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Abstract—Wearable devices are widespread for continuous
health monitoring; capturing various physiological parameters
for remote health monitoring and early detection of health issues.
These devices are susceptible to interference such as Motion
Artifacts (MA) and Baseline Wanders (BW). Mitigating potential
false alarms due to those artifacts is an important challenge in
wearable healthcare. To tackle this challenge, it is crucial to
first identify noise in the signals recorded by wearable systems.
Most of the conventional methods rely on reference data like
accelerometer data to detect noise in Photoplethysmogram (PPG)
signals. This study proposes a Machine Learning (ML)-based
approach to distinguish between clean and corrupted segments
in PPG signals without relying on other sensors’ data. Binary
and three-class classification on clean, MA-, and BW-corrupted
signals produce promising F1-scores from 89.3% to 99.4%.

Index Terms—earable devices; health monitoring; photo-
plethysmography; noise detection; motion artifact; baseline wan-
derearable devices; health monitoring; photoplethysmography;
noise detection; motion artifact; baseline wanderW

I. INTRODUCTION

Nowadays, wearable devices have become very common for
continuous health monitoring. Using wearables, we can record
various physiological parameters from the body, which can be
utilized for remote health monitoring and early detection of
health problems [1]-[5]. While wearable devices have facili-
tated and improved self-care and healthcare quality, they are
exposed to several different types of noise, including motion
and muscle artifact, Baseline Wanders (BW), and power-line
interference [6].

When a wearable device exhibits a high rate of false posi-
tives, patients may not adequately notice the system’s alarms.
Conversely, in specific applications such as detecting atrial
fibrillations or sleep apneas, increased false negative rates
could lead to significant repercussions. Thus, decreasing the
occurrence of false positives emerges as a notable challenge
within the wearable healthcare domain [7].

To address this challenge, it is important to initially identify
the presence of noise in the signals recorded by the wearable
system. In [8], for atrial fibrillation detection, the authors em-
ployed a variable frequency complex demodulation (VFCDM)
approach to identify noise artifacts in the signals captured
from fingertip videos of smartphones. In [5], to enhance
atrial fibrillation detection, the authors used an autoencoder
for Motion Artifact (MA) detection and removal from Pho-
toplethysmogram (PPG) signals recorded by smartwatches. In
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[9], the authors introduced a fuzzy-logic-based approach to
enhance the early warning score (EWS) systems, essential for
monitoring the general health status of patients.

In [10], the authors introduced a probabilistic neural net-
work method to address motion and noise artifacts (MNAS)
affecting PPG signals obtained from smartphone cameras
during health measurements. In [11], the authors proposed a
statistical approach involving the calculation of kurtosis and
Shannon entropy to identify motion and noise artifacts in PPG
signals. In [12], the authors conducted comprehensive research
on various approaches aimed at enhancing the reliability
of physiological parameter measurements, with a particular
focus on PPG signals obtained from wearable devices. The
study involved a thorough review of state-of-the-art algorithms
specifically designed for detecting MA in PPG signals. Lastly,
in [13], the author introduced several time and time-frequency
domain approaches for detecting noise and artifacts, as well
as signal reconstruction algorithms in wearable devices based
on Electrocardiography (ECG) and PPG.

One issue with most of the previous methods is dependence
on various sensors, such as accelerometer sensors, for noise
detection in PPG signals. This dependency increases design
complexity and computational requirements. Conversely, the
Machine Learning (ML)-based approaches offer a more pre-
cise detection of various types of noise sources [14], [15].

In this paper, we introduce a ML-based approach for

detecting clean, MA-, and BW-corrupted segments in PPG
signals without relying on other sensors’ data. Initially, clean
and noisy signal segments are identified using an annotation
algorithm applied to the dataset. Subsequently, morphological
and statistical features of these signals are extracted. Finally,
various ML algorithms are trained using these features as
predictive models.
The rest of this paper is organized as follows. In Section II,
we introduce the dataset used for training and evaluating our
predictive model. Section III elaborates on our methodology.
In Section IV, the evaluation metrics and the experimental
results are discussed. Finally, in Section V, we conclude our
findings for this paper.

II. DATASET

In this paper, we use an open-access dataset on emotion,
cognition, sleep, and multi-model physiological signals (EC-
SMP) [16]. The dataset consists of multi-modal physiological
signals, including Electroencephalography (EEG), ECG, PPG,
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Fig. 1: Block diagram of the proposed method

Electrodermal Activity (EDA), temperature, and accelerometer
data, recorded from 89 healthy college students during resting
state, different emotion induction and recovery, and cognitive
function assessment tasks. We utilize the data collected using
the Empatica E4 smart-watch, which includes PPG, EDA,
accelerometer, and temperature signals. Among these, we use
PPG and accelerometer signals for our research, in which the
accelerometer data is only used for the data preparation phase.
The E4 files contain data from only 67 subjects (24 males
and 43 females, age: 23.82 + 1.93 years), each contributing
an average of nearly one and a half hours. The PPG and
the accelerometer signals have a sampling rate of 64 and 32
samples per second, respectively.

III. METHODOLOGY

In this section, we elaborate on our methods and algorithms
employed for noise recognition in PPG signals. The PPG
signals obtained from the ECSMP dataset are raw signals
containing offset and MA. Due to the absence of references
for the offset parts of the signals to be used as BW, we filter
the signal with a highpass filter to remove the offsets. We
then utilize an annotation algorithm to identify clean and MA-
corrupted segments of the signals, using the accelerometer
signal as our reference. Subsequently, we extract various
features from the segmented signals and train our predictive
models based on these features. It is worth to mention that in
the train and test separation stage, we split the dataset into 80%
for training and 20% for testing. To ensure a fair classification,
we use data from a specific subject exclusively for either
testing or training. The predictive models are trained using
the training data, and the models are subsequently evaluated
using the test data. A block diagram illustrating this approach
is presented in Fig. 1.

A. Preprocessing

In the preprocessing phase, we start by removing non-
informative segments at the end of each subject’s recorded
data, captured when the devices are no longer worn. Subse-
quently, to eliminate the unknown offset, we apply a highpass
filter to the data, using a 0.5 Hz 4™ order IR filter [12], [17].

B. Annotation algorithm

To prepare the data for the feature extraction step, we extract
clean and MA-corrupted segments from each subject’s signals
using the following algorithm:

1) Calculation of the noise reference: To encompass every
potential motion that may corrupt the PPG signal, we utilize
a reference signal derived from accelerometer data, calculated

as follows:
a= /a2 +al+a? (1)

in which a,, a,, and a, are the accelerations recorded by the
accelerometer sensor in the x, y, and z directions.

2) Noise reference energy calculation: Energy serves as
a valuable metric for detecting the level of motion in the
accelerometer signal. Hence, we compute the energy of the
samples in the signal a. Samples surpassing a specific energy
threshold are identified as motion, and their counterparts in
the PPG signal are annotated as motion samples. To amplify
the corrupted samples and diminish the uncorrupted ones, we
first calculate the derivative of the signal a, then calculate its
energy [18]:

re[n] = (a[n] — a[n — 1])? ()

in which re and n are the energy of the reference signal and the
number of the sample in the accelerometer signal, respectively.

3) Binary signal calculation: After the energy of the refer-
ence is calculated, we apply a threshold on the signal to find
clean and corrupted samples:

1 if
bsfin] = { i re[n]. > th 3)
0 otherwise

in which th is calculated as follows:
1 &

th=0.5 x — i 4
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Which describes the average of the accelerometer signals
across all subjects multiplied by 0.5.

4) Final segmentation: Based on the calculated binary
signal in step 3, for each subject, we extract clean and
noisy segments using a non-overlapping window of size 1280
samples (20 seconds). This number of samples is sufficient for
assessing the PPG signal to determine if it is clean or corrupted
with noise. Consequently, if, for 1280 successive samples,
the values of the binary signal remain 0/1, we consider the
corresponding window in the PPG signal as a clean/noisy
segment; otherwise, we ignore the window (because it includes
both clean and noisy signals). After segmentation, we balance
the number of segments based on the minority class to conduct
a fair classification. The results of this algorithm are depicted
in Fig. 2.

C. BW synthesis

To investigate the performance of our model, we also
synthesize random BW using a combination of sine and cosine
waves. BW is primarily caused by respiration at frequencies
ranging between 0.15 to 0.3 Hz (0.5 Hz) [19], [20]. Therefore,
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Fig. 4: Peak detection results using vital-sqi peak detection algorithm for (a) clean, (b) MA-corrupted PPG signal, and (c) BW-corrupted

PPG signal

we select the frequency arguments of the sinusoidal waves and
their amplitudes to be within the range of 0.15 to 0.3 Hz (0.5
Hz) and 0.1 to 0.25 (0.5) times the maximum amplitude of
each window of data, respectively. Subsequently, we add these
random signals to the clean data and consider them as BW-
corrupted data. A sample of these synthesized artifacts and
their corresponding noisy segments are depicted in Fig. 3.

D. Feature extraction

In this research, we conduct noise detection based on
morphological and statistical features.

1) Morphological features: Morphological features de-
scribe the shape, pattern, and specific characteristics of signals.
Since noise can alter the characteristics of the PPG signal
in terms of shape and pattern, we calculate the locations of
peaks in the signal using the vital-sqi open-access Python
toolbox [21], as illustrated in Fig. 4. The distances between
the arguments of these peaks (time intervals between peaks)

are then considered as morphological features. For different
classes, the distance pattern between detected peaks varies.
For example, in MA-corrupted signals, some peaks may go
undetected, resulting in a distinct distance pattern compared
to other classes. To ensure uniformity in feature vectors, we
follow these steps: 1. Sort the features in each feature vector
in descending order. 2. Calculate the mean (i) and standard
deviation (o) of the vectors. 3. Set the length of the feature
vectors to [ = || + |o] . 4. Zero-pad feature vectors smaller
than [, and ignore the last samples in feature vectors larger
than [ [7].

2) Statistical features: Statistical features encompass the
distribution and variability of signals. To capture this infor-
mation, we calculate the mean, variance, kurtosis, skewness,
energy, entropy, and maximum auto-correlation of the signal,
along with the mean, variance, and maximum of the signal’s
histogram [22], [23].



E. Classification

In this study, we conduct binary and three-class classifica-
tions as follows: a) Clean vs. MA-corrupted data, b) Clean vs.
BW-corrupted data, c) MA- vs. BW-corrupted data, d) Clean
vs. MA- vs. BW-corrupted data.

To achieve this, we employ Support Vector Machine (SVM)
with a Radial Basis Function (RBF) kernel [24], Random
Forest (RF) [25], XGBoost (XGB) [26], Naive Bayes (NB)
[27], Extremely Randomized Tree (ERT) [28], and Decision
Trees (DT) [29] classifiers to train our predictive model. We
implement these classifiers using scikit-learn [30] with default
parameters.

IV. EVALUATION

A. Evaluation Metrics

For performance evaluation of our ML models, we use the
following metrics:

Precision - Recall

Fl-score =2 - Precision - Recall’ (®)]
Accuracy = T PT+P;]; i ;x TFN’ (6)
Precision = T, @)

Recall = TP-l-iFN’ 8)

in which TP, TN, FP, and F'N are true positives, true nega-
tives, false positives, and false negatives, respectively. Before
training and validating our models, we ensure data balance
across all three classes. Hence, all metrics are computed with
equal weight for the various classes.

B. Experimental Results

We conduct classifications on the dataset using a 5-fold
cross-validation approach in which each time 80% of sub-
jects are used for train and 20% of them are used for test.
We conduct both binary and three-class classifications. The
experiment is conducted for both of the two different ranges
for BW as reported in the literature. The results for Fl-score,
Accuracy, Precision, and Recall are provided in Table I and II.

As shown in Tables I and II, various machine learning
models are employed for classification. For instance, in the
“Clean vs. MA” comparison, the ERT model outperforms
other methods, achieving an Fl-score of 97.0% + 0.6% and
an accuracy of 96.9% + 0.6%. Similar performance trends are
observed in the “Clean vs. BW,” “MA vs. BW,” and “Clean vs.
MA vs. BW” comparisons, for the XGB and ERT algorithms
across different BW ranges, confirming the noise robustness
of these algorithms compared to others [31]. Additionally, it
is evident that wider BW ranges lead to improved results, as
shown in Fig. 5.

V. CONCLUSION

Wearable devices are susceptible to various forms of noise,
which can adversely impact their functionality and lead to
inaccurate detection. To address this challenge, we propose
a noise detection model that employs diverse ML algorithms
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Fig. 5: Results comparison for different ML models and BW ranges

TABLE I: Classification results for various comparisons and
BW, with a frequency range of 0.15 to 0.3 Hz and amplitude
ranging from 0.1 to 0.25 times the maximum amplitude of
PPG segments

Comparison Metrics
Acc.(%) Rec.(%) Prec.(%) F1 (%)
Clean vs. MA
MI Alg.
NB 84.1 £ 1.5 834 + 2.7 854 + 0.8 843+ 1.2
SVM 882 + 1.3 85.8 £ 2.5 91.7 £ 0.8 88.6 + 1.1
XGB 95.0 £ 1.0 91.3 £ 1.6 99.5 £ 0.2 952 £ 09
DT 95.1 £ 0.7 915+ 1.2 99.5 + 0.2 953 £+ 0.7
RF 95.6 £ 09 924 £ 1.5 99.7 £ 0.1 96.0 £ 0.8
ERT 96.9 + 0.6 94.5 + 1.1 99.6 + 1.8 97.0 £ 0.6
Clean vs. BW
NB 65.0 £ 1.0 66.8 + 2.0 60.0 £+ 3.2 63.2+ 1.3
SVM 53.8 £ 3.2 52.5 £+ 2.1 81.0 £ 3.2 63.7 £ 2.5
XGB 85.2+1.3 84.3+1.8 86.5 + 2.8 85.4+1.4
DT 87.2+1.0 87.4+1.6 87.0+2.4 872+ 1.1
RF 82.0+t1.2 81.2+22 83.4+4.1 822+ 1.5
ERT 90.9+1.4 91.1+1.8 91.0+2.8 909+ 1.5
MA vs. BW
NB 80.7+1.9 79.9 + 3.1 82.1+0.8 81.0+1.5
SVM 90.4+1.1 91.2+1.8 89.5+ 0.5 90.3 £ 1.1
XGB 97.6 £ 0.6 95.6 £ 1.0 99.7 £ 0.2 97.6 + 0.5
DT 96.6 £ 0.5 94.0 £ 0.9 99.5 +0.2 96.7 + 0.5
RF 97.8+0.5 96.1 £ 1.0 99.7 £ 0.2 97.9+ 0.5
ERT 98.3+0.5 97.2+0.9 99.6 £ 0.2 98.4+ 0.5
Clean vs. MA vs. BW
NB 59.4+13.1 59.5+6.7 5944+226 57.0+14.9
SVM 72.8+0.8 72.9+5.0 728 +7.3 72.7+£5.5
XGB 82.9+0.5 829+44 829+77 82.8+5.7
DT 76.3 £ 0.1 76.1+9.4 76.3+11.5 76.2+10.3
RF 81.8+0.5 81.8+6.2 81.8+9.0 81.7+7.2
ERT 81.7+0.6 81.8+7.8 81.7+8.7 81.7+£7.9

to identify segments of PPG signals corrupted by noise. In
contrast to previous works, we exclusively rely on PPG signals
for noise detection, making the procedure more straightfor-



TABLE II: Classification results for various comparisons and
BW, with a frequency range of 0.15 to 0.5 Hz and amplitude
ranging from 0.1 to 0.5 times the maximum amplitude of PPG

segments
Comparison Metrics
Acc.(%) Rec.(%) Prec.(%) F1 (%)
Clean vs. MA
MI Alg.
NB 84.1 £ 15 834427 854 + 0.8 843 + 1.2
SVM 882 + 13 858 +25 91.7 £ 0.8 88.6 + 1.1
XGB 95.0 £ 1.0 913+ 1.6 99.5 £ 0.2 952 + 0.9
DT 95.1 £ 0.7 915+ 12 99.5 £ 0.2 95.3 + 0.7
RF 95.6 £ 09 924+ 1.5 99.7 £+ 0.1 96.0 + 0.8
ERT 96.9 +£ 0.6 945 + 1.1 99.6 + 1.8 97.0 + 0.6
Clean vs. BW
NB 72.7+1.2 79.6+3.9 68.8 £+ 34 69.2+1.2
SVM 48.6 £2.0 49.2+1.1 48. 7+ 2.5 62.8+ 1.5
XGB 93.2+1.2 93.0+£1.8 93.2+1.6 93.2+1.2
DT 87.0+10 87.1+1.7 87.0+2.0 87.0+1.1
RF 91.7+1.2 91.7+£1.8 91.6 £1.3 91.7+1.2
ERT 91.0+£1.1 91.6+£1.8 90.2 £1.8 909+ 1.1
MA vs. BW
NB 79.7+0.3 788+0.4 81.6 £0.5 80.1+0.3
SVM 94.3+0.2 96.8+0.2 91.7+£0.1 94.2+0.2
XGB 99.1+£0.1 98.4+0.3 99.9+0.1 99.2+0.1
DT 98.2+0.3 96.8+0.5 99.7£0.2 98.2+0.2
RF 99.3+£0.1 98.8+0.2 99.8 £0.1 99.3+0.1
ERT 99.4+0.2 99.0+£0.3 99.8 £0.1 99.4 + 0.2
Clean vs. MA vs. BW
NB 65.7+15 68.1+81 652+13.8 65.2+6.9
SVM 79.5+09 796+4.4 79.5+ 4.0 79.5+0.9
XGB 89.3+0.7 89.3+£6.9 89.3 £ 3.6 89.3 £ 3.6
DT 84.5+04 84.5+5.0 84.5 + 6.6 84.5+5.5
RF 88.8+ 0.7 88.8+3.2 88.7+£5.3 88.8 £ 3.8
ERT 88.5+0.7 88.5+4.5 88.5+4.1 88.5 £+ 6.6

ward. Additionally, our approach introduces potential ideas for
simplifying the hardware design in future wearable devices.
By extracting both morphological and statistical features from
PPG signals, our approach trains ML models to distinguish
between clean and corrupted segments. The outcomes of
our method are promising, with Fl-scores of 97.0%, 93.2%,
99.4%, and 89.3% achieved for the classifications of clean

VS.

MA-corrupted signals, clean vs. BW-corrupted signals,

MA- vs. BW-corrupted signals, and clean vs. MA- vs. BW-
corrupted signals, respectively.
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