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Abstract—In this paper, we highlight and quantify the impor-
tance and potential role of In-Memory Computation (IMC) and
memory technologies in the future of humans’ global footprint.
To this end, we calculate the estimated energy consumption
and carbon emission associated with the data movement inside
computing systems and put them in perspective using tangible
examples. Next, we review various memory technologies as well
as their advantages and disadvantages (especially regarding their
energy consumption), for usage in computing systems as memory
and computing elements. We calculate what their impact is
and what would be the potential savings of migrating towards
emerging memory technologies. We discuss some of the challenges
these emerging memory technologies face, before presenting the
highlights of the IMC products on or near the market. This paper
aims at providing an insight on the impact of IMC and memory
technology on the society at large and clarify the importance of
working on IMC and emerging memory technologies to lower the
power consumption and overall footprint of computing systems.
The status of IMC products show that while moving in the right
direction, there is a substantial body of work to be done. We hope
this will help engineers to better grasp the extent of the impact
they can produce and motivate them further in the pursuit of
better computing systems.

Index Terms—In-Memory Computing, Memory Technology,
Global Impact, Energy Consumption, Carbon Emission, Indus-
trial Products

I. INTRODUCTION

Reducing energy consumption is a crucial goal in the current
circumstances of rapid growth in the computational load and
in the number of computing devices. In 2021, two third of
the 1.7×1015Wh of energy consumed by the information and
communications technology world-wide was due to compu-
tations [1]. With the exponential growth in the number of
devices, such as Internet of Things (IoT) devices, this number
is expected to grow even further. Mobile systems such as
smartphones, embedded systems, wearable electronics, and
IoT devices, which are often powered by batteries or rely on
energy harvesting, require optimal utilization of the available
energy [2], [3]. Although energy constraints may be more
sever for IoT and embedded devices and present a challenge
in providing the necessary energy, the energy consumption of

plugged in computers should not be overlooked. Estimated
annual energy consumption of data centers [1] has surpassed
200 TWh already in the last decade. With this amount of
energy, you can provide the electricity for half of Iranians
every year. From the carbon footprint point of view, this puts
ICT on par with aviation industry [1]. More importantly, with
the current trajectory of the growth in the energy consumption
of computing systems, by 2040, their energy consumption will
surpass the world’s current energy production capacity [4].

However, what do these numbers mean for the key players
involved in the design and development of computing systems?
In this paper, we will look inside the computers and break
these numbers into more computer architecture related details
and thus provide helpful insight, direction, and motivation for
those who are involved in shaping the future of computing
systems, especially computer and electronics engineers.

The rest of this paper is organized as follows. In Section II,
we first calculate the energy consumption associated with com-
puting in general and data movement in particular. To better
understand these large numbers, in Section III, we put them
in perspective by calculating their equivalents in the energy
production sector and carbon absorption of trees. Section IV
is dedicated to a brief overview of memory technologies
and sets the stage for our calculations in Section V, which
quantifies the impacts of memory technology on the global
energy consumption and carbon dioxide production using a
conceptual example. We discuss the limitations of our analyses
and the extended footprint of the computing systems and
technology in Section VI. Section VII presents some of the
challenges that current memory technologies face, in particular
regarding their usage for In-Memory Computation (IMC). It
also gives an overview of key related products on or near
the market, to put in perspective the open space for research
and development in the field of IMC and memory technology.
Lastly, we conclude the paper in Section VIII.



TABLE I: The energy and carbon footprint of Information & Communications Technology (ICT), computing systems, and data
movement inside computing systems.

Year Item Energy Consum- Solar Panels # of Nuclear CO2 Conifer Trees
-ption [PWh] [trillion] Power Plants [Mt] [trillion]

ICT 3 10.4 622 1798 1050
2021 Computing 1.7 5.90 352 1019 595

Data Movement 1.07 3.72 222 642 375
ICT 4.9 17.0 1016 2937 1715

2026 Computing 2.4 8.33 497 1438 840
Data Movement 1.51 5.25 313 906 529

ICT 8 27.7 1658 4795 2800
2030 Computing 3.7 12.8 767 2217 1295

Data Movement 2.33 8.09 483 1397 815

II. ENERGY CONSUMPTION

A key factor in the energy budget of modern computing
devices is the data movement between memory and processor,
which constitutes a significant portion of the energy con-
sumption of computing systems, e.g., in Google that is about
63% [5]. Taking that as an indicative ratio, we calculate the
energy that IMC can save;

EIMC = 0.63× ECOM (1)

where ECOM is the global energy consumption due to com-
puting and EICT is the overall energy consumption of ICT.
Since in 2021 ECOM = 1.7PWh [1], we calculate the
global energy consumed in 2021 due to data movement to
be 1.26PWh (EIMC = 2PWh× 0.63 = 1.07PWh).

Based on [1], in 2026, we can expect ICT to consume
4.9PWh of energy, 2.4PWh of which is due to computing.
If we plug that number into Equation (1), we can estimate
that using the traditional computer architectures, 1.51PWh of
that energy is spent on data movement inside computers. The
projections for 2030 predict that ICT will be responsible for
8PWh of energy consumption, 3.7PWh of which would be
due to computing [1]. Using Equation (1), we can estimate
the global energy consumption due to data movement, which
is 2.33PWh in 2030. It may be hard to grasp these numbers
off the bat. Therefore, we put them into context using more
tangible examples in the next section.

III. WHAT DOES IT MEAN?

To better understand the meaning of above numbers, we
divide the total sum by the produced energy of photovoltaic
panels [6] or nuclear power plants [7], to calculate that in
2021 an equivalent of what 3.7×109 photovoltaic panels or
222 nuclear power plants were necessary to produce the energy
consumed due to data movement. Using the carbon footprint
ratio reported in [8], this data movement produces 642Mt of
CO2. Based on the absorption ratios proposed in [9], to absorb
the 642Mt CO2 produced by the data movement, we would
need 375 trillion conifer trees.

Using similar calculations and the energy forecast reported
in [1], the potential energy consumption of computing in 2026
will be equal to what 8.3 trillion solar panels, or 497 nuclear
power plants can produce. The carbon footprint of the 2.4PWh

energy consumed due to computing systems will be around
1438Mt, which would require 840 trillion conifer trees to
compensate it. From these, 1.5PWh is attributed to the data
movement, which is equal to the energy produced by 5.2
trillion solar panels or 313 nuclear power plants. This data
movement produces 906Mt of carbon dioxide, whichwould
need 529 trillion conifer trees to absorb.

By aggressively integrating IMC into the ICT, by 2030 will
be able to save a major portion of the 2.33PWh, which will be
otherwise used on data movement. This energy consumption
is equal to the energy produced by 483 nuclear power plants.
If we do not meaningfully migrate towards IMC, to absorb
the 1397Mt CO2 that will be produced in 2030 by the data
movement inside computers, 815 trillion conifer trees will be
necessary.

We have inserted the rest of calculated equivalencies and an
overall summary of our calculations in Table I. These numbers
are strong motivators for computer architects to consider a
migration towards IMC.

IV. MEMORY TECHNOLOGY

Memories and memory technology are key contributors
to the performance figure of computing systems too [14]–
[16]. Admittedly, their role is more pronounced for IMC
solutions [17]. Volatile Random Access Memorys (RAMs)
such as Dynamic Random Access Memory (DRAM) and
Static Random Access Memory (SRAM) are established and
mature technologies but provide a less advantageous solution
regarding the energy consumption, since they consume power
for data retention. In terms of the energy required to access
each bit, DRAMs provide a very competitive solution (2
pJ/bit [11]), however, they are difficult and expensive to
integrate on chip and when implemented off-chip, they incur
data movement costs that takes the edge of this advantage off.

Among non-volatile memories, only Flash memories are
equally mature. However, they are three and four orders of
magnitude slower than DRAM and SRAM, respectively [12],
[13]. Whereas they do not require energy for data retention,
they consume a few orders of magnitude more energy than
other memory technologies (see Table II). This motivates
IMC using emerging memory technologies, such as Phase
Change Memory (PCM) [18], Spin Transfer Torque (STT) and



TABLE II: An overview of the characteristics of some of the key memory technologies. Numbers are estimations extracted
from [10]–[13].

Characteristic SRAM DRAM NAND Flash PCM ReRAM STT MRAM

Cell size (f2) 50-150 6-12 4-6 4-12 4-10 6-50
Non-Volatile No No Yes Yes Yes Yes
Read Time 1-8ns 30-50ns 25000-50000ns 30-50ns 1-20ns 1-20ns
Write Time 1-8ns 30-50ns 200000-50000ns 500ns 0.3-30ns 10-20ns
Access Energy / bit 460pJ 2pJ 10000pJ 20-100pJ 1pJ 0.02-10pJ
Endurance 1015-1016 1015-1016 105 106-108 106-1012 1015

Byte Operation Yes Yes No Yes Yes Yes
Analog / Multilevel No No Yes Yes Yes No

Magnetoresistive Random Access Memory (MRAM) [19], and
Resistive Random Access Memory (ReRAM) [20], which are
referred to under the umbrella term of memristors.

In contrast to DRAM, SRAM, and Flash memories, which
are charge-based, memristors are resistive-based memories.
That is, their state is represented by their resistance. They are
non-volatile, fast, Complementary Metal-Oxide Semiconduc-
tor (CMOS)-compatible, and have a small form factor [12].
Table II provides an overview of a selection of memory
technologies, established and emerging, and their key char-
acteristics. Among memristors, MRAMs seem to be able
to provide the most energy efficient option, although not
every implementation of them would be more efficient that
ReRAMs. ReRAMs are the fastest, the most compact, and
the most used memristive technology in practice. Compared
to MRAMs, ReRAMs have one key advantage that may play
a significant role in their wider adaption, i.e., their ability to
store and represent analog values and consequently storing
more than one bit of data per cell. The key disadvantage of
current ReRAMs technology is their endurance than be orders
of magnitude lower than MRAM. It is hard to predict which
memristive technology will be the dominant one or whether
there will be a winner-takes-it-all scenario or they will all
co-exist, which might be a likelier scenario. Nevertheless, it
is clear that they are coming to take over, at least a portion
of memory and IMC, and their energy efficiency will be a
key factor. We note that there are other promising memory
technologies such as ferroelectric based memories.

V. MEMORY TECHNOLOGY IMPACT

Calculating the effect of memory technology on the overall
energy consumption of computing systems is very complex.
This complexity stems from the large variety of memory
characteristics and technologies used at different hierarchical
levels and the high dependency of their energy consumption
on the type of application and user behaviors. However, in
this paper, we scratch the surface by estimating the effects
of replacing SRAM memories used for cache with ReRAMs
or MRAMs, consuming approximately a pJ for the access
energy. We note that ReRAM technologies with an endurance
of 1012 could be considered for such a role but those with 106

cycles are not likely to take that role. Although they may be
used in other locations of the memory hierarchy, or emerging

applications such as the weights of Neural Networks (NNs),
where the memory is mostly read out and rarely re-written.

For this exercise, we assume an embedded processor as an
example. In an embedded processor, we can calculate the role
of cache array energy consumption to constitute approximately
35% of the overall processor (computation) power [21]. Taking
this ratio as an indication, we can calculate that cache arrays
alone were responsible for 602TWh of energy consumption in
2021. In 2026, they are expected to consume approximately
850TWh and in 2030 this number is to rise to 1.31PWh. We
will need 176 and 271 nuclear power plants to produce the
energy consumed by the caches in 2026 and 2030, respectively.
To absorb the 509 and 785 Mt CO2 produced by this energy
consumption in 2026 and 2030, respectively, we will need 297
and 458 trillion conifer trees.

We can calculate that using ReRAM or MRAM caches
could have saved 601TWh of energy in 2021 or 360MT of
CO2. That is practically the entire energy consumed by caches.
This trend is the same in the foreseeable future, indicating that
we can practically eliminate the entire impact of caches that
we had calculated above by replacing them with memristors.
In this exercise, we assumed MRAM and ReRAM devices
with similar energy consumption profiles. Using more efficient
memristive technology such as more efficient MRAMs will
have a starker effect in further reducing the energy consump-
tion associated with the memory and caches.

VI. DISCUSSIONS

A. Limitations

Like any study, ours has its limitations too. For instance,
we picked 63% reported in [5] as an indicative ratio for the
energy consumption ratio due to data movement. In practice,
this ratio depends on various aspects of a system, such as type
of the system, its computer architecture details, configurations,
and the application(s) running on it. In [21], the reported ratio
is 70%, whereas in [22] even a 90% ratio is reported. It is
impossible to pick a single number that would apply to all
computing systems and devices. Hence, we picked [5], which
is one of the most comprehensive, well-known, and well-cited
studies in this area. We emphasize that our calculations provide
a reasonable and quantitative estimation of the scale of the
energy and carbon footprint of computing system but do not
pinpoint the actual numbers. To that end, it is more important



to know and understand the order of the numbers rather than
their actual absolute values. The conclusions then remain the
same.

A similar argument can be built around other number used
in this study. Hence, it should not be forgotten that this study
is in nature indicative and a first effort to provide an estimate
of the scale of the footprint of computer architecture and
memory technology. For more accurate numbers large studies
are required and given the large number of variables they
may still not manage to pinpoint the footprints. Nevertheless,
we contend that estimating the scale of these footprints is
sufficient to provide a better perspective and further motivate
engineers in moving towards reducing them. More importantly,
even such rough estimates can help prioritizing our efforts.
For instance, comparing the estimates provided here with
those calculated for wearable healthcare devices [23], we can
go beyond the intuition that IMC has a larger footprint and
consequently is more important. For instance, we can learn that
the energy consumption of wearable devices has a completely
negligible footprint in comparison. Conducting more of such
studies can help both engineers and policy makers to more
appropriately prioritize research and development in various
fields.

B. Extended footprint

We need to bear in mind that there are other aspects that we
did not discuss. For example, the production of computing de-
vices and -when applicable- their recycling has a footprint on
the global energy consumption and carbon emission. Whereas
the computer architecture (in-memory or out-of-memory com-
puting) may make no difference in the production footprint,
the material used in emerging memory technologies or the
changes in the fabrication technology to allow novel solution
could potentially affect their footprint. However, quantifying
this effect is very complex and outside the scope of this work.
Moreover, it requires intimate knowledge of manufacturing
process (and its associated footprint) in large companies who
are not very keen in revealing those details.

VII. STATUS QUO

A. Challenges of emerging memory technologies

It is important to bear in mind, replacing the established
memory technologies with the emerging ones is not without
challenges. For instance, the endurance or wear out effect
could limit the application of technologies such as PCM or
ReRAM. Read and write latencies in the majority of these
emerging devices are significantly higher, which mean that one
cannot easily replace SRAMs with them, especially for on-chip
fast caches of high-performance systems. Stepping beyond
the memory applications, other factors such as Roff to Ron

ratio and resistance variation can present serious challenges in
designing IMC circuits and systems that use these emerging
memory technologies [24]. From a technological point of view,
the type and combination of materials used for implementing
them and the fabrication techniques used significantly affect
their properties and their potential for being adopted at a larger

scale. Hence, they are active areas of research. From a maturity
point of view, one could arguable compare the state of these
emerging technologies with the CMOS in the 1960s and 1970s.
Although the speed of scientific advancement is significantly
higher, the path to maturity for these technologies is long.

B. IMC, market, and industry

Despite their significant role in computers’ performance and
environment, IMC products do not have a strong presence
in the market. UPmem is the only company with an IMC
product commercially available on the open market. Their
product, DRAM Processing Unit (DPU), consist of DRAM
chips that embed one or two processor per bank in each
DRAM chip. Their product can replace DDR4 Dual In-Line
Memory Module (DIMM) modules and be used as both
memory and computation unit. The DRAM portion of the chip
is produced using standard 2X-nm DRAM process and the
processor is added to the chip and connect to the memory
bank via a 64 bit bus1.

Next in the line is Samsung, which announced two IMC
products in 2021 and 2022; Function-In-Memory DRAM
(FIMDRAM) [25] and Acceleration DIMM (AXDIMM) [26].
The former, embeds a number of functions per bank that is
3D integrated with high-bandwidth memory dies. Compared
to UPmem DPUs, the functions (processing units) are sig-
nificantly simpler and more limited and are not as tightly
integrated as UPmem (in UPmem the processor is on the same
die as the memory bank). AXDIMM [26], however, has a quite
different architecture, integrating Field Programmable Gate
Arrays (FPGAs) next to the memory ranks and on the same
DIMM board. Alibaba seems the be another major company
to enter the market with their Hybrid Bonding Process-Near-
Memory engine [27], which is another 3D integration of
memory and compute dies, similar to FIMDRAM.

The common denominator of these products is using DRAM
as their memory technology. An exception to this trend would
be Mythic, which uses Flash as their base technology [28].
Mythic has a strong focus on Artificial Intelligence (AI) and
their key technology is analog matrix multiplication in the
memory array. Another shared property for the list above
is that at the moment these products do not seem to be
commercially available on the open market, except for UPmem
and Mythic. However, it is within reason to think that they
soon will be.

When it comes to emerging memory technologies, no major
IMC product seem to be on or near the market. Although
Hewlett Packard (HP) [29] pioneered research on IMC using
memristors (in particular, ReRAM), during the last years it
has handed over this pioneering role to International Business
Machines corporation (IBM) [30], in particular, using PCM.
Other major companies are not necessarily deep into the
IMC using memristive technology, but have recently put a
foot in the door by researching the base memory technology,

1https://www.upmem.com/video-upmem-presenting-its-true-processing-
in-memory-solution-hot-chips-2019/ , Last visited: March 2024



e.g., Intel, or Taiwan Semiconductor Manufacturing Company
(TSMC) by embedding ReRAMs into their 22nm technology
and MRAM to their 16nm technology [31]. Panasonic [32]
and Infineon [33] are also interested in the trend of emerging
memory technologies and have used ReRAM in some of their
microcontrollers [31], [33]. Among the myriad of start-up
companies of different size active in both memory and IMC
usage of these emerging devices, Crossbar Inc.2 and Weebit
Nano3 stand out. They offer, among others, high-performance
ReRAM memories for integration on chip.

Although products based on emerging memory technologies
might have a longer path to the market, they certainly are on
their way and it would not be surprising if they cross the line
by the end of this decade.

VIII. CONCLUSIONS

As the seriousness of climate changes and its catastrophic
impacts become more of a common knowledge, engineers and
computer architects have become more aware of the potential
role of computing systems on our planet and consequently
our society. In this work, we quantified this effect by looking
into energy consumption of computing systems and what they
translate to at the global level. Given that we are in the “big
data” era, we focused on the impacts of two important aspects
of data, namely data movement and data storage technology.

With our calculations, we showed what is at stake when
we choose a computing architecture (in- or out-of-memory
computing), given that data movement plays a major role in
the overall power consumption of current (out-of-memory)
computing architectures. To be specific, every year in this
decade 1-2.5PWh of energy will be spent on data movement
inside computers. Consequently, 0.6-1.4 giga tons of CO2 will
be produced annually. Although various in-memory computing
architectures will have different impacts, it is clear that we
need to aim at using IMC much more aggressively, if we want
to save on the significant footprint that data movement has on
our planet.

In a theoretical scenario analysis, we estimated the potential
impacts of memory technologies on the overall energy and
carbon footprint of computing systems world-wide. Our cal-
culations showed that even using simplified assumptions that
rather underestimate their impact, the numbers are too high
to be overlooked. More specifically, the cache arrays will be
responsible for an annual energy consumption of 0.6-1.3PWh
per year and for 360-784 mega tons of CO2 production. Using
emerging memristive technologies, virtually all that footprint
can be eliminated since they can bring more than two to five
orders of magnitude savings in energy consumption of the
memories.

We note that to pin-point these numbers, if possible at all,
significantly larger studies are required. However, the current
analysis provides a good base to understand the scale of the

2https://www.crossbar-inc.com/products/high-performance-memory/ , Last
visited: March 2024

3https://www.weebit-nano.com/technology/embedded-reram-ip/ , Last vis-
ited: March 2024

problem and the promise of IMC, especially using emerging
memory technologies, as its solution. Production footprint is
another aspect that was outside the scope of this work and is
worth a study. To address the concerns raised above, we need
to overcome both technological and architectural challenges.
While we have a long way to go, the approach and interests of
the industry to emerging memory technologies and IMC show
that we are on the right path.

We hope that our quantified evaluations, and putting those
numbers in tangible examples, help stakeholder and key play-
ers to better understand their impact and motivate engineers
and computer architect at their work, given the impact it can
have on the society at large and on the future of our planet.
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