequently, most of PRIM8s rank among the Pareto front
designs compared to other approximate multipliers in the
literature. Moreover, the Gaussian filter designed with the
proposed multipliers is efficient in terms of power, delay,
and noise filtering compared to the exact counterpart. Since
our methodology offers over hundreds of configurations for
PRIM8s, we plan to use evolutionary algorithms in future
work to explore this design space further and identify even
more efficient approximate multipliers.

REFERENCES

[1] S. Shakibhamedan et al. Ace-cnn: Approximate carry disregard
multipliers for energy-efficient cnn-based image classification. IEEE
Transactions on Circuits and Systems I: Regular Papers, 71(5):2280–
2293, 2024.

[2] H. J. Damsgaard et al. Adaptive approximate computing in edge ai and
iot applications: A review. Journal of Systems Architecture, 150:103114,
2024.

[3] S. Shakibhamedan et al. An analytical approach to enhancing dnn
efficiency and accuracy using approximate multiplication. In 2nd Work-
shop on Advancing Neural Network Training: Computational Efficiency,
Scalability, and Resource Optimization (WANT@ ICML 2024).

[4] G. Armeniakos et al. Hardware approximate techniques for deep neural
network accelerators: A survey. ACM Comput. Surv., 55(4), nov 2022.

[5] F. Seiler and N. TaheriNejad. Accelerated image processing through
imply-based nocarry approximated adders. IEEE Transactions on
Circuits and Systems I: Regular Papers, pp. 1–14, 2024.

[6] Y. Wu et al. A survey on approximate multiplier designs for energy
efficiency: From algorithms to circuits. ACM Trans. Des. Autom.
Electron. Syst., 29(1), jan 2024.

[7] H. Jiang et al. Approximate arithmetic circuits: A survey, characteriza-
tion, and recent applications. Proceedings of the IEEE, 108(12):2108–
2135, 2020.

[8] N. Amirafshar et al. Carry disregard approximate multipliers. IEEE
Transactions on Circuits and Systems I: Regular Papers, 70(12):4840–
4853, 2023.

[9] N. Amirafshar et al. An approximate carry disregard multiplier with
improved mean relative error distance and probability of correctness. In
Euromicro Conference on Digital Systems Design 2022 (DSD2022), pp.
1–7, 2022.

[10] G. Gulafshan et al. Power efficient image processing with tmr tunable
hybrid approximate adders. In 2023 IEEE 23rd International Conference
on Nanotechnology (NANO), pp. 556–561, 2023.

[11] M. S. Ansari et al. Low-power approximate multipliers using encoded
partial products and approximate compressors. IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, 8(3):404–416, 2018.

[12] S. D. S. and N. M. Sk. Low power, high speed approximate multiplier
for error resilient applications. Integration, 84:37–46, 2022.

[13] V. Mrazek et al. Evoapprox8b: library of approximate adders and mul-
tipliers for circuit design and benchmarking of approximation methods.
In DATE, pp. 258–261, 2017.

[14] H. Waris et al. Hybrid partial product-based high-performance ap-
proximate recursive multipliers. IEEE Trans. Emerg. Topics Comput.,
10(1):507–513, 2022.

[15] S. Rehman et al. Architectural-space exploration of approximate
multipliers. In IEEE/ACM ICCAD, pp. 1–8, 2016.

[16] Y. Guo et al. Design of power and area efficient lower-part-or
approximate multiplier. In TENCON-IEEE Region 10 Conference, 2018.

[17] S. Hashemi et al. Drum: A dynamic range unbiased multiplier for
approximate applications. In IEEE/ACM ICCAD, pp. 418–425, 2015.

[18] P. Yin et al. Design and analysis of energy-efficient dynamic range
approximate logarithmic multipliers for machine learning. IEEE Trans-
actions on Sustainable Computing, 6(4):612–625, 2021.

[19] S. Vahdat et al. Letam: A low energy truncation-based approximate
multiplier. Computers & Electrical Engineering, 63:1–17, 2017.

[20] S. Narayanamoorthy et al. Energy-efficient approximate multiplication
for digital signal processing and classification applications. IEEE TVLSI,
23(6):1180–1184, 2015.

[21] S. Venkatachalam and S.-B. Ko. Design of power and area efficient
approximate multipliers. IEEE TVLSI, 25(5):1782–1786, 2017.

[22] M. Ha and S. Lee. Multipliers with approximate 4–2 compressors and
error recovery modules. IEEE Embedded Systems Letters, pp. 6–9, 2018.

[23] P. Kulkarni et al. Trading accuracy for power with an underdesigned
multiplier architecture. In 24th Int. Conf. on VLSI Design, 2011.

[24] W. Liu et al. Design and evaluation of approximate logarithmic
multipliers for low power error-tolerant applications. IEEE Transactions
on Circuits and Systems I: Regular Papers, 65(9):2856–2868, 2018.

[25] M. S. Kim et al. Efficient mitchell’s approximate log multipliers
for convolutional neural networks. IEEE Transactions on Computers,
68(5):660–675, 2019.

[26] S. Vahdat et al. Tosam: An energy-efficient truncation- and rounding-
based scalable approximate multiplier. IEEE TVLSI, 27(5), 2019.

[27] P. J. Edaoovr et al. Approximate multiplier design using novel dual-stage
4:2 compressors. IEEE Access, 8:48337–48351, 2020.

[28] K. Manikantta Reddy et al. Design and analysis of multiplier using
approximate 4-2 compressor. AEU - International Journal of Electronics
and Communications, 107:89–97, 2019.

[29] O. Akbari et al. Dual-quality 4:2 compressors for utilizing in dynamic
accuracy configurable multipliers. IEEE TVLSI, 25(4):1352–1361, 2017.

[30] C.-H. Lin and I.-C. Lin. High accuracy approximate multiplier with
error correction. In IEEE ICCD, pp. 33–38, 2013.

	Introduction
	Preliminaries
	Proposed Approximate Unsigned Multipliers
	Experiments and Results
	Experimental Setup & Results
	Comparison

	Case Study: Image Processing
	Conclusion
	References

