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Abstract—This paper explores the integration and application
of Approximate Computing (AxC) approaches to Machine Learn-
ing (ML), especially Deep Learning (DL) models. We focus on
four principal techniques—quantization, approximate multipli-
cation, approximate in-memory computing, and input-dependent
AxC . We demonstrate how each contributes to reducing the
energy demands of current Artificial Intelligence (AI) systems,
while maintaining acceptable levels of computational accuracy.
These techniques may be deployed on software or hardware
platforms. Quantization and input-dependent techniques can
be implemented through software on general-purpose systems,
enhancing flexibility and ease of deployment. Approximate mul-
tiplier and in-memory computing require specialized hardware
integration, e.g., as custom System-on-Chip (SoC) or System-
in-Package (SiP) solutions. We also discuss the crucial aspect
of reliability, emphasizing robust design and error resilience to
ensure the operational integrity of AI applications. By thoroughly
examining these AxC techniques, the paper discusses an approach
to designing energy-efficient and reliable AI accelerators, espe-
cially for SoC/SiP systems, providing essential support for use
cases such as mobile and edge devices.

Index Terms—Approximate Computing, Energy-Efficient Deep
Learning, AI Accelerators, AI System Reliability, SoC/SiP

I. INTRODUCTION

As the digital era continues to evolve, the integration of
Artificial Intelligence (AI) in everyday applications has be-
come increasingly common [1]. From smartphones that expect
users’ needs to smart cities that optimize traffic and energy
use, the impact of advanced Machine Learning (ML) and
Deep Learning (DL) technologies is profound. However, these
innovations come at a significant cost of increased computa-
tional demand, leading to intensive energy consumption that
is quickly becoming unsustainable [2].

The growth in data-driven technologies, particularly ML
and DL, has led to an exponential increase in computa-
tional requirements [3]. Deep Neural Networks (DNNs) re-
quire extensive training with millions of data to accurately
predict outcomes [4]. Once trained, deploying these models
in real-world applications often necessitates continuous data
processing and real-time decision-making, further increasing
their energy consumption. For instance, applications such as
autonomous vehicles and real-time health monitoring systems
rely on the constant processing of vast amounts of sensor
data to function effectively [5], [6]. This continuous demand
for high computational power significantly strains energy
resources, raising concerns about environmental impact and
long-term sustainability of current computing practices [7].

The challenge is deepened by the physical limitations of
existing computational architectures. Traditional computing
systems are based on the von Neumann architecture, where

significant energy is spent in the movement of data between
the memory units (where data is stored) and the processors
(where computation occurs) [8]. This architecture is increas-
ingly becoming a bottleneck in systems where speed and
efficiency are paramount. Moreover, as data volumes grow and
the complexity of algorithms increases, the energy required
for data movement can often exceed that used for actual
computation, leading to inefficiencies that are both costly and
environmentally detrimental [9].

In this context, Approximate Computing (AxC) emerges
as a promising solution to mitigate the energy consumption
issues inherent in traditional computing systems [10]. AxC
strategically introduce approximation into the computation
process, where exact precision is not crucial, thus reducing
the computational burden [11]. This approach is particularly
suited to applications in image and video processing, sensor
data analysis, and large-scale simulations where approximate
results may suffice [12]–[14]. By allowing for controlled
inaccuracies, AxC systems consume less power and execute
tasks faster than traditional precise computations [15], [16].

The significance of AxC is particularly relevant in the
deployment of ML and DL models on mobile and embedded
systems, such as smartphones, wearable technology, and In-
ternet of Things (IoT) devices [17]. These devices, often con-
strained by battery life and processing power [18], [19], stand
to benefit immensely from the reduced energy requirements
of approximate computing. For instance, a smartphone using
AxC techniques can perform tasks like voice recognition and
image processing more power-efficiently, extending battery life
while still delivering satisfactory performance [16], [20].

Moreover, AxC opens new avenues for the design of
hardware and software that are inherently energy-efficient.
This includes the development of specialized processing units
that perform approximate calculations more efficiently [21],
[22] and programming paradigms that prioritize energy ef-
ficiency [15], [16]. As the world moves towards more sus-
tainable computing practices, the principles of AxC provide a
crucial framework for future research and development [10].

In summary, AxC represents a paradigm shift in how we
approach the problem of energy consumption in advanced
computing systems. By embracing the trade-offs between
accuracy and energy efficiency, AxC not only addresses the
immediate challenges of power consumption but also sets
the stage for the development of next-generation computing
technologies that are both powerful and sustainable. This
introductory overview sets the stage for a detailed discussion
on various AxC strategies and their applications, as explored
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in the subsequent sections of this paper.

II. METHODS

As computational demands continue to expand across var-
ious sectors, the exploration of efficient computing solutions
has become a critical area of research. This section delves
into the realm of AxC, highlighting innovative strategies and
techniques designed to optimize the balance between computa-
tional accuracy and energy efficiency. The focus here is on four
pivotal techniques that significantly reduce power consump-
tion while maintaining sufficient performance for practical
applications. These techniques include quantization, approx-
imate multipliers, in-memory computing, and input-dependent
AxC [5], each contributing uniquely towards achieving more
sustainable computing practices.

These methods are not merely theoretical paradigms but are
actively reshaping how computing tasks are approached in
energy-constrained environments. By integrating these tech-
niques and strategies, systems can achieve substantial re-
ductions in power consumption—an essential advancement
given the ever-increasing prevalence of mobile and embedded
devices in our daily lives [23]. Furthermore, these techniques
address critical issues inherent in traditional computing archi-
tectures, such as the high energy costs associated with data
movement and the inefficiencies of general-purpose computing
on large datasets [24].

The following subsections will explore each of these tech-
niques in detail, discussing their principles, applications, and
impact on ML and DL fields, where the need for efficient
computing is particularly pronounced.

A. Quantization
Quantization is a pivotal technique in the field of ML

and DL, especially when deploying models on resource-
constrained devices [25]. By converting the high-precision
floating-point numbers, typically used in model training, into
lower-bit representations, quantization significantly reduces
the memory footprint and bandwidth requirements [26]. This
process not only accelerates inference times but also reduces
the energy consumed per operation, making it particularly
advantageous for embedded and mobile applications where
power efficiency is crucial [27]. The effect of using quanti-
zation on memory storage of DNNs is illustrated in Table I.

TABLE I: The impact of quantization on DNNs.

DNN
Model

Originial Model
Size (MB)

Quantized Model
Size (MB)

AlexNet [28] 240 6.9
SqueezeNet [28] 4.8 0.47
LeNet-300 [29] 1.07 0.027
LeNet-5 [29] 1.72 0.044
VGG16 [29] 552 11.3

ResNetV2-50 [30] 95.4 10.12
INCEPTIONV4 [30] 171.26 19.4
Tiny-YOLOV2 [30] 58.8 8.5
MobileNet-SSD [30] 63.28 30.48

The principle behind quantization lies in its ability to
reduce the storage and computation of Neural Network (NN)
parameters by mapping high dynamic value ranges into lower
discrete ones, often at significantly reduced bit widths [31]. For
example, moving from 32-bit floating-point to 8-bit integers
can drastically cut down the amount of data that needs
to be processed and stored, thereby minimizing the energy
required for data retrieval and arithmetic computations [32].
This transition, however, must be managed carefully to ensure
that the loss of precision does not negatively affect the overall
accuracy of the model [30].

In the context of the ACE-CNN framework [33], quantiza-
tion is utilized alongside approximate multipliers to further en-
hance energy efficiency. The ACE-CNN applies quantization at
various stages of the Convolutional Neural Networks (CNNs),
strategically reducing bit widths in a way that balances perfor-
mance with computational efficiency. By integrating quantiza-
tion with innovative approximate multipliers, the ACE-CNN
approach demonstrates substantial power savings—up to 42%
less energy consumption—while maintaining an acceptable
accuracy level that is crucial for practical applications in fields
like image and video processing.

B. Approximate Multipliers

Approximate multipliers are components designed to reduce
computational complexity and energy consumption, yet this
comes at the expense of introducing inaccuracies into mul-
tiplication operations [11], [21], [34]. These components are
vital in applications where high throughput is more critical
than absolute accuracy, such as multimedia processing and
NN computation tasks [11], [35].

The concept of approximate multipliers revolves around the
idea that many applications can tolerate some imprecision
without significant degradation in final output quality [36]. By
simplifying the multiplier design, either by skipping certain
carry operations or truncating parts of binary numbers, these
multipliers consume less energy and provide faster results than
their precise counterparts [11]. This trade-off is particularly
effective in DL where the inherent redundancy of NNs often
masks the small errors introduced by approximation.

The ACE-CNN study introduces a novel signed approximate
multiplier, the Signed Carry Disregard Multiplier (SCDM8),
which optimizes energy consumption by selectively ignoring
carry operations that have minimal impact on the overall com-
putation accuracy [33]. This method showcases a significant
reduction in power usage, with a slight drop in accuracy that is
often negligible in real-world applications. The development
and integration of such multipliers into computational archi-
tectures underscore the potential of approximate computing to
transform energy efficiency in electronic systems, paving the
way for more sustainable computing practices. The beneficial
results of using SCDM8 approximate multiples are illustrated
in Figure 1. As Shown, blue bars depict the approximate
version accuracy to initial accuracy.
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Fig. 1: Effects of SCDM8 on DNNs (Green: Energy Gain,
Blue: Accuracy ratio) [33]

TABLE II: VGG16 energy usages and gains per inference [38].

Energy (mJ/inference) Relative Energy Gain
von Neumann system 16.77 1
3D-PIM 2.27 7.37

C. In-Memory Computing
In-memory computing has recently emerged as a powerful

technique to counteract the energy inefficiencies caused by
traditional data movement between processors and memory
units [37]. This approach integrates processing capabilities
directly within memory arrays, allowing data to be processed
where it is stored. By minimizing the distance data travels, in-
memory computing significantly reduces the energy and time
overheads associated with data transfer, thus enhancing overall
system performance.

The 3D-PIM technique represents a cutting-edge develop-
ment in this area by utilizing a novel digital-to-time modula-
tion approach within static random-access memory (SRAM)
to perform multiplication and accumulation operations directly
within the memory cells [38]. This technique eliminates the
need for digital-to-analog converters (DACs), reducing the
complexity and power consumption of the memory modules.
By processing data directly at its storage location, 3D-PIM
reduces latency and energy expenditure, offering substantial
improvements over traditional computing paradigms.

In practical applications, the 3D-PIM method is especially
beneficial for energy-constrained environments such as mobile
devices and edge computing platforms, where power efficiency
is paramount. The integration of processing within memory
modules also opens up new possibilities for the development
of more compact and efficient hardware designs, potentially
transforming the landscape of computing technology. Table II
displays the energy efficiency of 3D-PIM for a DL application
(VGG16 [39] inference).

D. Input-Dependent Approximate Computing
Input-dependent AxC adjust the processing power and com-

putations based on the relevance and complexity of the incom-
ing data, optimizing resource allocation and energy consump-
tion. This adaptive approach ensures that computational efforts
are concentrated on data segments that require more intensive
processing, while less critical data receives minimal attention.
Such strategies are particularly useful in real-time systems and

Fig. 2: Summary of approximate computing techniques

applications involving large datasets where processing all data
at a uniform level of precision is inefficient and unnecessary.

Recent studies adopted the input-dependent AxC approach
in the development of ultra-low energy wearable devices for
long-term monitoring of patients’ vital signs and real-time
event-driven classification prediction of medical conditions,
aiming to prolong battery life while maintaining high predic-
tion performance [40]–[45].

In another case, recent research [46], [47] proposes input-
dependent AxC to enhance the reliability of wearable systems
for monitoring physiological signals. Using machine learning
algorithms, these studies identify and prioritize processing
data segments that lack significant noise interference, direct-
ing computational resources to crucial segments for accurate
health monitoring. This selective processing not only improves
diagnostic accuracy but also reduces energy expenditure by
avoiding unnecessary computations on noise-corrupted data.

Furthermore, research detailed in [45] introduces the Iter-
ative CNN (ICNN), an innovative adaptation of traditional
CNNs into a sequence of smaller, sequentially executed net-
works. This approach enhances classification accuracy by pro-
cessing subsets of the input and features from prior networks,
with the ability to terminate early once acceptable confidence
is achieved. This design significantly reduces computational
needs by curtailing operations when sufficient accuracy is
reached, demonstrating that ICNN can achieve the efficiency
of larger networks with fewer computational resources.

Figure 3 visually demonstrates the ICNN process, high-
lighting its sequential network execution and early termination
capability once adequate classification confidence is achieved.
This illustration emphasizes the ICNN’s effectiveness in re-
ducing computational load and energy use.

Overall, input-dependent computations represent a crucial
strategy for managing the computational demands of modern
systems, enabling more intelligent, efficient, and context-aware
processing. By dynamically adjusting computational efforts
based on data significance, these techniques can significantly
enhance the performance and energy efficiency of a wide range
of applications, from healthcare, computer vision, and natural
language processing, to autonomous driving [48]–[50].



III. DISCUSSION

In this section, we discuss the system integration and relia-
bility of AxC techniques within AI accelerators and System-
on-Chip (SoC) or System-in-Package (SiP) architectures. The
focus is on how the efficient computing strategies discussed in
section II: Quantization, Approximate Multipliers, In-Memory
Computing, and Input-Dependent AxC, can be effectively
integrated and implemented to enhance both the performance
and reliability of AI systems.

Recent trends in the deployment of AxC techniques indicate
a significant shift toward their implementation in specialized
computing units. According to a survey [5], 57% of recent
adaptive approximate techniques have been implemented on
AI accelerators and non-conventional processing units such
as SoCs, Tensor Processing Units (TPUs), and Field Pro-
grammable Gate Arrays (FPGAs). This trend underscores the
growing recognition of the benefits these platforms offer in
terms of processing power and energy efficiency. Figure 4
illustrates the distribution of these implementations, highlight-
ing the predominant use of these technologies in cutting-edge
AI systems. The integration of AxC techniques in these units
also aligns with the strategies discussed later, focusing on how
computing is implemented in various hardware configurations
to improve both efficiency and reliability. This sets the stage
for exploring specific hardware adaptations such as approxi-
mate multipliers and in-memory computing.

A. System Integration
The shift towards using SoCs, TPUs, and FPGAs, shown

in Figure 4, reflects a broader industry movement towards

Fig. 3: ICNN iterative expansion of computations [45].
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optimizing AI applications for specific performance needs
and energy efficiency. The integration of AxC techniques
into AI systems involves a combination of software and
hardware approaches, each contributing uniquely to the overall
efficiency and functionality of the system. We discuss here,
which methods are software or hardware compatible.

Software Integration: Techniques like quantization and
input-dependent AxC can often be implemented at the soft-
ware level [5]. Software-based quantization involves modi-
fying the data precision within the algorithms running on
general-purpose computing systems. This allows for flexibility
and ease of deployment across various platforms without
the need for specialized hardware. Similarly, input-dependent
computations can be programmed into the software to dy-
namically adjust the computational resources based on the
significance or complexity of the input data, enhancing the
system’s efficiency and adaptive capabilities.

Hardware Integration: On the other hand, techniques such
as approximate multipliers and in-memory computing require
more specialized hardware designs. Approximate multipliers
can be integrated into custom silicon or SoC designs to
provide energy-efficient computation at the hardware level.
These components are designed to perform specific tasks with
reduced precision, which can significantly decrease power
consumption and increase processing speed, making them
ideal for integration into dedicated AI accelerators.

In-memory computing, involving techniques like the 3D-
PIM approach, necessitates a rethinking of traditional memory
architectures [38]. These strategies are incorporated directly
into the memory hardware to perform computations where data
is stored, drastically reducing the energy and time costs associ-
ated with data movement. Integrating these memory technolo-
gies into SoC or SiP can lead to significant improvements in
the speed and energy efficiency of the system, particularly for
applications requiring large-scale data processing like DNNs
and real-time analytics.

Hybrid Approaches: Most advanced AI systems bene-
fit from a hybrid approach that combines both software
and hardware solutions [5], [51]. For example, an SoC for
AI applications might use software-implemented quantization
for flexibility and hardware-based in-memory computing for
performance-critical tasks. This hybrid strategy ensures that
the system is not only energy efficient but also maintains the
versatility needed to handle a wide range of AI applications.
B. Reliability

Reliability in AI systems is crucial, particularly in applica-
tions where decisions must be made based on the computed
results, such as autonomous driving or health diagnostics [5],
[6]. In autonomous systems, the adaptive optimization of
extra-functional properties, such as power efficiency or thermal
management, leads to emergent behaviors that enhance system
reliability without compromising functionality [52]. Therefore,
integration of AxC techniques poses unique challenges and
opportunities for enhancing the reliability of AI systems.

Quantization and Input-Dependent AxC : While these
techniques can be implemented in software, ensuring their



reliability involves rigorous testing and validation to confirm
that the reduced precision or selective processing does not
lead to unacceptable errors or biases in decision-making.
Specific methodologies, such as cross-validation with different
datasets and real-time monitoring of performance metrics, are
critical in verifying the stability of these approaches under
various operational conditions [53]. It is essential to develop
robust frameworks for dynamically adjusting these parameters
incorporating adaptive algorithms that can respond to data
variability and system feedback without compromising the
system’s integrity [54]. Such frameworks should also include
error detection and correction mechanisms that activate cor-
rective measures automatically, maintaining the accuracy and
reliability of outputs despite the inherent approximations [55].

Approximate Multipliers and In-Memory Computing:
The hardware-specific essence of these strategies necessitates
designing them with a focus on fault tolerance and error
resilience. For approximate multipliers, it is vital to ensure
that the imprecision introduced does not accumulate in a
way that significantly degrades the overall system perfor-
mance. Similarly, for in-memory computing, the integration
of error-checking and correction mechanisms directly within
the memory hardware can help maintain the reliability of
the computations, even with the architectural changes that
facilitate processing in memory.

AxC can potentially enhance the security and privacy of
DNNs by altering their mathematical computational principles,
which obscures precise computations and increases resistance
to attacks [56]–[58]. This obfuscation protects sensitive data
and reduces the efficacy of adversarial attacks aimed at ex-
ploiting exact outputs [56]. Furthermore, the variability intro-
duced by approximation techniques as a defense mechanism
improves data privacy by complicating reverse-engineering
efforts [57]. Thus, employing AxC in AI models not only
boosts efficiency but also strengthens their security and privacy
measures [59].

Furthermore, reliability also relates to the physical and
operational durability of hardware components. Custom SoC
and SiP designed for AI must not only be energy efficient and
functionally adaptive but also capable of operating reliably un-
der vast environmental conditions and over extended periods.

IV. CONCLUSION

In conclusion, the integration of AxC techniques into AI
accelerators and SoC/SiP systems necessitates a balanced
approach that carefully considers both the computational
efficiency and the reliability of the system. By effectively
merging software flexibility with hardware performance, these
strategies accommodate the dynamic demands of various ap-
plications, from regular data processing to critical real-time
decision-making tasks.

Robust error management and system stability are crucial
to ensure that these systems operate reliably under diverse
conditions and maintain their integrity over time. Such robust-
ness is essential for applications where failures could have

significant consequences, such as in autonomous vehicles,
healthcare monitoring, and other critical infrastructure.

By encompassing both the technological advancements in
AxC and the practical considerations of implementing these
techniques in real-world systems, it is possible to develop
AI systems that are not only more energy-efficient but also
robust and reliable enough for widespread deployment in
critical applications. This approach not only contributes to
the sustainability of computing resources but also ensures that
the advancements in AI and ML continue to deliver tangible
benefits across industries.

The discussion and insights presented in this paper under-
score the potential of AxC to reshape the future of computing,
providing a pathway towards more sustainable and efficient
computational practices that do not compromise the quality
or reliability of outcomes. As this field evolves, continued
research and collaboration across the disciplines of hardware
engineering, software development, and system design will
be key to realizing the full potential of energy-efficient and
reliable AI systems.
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