
An Improved Serial IMPLY Adder Algorithm for
Efficient Neural Network Applications

Fabian Seiler∗ and Nima TaheriNejad+∗
∗Technische Universität Wien (TU Wien), Austria, +Heidelberg University, Germany

fabian.seiler@tuwien.ac.at, nima.taherinejad@ziti.uni-heidelberg.de

Abstract—Memristive systems are one of the most promising
candidates for a post-CMOS era. They are small, energy-efficient,
and are ideal targets for In-Memory Computation (IMC) via
stateful logic. As adders are critical building blocks for any
computing systems, improving them is an essential design goal.
With the rise of Artificial Intelligence (AI), providing memristive
adders that are optimized for Neural Networks (NNs) is extremely
important. For this, we propose a Material Implication (IMPLY)-
based adder algorithm in the serial topology that can preserve
the weights in memory, which was not addressed in the State-of-
the-Art (SoA). Our approach is 20%− 23% faster and requires
1% − 12% less energy when the adder is used repeatedly.
We propose a flowchart for IMPLY-based algorithms that can
represent the state changes of individual memristors and apply it
to our adder. We embed our adder in a shift-and-add multiplier
and evaluate the potential gains on the 8-bit quantized ResNet18.
Our approach is up to 17% more energy-efficient and requires
up to 20% fewer cycles for the inference than SoA adder.

I. INTRODUCTION

With the rise of demanding workloads such as Machine
Learning (ML) an increasing amount of computational power
is required. As in conventional computing methods, nearly
two-thirds of the energy is consumed by data movement; a
large emphasis now lies on In-Memory Computation (IMC)
approaches [1]. As the computation takes place directly in
memory, it may also provide a solution for the Von Neumann
bottleneck [2]. As memristors are energy-efficient, have a
small form factor, and inherently store data non-volatile, they
are the ideal candidate for IMC [3]–[6]. In the realm of
IMC the stateful logic Material Implication (IMPLY) is the
most popular choice [3], [7]. As adders are the cornerstone
of any modern computing system, a lot of focus lies on im-
proving them [8]–[12]. State-of-the-Art (SoA) IMPLY-based
adder disregard that inputs can be preserved for multiple
successive operations. This leads to unnecessary reloading of
inputs via inefficient COPY operations. As the computation
of Neural Network (NN) inferences mainly consists of multi-
ply–accumulate (MAC) operations, current approaches are not
sufficient. In this work, we propose an input-preserving serial
IMPLY adder algorithm that improves the speed and energy
efficiency. This paper proceeds as follows: In Section II we
cover related paper. We propose and simulate our adder algo-
rithm in Section III and compare it to the SoA in Section IV.
We evaluate a NN case study in Section V and conclude the
paper in Section VI.

VCOND VSET

RG

a b

(b)(a)

Fig. 1: IMPLY operation [3]: (a) Gate structure, (b) Truth table

II. RELATED WORK

Memristors are novel two-terminal components that can
store data in a non-volatile fashion with their resistive states.
They were originally discovered by L. Chua [13] and physi-
cally realized by Strukov et al. [14]. Other advantages such as
low power consumption, fast write time, and small dimensions,
underline their potential as memory cells [9], [15], [16]. The
memristor’s minimum (Ron) and maximum (Roff) resistive
values, which are commonly interpreted as logical ‘1’ and ‘0’
respectively, can be reached by applying a voltage [8], [17].

A wide range of stateful logic forms based on memris-
tors, such as FELIX [18], SIXOR [19], MAGIC [20], and
TMSL [21] have been presented. In this work, we focus on
IMPLY [22], [23], since it boasts the most reliable opera-
tions [24]. This is an important analysis point for the non-ideal
memristors, which is often disregarded. The basic structure to
perform IMPLY operations is shown in Figure 1(a), where
the initial resistive states of the memristors a and b represent
the logical inputs. When the voltages VCOND and VSET are
applied, the operation a → b is executed. The result is stored in
the b-memristor, overwriting its initial value and thereby losing
this information. To perform IMPLY operations, the conditions
VCOND < VC < VSET and Ron ≪ RG ≪ Roff must be
satisfied. VC is the threshold voltage of the memristor [9], [15],
[22], [23]. The corresponding truth table for IMPLY operations
is shown in Figure 1(b).

As adders are the most basic building block in computing,
there exists plenty of research on improving the performance
of IMPLY-based adders [8], [11], [12], [25]–[28]. The topol-
ogy of these adders can be divided into three categories: 1)
serial [4], [15], 2) parallel [9], [23], and 3) hybrid forms,
such as semi-serial [11] or semi-parallel [12]. Each topology
has unique advantages in speed, area usage, or energy con-
sumption, rendering them competitive with each other [26].
The serial topology uses fewer memristors than other archi-

tectures and requires no additional switches, making it easier
to integrate within crossbar arrays [29]. Serial SoA IMPLY-
based adder algorithms such as [8]–[10] focused only on logic
minimization. They reuse all of the input memristors to store
intermediate values, losing the initial states in the process. This
works fine for a single ADD operation but is not very practical
for more complex tasks that reuse inputs multiple times, as
an inefficient COPY operation is required after each addition.
This is especially important for tasks such as multiplication or
MAC operations, which are very common in NNs. We propose
an IMPLY-based adder in the serial topology that preserves
one of the inputs, achieving a multiplication based on adders
without requiring additional COPY operations. Our algorithm
itself also is faster than SoA approaches, making it the ideal
target for efficiently computing NN applications directly in
memory.

III. PROPOSED ADDER ALGORITHM

A. Design Methodology

As we are working in the serial IMPLY-based topology,
only either an IMPLY or FALSE operation can be executed at
each step. As they form the complete logic set {→,⊥} it is
feasible to emulate any Boolean logic function [8], [30]. The
optimization goal for our approach was to design adders that
preserve one of the inputs (in our case the values stored in the
a-memristors). When the adder is used repeatedly in complex
structures such as multipliers an inefficient COPY operation is
required to restore the overwritten inputs. With IMPLY logic,
the COPY operation (q′ = p) requires three additional steps
for each input bit, which is not always parallelizable. The
procedure is shown in Equation (1), where firstly a work-
memristor and the q-memristor have to be reset, which can be
done in one step with a high enough voltage [11]. After that,
the inversion of p must be stored in w0 which then implicates
the q-memristor to store the original value.

q′ = [p → FALSE(w0)] → FALSE(q) (1)

With our approach, adders can be used repeatedly to func-
tion as multipliers without losing the information of the a-
input and storing the intermediate summation results in the
b-memristors. With this, no COPY statements are required and
the initial a-inputs are preserved, making it the ideal target to
store weights for applications in NN.

B. Implementation

We analyzed the optimized IMPLY-based logical equations
of a full adder, that were proposed in [8]. They used only two
work memristors, which is the minimal amount to process
two logical equations [31]. As the equations for Sum and
Cout, which are shown in Equation (2) and Equation (3),
are input symmetrical there must be intermediate states that
are used multiple times. The methodology involves an initial
computation of these states, which are then used to calculate
the desired results. The order of operations is dependent on
the sequential requirements of the given equations.

Sum = {(a → b) →
[
(a → b) → c

]
}

→
[
(a → b) → a → b

]
→ c

= (X → (Y → c)) → (Y → X) → c (2)

= (X → Z) → (Y → X) → c

Cout = (a → b) → (a → b) → c

= X → Y → c (3)

= X → Z

We extracted three intermediate states that will be denoted
X , Y , and Z that occur multiple times in both logical
equations. This means that we require an additional work
memristor to store the intermediate states and their deviations
when the state of the a-memristor can not be overwritten. The
corresponding logical equations are shown in Equation (4) -
Equation (6). X and Y depict the only useful boolean func-
tions that are possible to emulate with two IMPLY operations,
which are OR and NAND. They represent the basic building
blocks to emulate any boolean logic function efficiently in
IMPLY logic. Z represents an intermediate step that can be
used to calculate both XOR and MAJ, which are used in the
equations for Sum and Cout, respectively.

X = a → b = a+ b (4)

Y = a → b = ab (5)
Z = Y → c = ab+ c (6)

To illustrate this algorithm, we propose a flowchart that
depicts the state changes and interactions between different
memristors. The presented algorithm is shown in Figure 2,
where each horizontal line corresponds to the state of a
memristor over the whole process. This presentation method
provides a clear overview of how an algorithm is processed,
where the intermediate states are calculated, and how they
are stored. For example, X is calculated in the third step
when the inversion of a stored in the first work memristor
implicates the b-memristor, overwriting the previous state.
With our presented method, the a-memristor transfers its value
two times to create X and Y but is not used anymore after
the fifth step and keeps its initial state. The Sum is calculated
in step 18 and stored in the b-memristor, while the Cout is
saved in the c-memristor at the last step. A detailed procedure
of the proposed algorithm and the equivalent logic, simplified
with the intermediate states, is shown in Table I.

C. Circuit-level Simulation

To verify the functionality of the algorithm we simu-
lated them on circuit-level using LT-SPICE. We used the
Voltage-controlled ThrEshold Adaptive Memristor (VTEAM)
model [32] implemented in SPICE [11], [33]. The model
parameters are set similarly to Table II, which are fitted to a

b

c

w1

w2

w3

a

IMPT

T

T

IMP

1 2 3

IMP

4 5

IMP

6

X

Y

T

7

IMP

8Steps

IMP Z

9 10

IMP

In
pu

ts

IMP

11

IMP

12

T

13

IMP IMP

IMP

14 15 16

T IMP IMP

17 18 19

T IMP

20

Sum

Cout

b' a b=
IMP T

a' = 0

Te
m

po
ra

ry

a

Fig. 2: Flowchart of the presented adder algorithm, where the current state of each memristor at every step is represented in
the horizontal line. In steps 7, 8, and 9 the intermediate states X , Y , and Z are computed and stored in the corresponding
memristors. These states are then combined as shown in Equation (2) and Equation (3). In step 18, Sum is stored in the
b-memristor and Cout is saved in the c-memristor at step 20. The initial value of the a-memristor is unchanged.

TABLE I: Proposed Adder Algorithm

Steps Operation Equivalent Logic
1 w1 = w2 = w3 = 0 False(w1,w2,w3)
2 w′

1 = a → w1 w1 = a

3 w′
2 = b → w1 w2 = b

4 b′ = w′
1 → b b′ = a → b = X

5 w′′
2 = a → w2 w′′

2 = a → b = Y
6 w1 = 0 False(w1)
7 w′

1 = c → w1 w′
1 = c

8 c′ = w′′
2 → c c′ = Y → c = Z

9 w′
3 = b′ → w3 w′

3 = X
10 w′′

3 = w′′
2 → w′

3 w′′
3 = Y → X

11 w′′
1 = w′′

3 → w′
1 w′′

1 = (Y → X) → c
12 w3 = 0 False(w3)
13 w′

3 = c′ → w3 w′
3 = Z

14 w′′
3 = b → w′

3 w′′
3 = X → Z

15 c′′ = b → c′ c′′ = X → Z
16 b = 0 False(b)
17 b′ = w′′

1 → b b′ = (Y → X) → c

18 b′′ = c′′ → b′ b′′ = (X → Z) → (Y → X) → c = Sum
29 c = 0 False(c)
20 c′ = w′′

3 → c c′ = X → Z = Cout

TABLE II: VTEAM setup parameter

Parameter voff von αoff αon Roff Ron

Value 0.7V -10mV 3 3 1 MΩ 10 kΩ
kon koff woff won wC aoff aon

-0.5 nm/s 1cm/s 0 nm 3 nm 107 pm 3 nm 0 nm

TABLE III: IMPLY logic parameter

Parameter VSET VRESET VCOND RG tpulse
Value 1V -2V 900mV 40 kΩ 30 µs

discrete Knowm memristor [34]. This increases the practical
relevance of our simulations and allows for an easier compari-
son, as it is a commonly used model [11], [12], [25]–[27]. We
note here that similar to the difference between discrete and
integrated CMOS devices, discrete memristors have increased
energy consumption and slower operations. It is reasonable to
assume that integrated memristors will provide a significant
performance improvement. The IMPLY specific parameters we
used are shown in Table III.

We simulated all eight different input combinations, which
agree with our theoretical calculations. We calculated the
average energy consumption by taking the mean of the input
possibilities, which resulted in 5.3765nJ per bit. We note that
the average energy consumption can substantially differ based
on the model, technology, and IMPLY parameters used [11].
These results should rather be used to compare the efficiency
of different algorithms. As real memristors show non-ideal
behaviors [35] we follow the lead of [26], [28] and simulate the
deviation of the resistive states Ron and Roff via the ATOMIC
tool presented in [36]. Our experiments indicate that the results
are correct (within the 33% threshold) for a deviation of up to
±30%. An example waveform with a deviation of ±20% is
illustrated in Figure 3, to showcase the impact of the changed
resistive states.

IV. COMPARISON WITH SOA

We compare to SoA adder algorithms in the serial topology
on various circuit-level metrics and analyze the advantages
gained through preserving the a-input. We do not compare to
other topologies in this work as they are optimized for different
design goals and an in-depth analysis would be beyond the
scope of this work. We note here that in [37], an input-
preserving adder was proposed in a deviation of the semi-
parallel topology. We do not compare with this approach since
their circuit may not be compatible with standard crossbar
arrays. An overview of the comparison is shown in Table IV. In
terms of energy consumption, our approach is equally efficient
as [8] but worse by 12% than [9], [10]. The main advantage of
the presented algorithm lies in the number of steps, which is
often the limiting factor in the serial topology. Our algorithm is
9%-13% faster than the SoA. Our approach uses one additional
memristor compared to [8], [9] to preserve the value of the
a-memristor. The adder from [10] requires approximately a
third more memristors than the other approaches.

The previous comparisons do not take into account the
additional energy consumption and steps that are required to
restore the data of input memristors via a COPY operation.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600
0.0

0.5

1.0 a
b
c

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600
Time in s

0.0

0.5

1.0 w1
w2
w3

Fig. 3: Example waveforms of the proposed adder algorithm with the inputs abc=“001”. Sum is stored in the b-memristor
between 510-540µs and Cout in the c-memristor between 570-600µs. The initial state of the a-memristor is preserved. The
shaded area around the waveforms represents a deviation of ±20% of the resistive states.

TABLE IV: Circuit-Level comparison to SoA serial full adder

Full adder
Energy

consumption (nJ) Improvement No. of steps Improvement No. of
memristors Improvement Input Preservation

n n=32-bit n=32-bit n n=32-bit n=32-bit n n=32-bit n=32-bit a b cin
Serial [10] 4.7092n 150.6944 -12% 23n 736 13% 3n+3 99 31% ✘ ✘ ✘(Cout)
Serial [9] 4.7166n 150.0931 -12% 23n 736 13% 2n+3 67 -1% ✘(Sum) ✘ ✘(Cout)
Serial [8] 5.3964n 172.6848 <1% 22n 704 9% 2n+3 67 -1% ✘ ✘(Sum) ✘(Cout)
Proposed 5.3765n 172.0480 - 20n 640 - 2n+4 68 - ✓ ✘(Sum) ✘(Cout)

We simulated the algorithms from [8]–[10] with the parameters from Table III to allow for a fair comparison.

We simulated the procedure from Equation (1) and calculated
the average energy consumption the same way as explained
in Section III-C, which resulted in 0.7147nJ per COPY. Each
COPY requires three steps, which cannot be parallelized as the
serial topology only consists of one computational section. To
restore the a-input of a n-bit addition, 3n additional steps
and 0.7147n nJ of energy are required. For a n=32-bit adder
this would amount to 22.8704nJ and 96 steps. When these
operations are considered as part of the addition algorithm,
the presented algorithm is now 20%-23% faster and requires
1%-12% less energy than [8]–[10]. It is also the only adder
algorithm that is able to make use of each input by either
preserving the initial value or storing the Sum or Cout for
further computational steps. This can be seen on the right
of Table IV, where SoA algorithms unnecessarily waste the
information of at least one input.

V. APPLICATION IN NEURAL NETWORKS

To showcase the advantages of our approach we embed
our adder in a shift-and-add multiplier. The memristors are
placed on a crossbar array, so we will use array indexing
for the following explanations. Since the multiplication output
requires twice the bit width of the n inputs, we initialize B
with 2n memristors that are set to logical ‘0’. We define A
as an array that encompasses all a-memristors in a decreasing
order. The multiplication consists of n additions that can be
represented via the recursive operation:

Bk+1[k + n+ 1 : k] = [0, Bk[k + n : k + 1]] +A · bk (7)

where k ∈ [0, n]. The content of the memristors in A is repeat-
edly added to the shifted window of memristors in B when bk
is logical ‘1’. In NN applications the inputs of each layer are
multiplied by weights and summed up, which can be expressed
as MAC operations. At inference, the weights should either be

preserved (our approach) or must be reloaded before the next
inference. The same applies to Convolutional Neural Network
(CNN), where individual kernel weights are multiplied by the
inputs and then summed up. As we presented an integer-
based adder and multiplier we want to apply our approach
to NN that are quantized to 8-bit for integer-arithmetic-only
inference [38]. This means no floating point operations are
required. We require 16 memristors as accumulators and 16
memristors that are used to handle the carry-out for an 8×8-
bit into 32-bit MAC operation. For full inference, only value
clipping and shifting are further required [38], [39], which will
be handled by the control logic outside the crossbar array. In
this example, our approach would lead to 14% − 17% more
energy efficient and 17%− 20% faster MAC operations when
compared to conventional serial adder [8]–[10]. The inference
of ResNet18 [40] requires roughly 3.6× 109 MAC operations
when we assume that every floating-point operation is equal
to two MACs. When our adder is used, 1.4×1012 to 1.7×1012

cycles can be saved in total, when compared to [8]–[10]. We
note here that ResNet18 is only used as a reference since it
is commonly used and well-known. Our approach will yield
higher gains when applied in bigger networks or when multiple
inferences are computed consecutively.

VI. CONCLUSION

In this work, we presented an improved adder algorithm in
the serial IMPLY topology that is faster than SoA adder while
also preserving one input. This is visualized with a proposed
flowchart. When the inefficient reloading of the input is taken
into account our adder is 20% − 23% faster and 1% − 12%
more energy efficient. On the quantized inference of ResNet18,
our adder requires up to 20% fewer cycles and up to 17%
less energy compared to SoA adder. Input-preserving adder
algorithms in other topologies are domains of future work.

REFERENCES

[1] N. TaheriNejad. In-memory computing: Global energy consumption,
carbon footprint, technology, and products status quo. pp. 1–6, 2024.

[2] H. A. D. Nguyen et al. A classification of memory-centric computing.
J. Emerg. Technol. Comput. Syst., 16(2), jan 2020.

[3] J. Borghetti et al. Memristive switches enable stateful logic operations
via material implication. Nature, 464:873–6, 04 2010.

[4] E. Lehtonen and M. Laiho. Stateful implication logic with memristors.
2009 IEEE/ACM International Symposium on Nanoscale Architectures,
pp. 33–36, 2009.

[5] M. R. Alam et al. Exact stochastic computing multiplication in
memristive memory. IEEE Design Test, pp. 1–8, 2021.

[6] M. R. Alam et al. Sorting in memristive memory. ACM Journal on
Emerging Technologies in Computing Systems, pp. 1–22, 2022.

[7] C. Li et al. In-memory computing with memristor arrays. In 2018 IEEE
International Memory Workshop (IMW), pp. 1–4, 2018.

[8] S. G. Rohani and N. TaheriNejad. An improved algorithm for imply
logic based memristive full-adder. In 2017 IEEE 30th Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1–4,
2017.

[9] A. Karimi and A. Rezai. Novel design for a memristor-based full
adder using a new imply logic approach. Journal of Computational
Electronics, 17, 09 2018.

[10] M. Teimoory et al. Optimized implementation of memristor-based full
adder by material implication logic. In 2014 21st IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pp. 562–565,
2014.

[11] N. TaheriNejad et al. A semi-serial topology for compact and fast imply-
based memristive full adders. In 2019 17th IEEE International New
Circuits and Systems Conference (NEWCAS), pp. 1–4, 2019.

[12] S. Ganjeheizadeh Rohani et al. A semiparallel full-adder in imply logic.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
28(1):297–301, 2020.

[13] L. O. Chua. Memristor—the missing circuit element. IEEE Transactions
on Circuit Theory, CT-18(5):507–519, September 1971.

[14] D. B. Strukov et al. The missing memristor found. Nature, 453:80–83,
May 2008.

[15] J. Borghetti et al. ‘Memristive’ switches enable ‘stateful’ logic opera-
tions via material implication. Nature, 464:873–876, April 2010.

[16] E. Lehtonen and M. Laiho. Stateful implication logic with memristors.
In 2009 IEEE/ACM International Symposium on Nanoscale Architec-
tures, 2009.

[17] D. Radakovits et al. A memristive multiplier using semi-serial imply-
based adder. IEEE Transactions on Circuits and Systems I: Regular
Papers, 67(5):1495–1506, 2020.

[18] S. Gupta et al. Felix: Fast and energy-efficient logic in memory. In
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7, 2018.

[19] N. TaheriNejad. Sixor: Single-cycle in-memristor xor. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 29(5):925–935,
2021.

[20] S. Kvatinsky et al. Magic—memristor-aided logic. IEEE Transactions
on Circuits and Systems II: Express Briefs, 61(11):895–899, 2014.

[21] P. Huang et al. Reconfigurable nonvolatile logic operations in resistance
switching crossbar array for large-scale circuits. Advanced Materials,
28(44):9758–9764, 2016.

[22] S. Kvatinsky et al. Memristor-based imply logic design procedure. In
2011 IEEE 29th International Conference on Computer Design (ICCD),
pp. 142–147, 2011.

[23] S. Kvatinsky et al. Memristor-based material implication (imply) logic:
Design principles and methodologies. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(10):2054–2066, 2014.

[24] D. Radakovits and N. Taherinejad. Behavioral leakage and inter-
cycle variability emulator model for rerams (BELIEVER). CoRR,
abs/2103.04179, 2021.

[25] F. Seiler and N. TaheriNejad. An imply-based semi-serial approximate
in-memristor adder. In 2023 IEEE Nordic Circuits and Systems Confer-
ence (NorCAS), pp. 1–7, 2023.

[26] F. Seiler and N. TaheriNejad. Accelerated image processing through
imply-based nocarry approximated adders. IEEE Transactions on
Circuits and Systems I: Regular Papers, pp. 1–14, 2024.

[27] S. E. Fatemieh et al. Fast and compact serial imply-based approximate
full adders applied in image processing. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 13(1):175–188, 2023.

[28] F. Seiler and N. TaheriNejad. Efficient image processing via memristive-
based approximate in-memory computing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

[29] V. Lakshmi et al. A novel in-memory wallace tree multiplier architecture
using majority logic. IEEE Transactions on Circuits and Systems I:
Regular Papers, 69(3):1148–1158, 2022.

[30] K. Bickerstaff and E. E. Swartzlander. Memristor-based arithmetic. In
2010 Conference Record of the Forty Fourth Asilomar Conference on
Signals, Systems and Computers, pp. 1173–1177, 2010.

[31] E. Lehtonen et al. Two memristors suffice to compute all boolean
functions. Electronics letters, 46(3):230, 2010.

[32] S. Kvatinsky et al. Vteam: A general model for voltage-controlled
memristors. IEEE Transactions on Circuits and Systems II: Express
Briefs, 62(8):786–790, 2015.

[33] D. Radakovits et al. Second (v2.0) ltspice implementation of vteam.
Last accessed Aug 2024.

[34] Knowm sdc memristors, knowm.org/downloads/Knowm Memristors.pdf.
Last accessed Feb 2024.

[35] N. TaheriNejad and D. Radakovits. From behavioral design of mem-
ristive circuits and systems to physical implementations. IEEE Circuit
and Systems (CAS) Magazine, 19(4):6–18, Fourthquarter 2019.

[36] F. Seiler and N. TaheriNejad. Atomic: Automatic tool for memristive
imply-based circuit-level simulation and validation, 2024.

[37] X. Hu et al. A data non-destructive imply-based memristive semi-
parallel full-adder for computing-in-memory systems. 2021 IEEE
International Conference on Integrated Circuits, Technologies and Ap-
plications (ICTA), 2021.

[38] B. Jacob et al. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2704–2713, 2017.

[39] D. Schnöll et al. Fast, quantization aware dnn training for efficient hw
implementation. In 2023 26th Euromicro Conference on Digital System
Design (DSD), pp. 700–707, 2023.

[40] K. He et al. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016.

