
Accurate and Energy-Efficient Stochastic Computing with Van
Der Corput Sequences

Mehran Shoushtari Moghadam
School of Computing and Informatics,
University of Louisiana at Lafayette

Lafayette, Louisiana, USA
m.moghadam@louisiana.edu

Sercan Aygun
School of Computing and Informatics,
University of Louisiana at Lafayette

Lafayette, Louisiana, USA
sercan.aygun@louisiana.edu

Mohsen Riahi Alam
School of Computing and Informatics,
University of Louisiana at Lafayette

Lafayette, Louisiana, USA
mohsen.riahi-alam@louisiana.edu

Jonas I Schmidt
School of Computing and Informatics,
University of Louisiana at Lafayette

Lafayette, Louisiana, USA
jonas.schmidt1@louisiana.edu

M. Hassan Najafi
School of Computing and Informatics,
University of Louisiana at Lafayette

Lafayette, Louisiana, USA
najafi@louisiana.edu

Nima TaheriNejad
Institute of Computer Engineering, Heidelberg

University
Heidelberg, Germany

nima.taherinejad@ziti.uniheidelberg.de

ABSTRACT
In stochastic computing (SC), data is represented using random bit-
streams. The efficiency and accuracy of SC systems rely heavily on
the stochastic number generator (SNG), which converts data from
binary to stochastic bit-streams.While previous research has shown
the benefits of using low-discrepancy (LD) sequences like Sobol
and Halton in the SNG, the potential of other well-known random
sequences remains unexplored. This study investigates new random
sequences for potential use in SC. We find that Van Der Corput
(VDC) sequences hold promise as a random number generator for
accurate and energy-efficient SC, exhibiting intriguing correlation
properties. Our evaluation of VDC-based bit-streams includes basic
SC operations (multiplication and addition) and image processing
tasks like image scaling. Our experimental results demonstrate high
accuracy, reduced hardware cost, and lower energy consumption
compared to state-of-the-art methods.

CCS CONCEPTS
• Hardware → Emerging technologies; Logic circuits; Very large
scale integration design; • Computing methodologies → Com-
puter vision.

KEYWORDS
Correlation, image scaling, low-discrepancy sequences, random
number generator, stochastic computing

ACM Reference Format:
Mehran Shoushtari Moghadam, Sercan Aygun, Mohsen Riahi
Alam, Jonas I Schmidt, M. Hassan Najafi, and Nima TaheriNe-
jad. 2023. Accurate and Energy-Efficient Stochastic Computing with Van
Der Corput Sequences. In 18th ACM International Symposium on Nanoscale
Architectures (NANOARCH ’23), December 18–20, 2023, Dresden, Germany.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3611315.3633265

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
NANOARCH ’23, December 18–20, 2023, Dresden, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0325-6/23/12. . . $15.00
https://doi.org/10.1145/3611315.3633265

1 INTRODUCTION
Stochastic computing (SC) is a re-emerging computing paradigm
offering low-cost hardware designs and high tolerance to noise.
In contrast to traditional binary computing, which operates on
positional binary radix numbers, SC designs process uniform bit-
streams of “0”s and “1”s with no significant digits. While the para-
digm was known for approximate computations for years, recent
works showed deterministic and completely accurate computation
using SC circuits [19, 22]. Encoding data from traditional binary
to stochastic bit-streams is an important step in any SC system.
The data are encoded by the probability of observing a “1” in the
bit-stream. For example, a bit-stream with 25% “1” represents the
data value of 0.25. The accuracy of the computations and the energy
efficiency of the SC designs highly depend on this encoding step,
particularly on the distribution of “1”s and “0”s in the bit-streams.

A stochastic number generator (SNG), which encodes a data
value in binary format to a stochastic bit-stream, consists of a ran-
dom number generator (RNG) and a binary comparator. At each
cycle, the output of comparing the input data with the random
number from the RNG unit produces one bit of the bit-stream. The
distribution of the bits in the encoded bit-streams is directly affected
and controlled by the RNG component of the SNG. While tradition-
ally pseudo-random sequences; generated by linear-feedback shift
registers (LFSRs), were used for the RNG unit, the state-of-the-art
(SOTA) studies demonstrate the importance of using quasi-random
sequences, such as Sobol [16, 19] and Halton [2, 15] sequences, for
high-quality generation of stochastic bit-streams. These sequences
remove an important source of error in SC operations, namely
the random fluctuation error [23] in generating bit-streams and
produce Low-Discrepancy (LD) bit-streams. LD bit-streams quickly
converge to the target value, reducing the length of bit-streams
and, consequently, the latency of stochastic computations. This
latency reduction directly translates to savings in energy consump-
tion (i.e., power × latency), a critical metric in the hardware effi-
ciency of the SC systems. A challenge with the SOTA SNGs using
sequences such as Sobol and Halton is their relatively high hard-
ware cost. This high hardware cost limits the maximum energy
savings achievable using these sequences. This study extends the
SOTA random sequences for the high-quality encoding of data in
SC. We analyze some well-known random sequences in the litera-
ture for possible improvement in the performance and hardware

https://orcid.org/0000-0002-1325-1664
https://orcid.org/0000-0002-4615-7914
https://orcid.org/0000-0003-3892-8296
https://orcid.org/0009-0009-7473-4617
https://orcid.org/0000-0002-4655-6229
https://orcid.org/0000-0002-1295-0332
https://doi.org/10.1145/3611315.3633265
https://doi.org/10.1145/3611315.3633265

NANOARCH ’23, December 18–20, 2023, Dresden, Germany Moghadam, et al.

efficiency of the SNG units. We explore Weyl (W), R2 (R), Kasami
(K), Latin Hypercube (L), Gold Code (G), Hadamard (HD), Faure (F),
Hammersly (HM), Zadoff–Chu (Z), Niederreiter (N), and Poisson
Disk (P) sequences in the context of SC. We also evaluate and study
the Van Der Corput (VDC) [24] sequences as a promising alternative
to prior LD sequences.

2 BACKGROUND
2.1 Random Sequences
Random sequences are widely used in various research domains. All
of thementioned sequences except the complex-valued Zhadoff-Chu
sequence, have LD properties. Discrepancy means how much the
sequence points deviate from uniformity [17]. The recurrence prop-
erty (i.e., the constructibility of further-indexed sequences from
the previous-indexed ones) in LD sequences is beneficial for cross-
correlation. This is particularly advantageous for SC systems that
require uncorrelated bit-streams [1].

The Weyl sequence belongs to the class of additive recurrence
sequences, characterized by their generation through the iteration
of multiples of an irrational number modulo 1. Specifically, by
considering𝛼 ∈ R as an irrational number and𝑥𝑖 ∈ {0, 𝛼, 2𝛼, ..., 𝑘𝛼},
the sequence 𝑥𝑖 − ⌊𝑥𝑖 ⌋ (𝑥𝑖 modulo 1) produces an equidistributed
sequence within the interval (0, 1). Another example of an additive
recurrence sequence is the R sequence, which is based on the Plastic
Constant (the unique real solution of the cubic equation) [18]. The
Latin Hypercube sequences involve partitioning the sampling
space into equally sized intervals and randomly selecting a point
within each interval [14].

The VDC sequence serves as the foundation for many LD se-
quences. It is constructed by reversing the digits of the number
in the corresponding base, representing each integer value as a
fraction within the [0, 1) interval. For instance, the decimal value
11 in base-3 is represented by (102)3. The corresponding value for
the base-3 VDC is 2 × 3−1 + 0 × 3−2 + 1 × 3−3 = 19

27 .
For the rest of this work, we will use LD-type and LFSR-based

random sequences, and leave the orthogonal and complex-valued
sequences for our future work on other emerging technologies,
such as hyperdimensional computing, that require high orthogo-
nality [4].

2.2 Stochastic Computing (SC)
SC has gained attention due to its robustness to noise, high par-
allelism, and power efficiency. Complex arithmetic operations are
realized with simple logic gates, achieving significant savings in
implementation costs for a range of applications, from image pro-
cessing [12] to machine learning [13].

An essential step in SC systems is data conversion. Real numbers
must be converted to bit-streams, where each bit position has equal
significance, distinguishing it from conventional binary representa-
tion. SC supports data in the unit interval, i.e., [0, 1]. This coding
format is known as unipolar encoding (UPE). In this encoding, the
probability of observing a “1” in the bit-stream 𝑋 or 𝑃 (𝑋 = 1)
equals the input value. The common method for generating a bit-
stream with a length of 𝑁 involves generating 𝑁 random numbers
(𝑅1 ...𝑅𝑁) and comparing them with the input value in 𝑁 cycles.
A logic-1 is produced at the output if the input value is greater

(a) (b)

Figure 1: MAE (%) of SC operation on two 8-bit precision input (a)
SC Multiplication and (b) SC Scaled Addition.

than the random number; A logic-0 is produced otherwise. The
occurrence of logic-1s in the produced bit-stream depends on the
sequence of random numbers.

SC operations often consist of simple bit-wise logic operations.
Multiplication of bit-streams in UPE is achieved by bit-wise AND
operation [1]. For accurate multiplication, the input bit-streams
must be uncorrelated with each other. Performing bit-wise AND on
correlated bit-streams, i.e., bit-streams with a maximum overlap in
the position of 1s, gives the minimum of the input bit-stream. Scaled
addition is realized in SC by using a multiplexer (MUX) unit [7]. For
scaled subtraction, a MUX with one inverter is utilized [12].

3 DESIGN SPACE EXPLORATION
As one of the main contributions of this study, we comprehensively
and comparatively examine the use of the random sequences dis-
cussed in Section 2 for SC. We first analyze these sequences for
basic SC operations before extending the evaluations to more com-
plex case studies. The numbers provided by these sequences are
used as the required random numbers (𝑅1 ...𝑅𝑁) during bit-stream
generation. These sequences can be pre-stored and read from mem-
ory or dynamically generated by using custom digital circuits. In
summary, if the to-be-encoded input is greater than the random
number a “1” is produced for the bit-stream. Otherwise, a “0” is
generated. Prior work in SC has used Sobol [16], Halton [2], and
VDC [11] sequences for LD bit-stream generation. Sobol-based LD
bit-streams, in particular, has shown promising performance and
fast-converging property compared to other sequences. Overall,
Sobol-based SC designs are more energy-efficient than the Halton-
based designs [16]. VDC is a generalized version of the Halton se-
quence. In this work, we reveal a new correlation property of the
VDC sequences and propose a lightweight hardware design for VDC
number generation.

3.1 Benchmark-I: SC Multiplication
We first evaluate the performance of the selected sequences for
2-input multiplication. Two input values (𝑥1 and 𝑥2) are converted
to bit-stream representation (𝑋1 and 𝑋2) by using the random
sequences, and the generated bit-streams are bit-wise ANDed to
produce an output bit-stream. The resulting bit-stream is converted
back to standard representation (by counting the number of 1s and
dividing by the length of the bit-stream) and compared with the
expected multiplication result to find the absolute error. Here, the
expected value is 𝑃𝑥1 × 𝑃𝑥2. For accurate multiplication, the input

Accurate and Energy-Efficient Stochastic Computing with Van Der Corput Sequences NANOARCH ’23, December 18–20, 2023, Dresden, Germany

bit-streams must be uncorrelated. In SC literature, Stochastic Cross-
Correlation (𝑆𝐶𝐶) is used to quantify the correlation between bit-
streams [1]. We exhaustively evaluated the multiplication accuracy
for all cartesian combinations of the 𝑥1 and 𝑥2 values where the
inputs are 8-bit precision values in the [0,1) interval (i.e., 0/256,
1/256,..., 255/256) with UPE encoding. The Mean Absolute Error
(MAE) of the multiplication results are presented in Fig. 1 (a). We
multiply the measured mean values by 100 and report them as
percentages. Two different sequences are selected for each case to
satisfy the uncorrelation requirement. For the Sobol sequence, the
first two Sobol sequences from the MATLAB built-in Sobol sequence
generator are used. For the Faure sequence, two sequences are
created using a VDC base-7. The Halton sequence involves two
dimensions generated using VDC bases of 11 and 13 with the MATLAB
built-in Halton function. For the Hammersley sequence, we use
the VDC sequence with bases 2 and 3 to generate the respective
sequences. The Latin Hypercube sequence was also generated
using its MATLAB built-in function. For the Weyl sequence, 𝜋 and
the Silver Ratio (i.e.

√
2 − 1) were chosen as the irrational numbers.

The first dimension of the VDC sequence is selected as base-2, while
base-𝑁 is selected for the other dimension depending on the length
of the bit-stream (𝑁).

As the length of the bit-streams increases, the accuracy of the re-
sults improves. Notably, the VDC-related sequences exhibit favorable
convergence rates. Specifically, after 210 operation cycles, the VDC
sequence surpasses the Niederreiter sequence and approaches
proximity to the Sobol sequence in terms of accuracy. For approxi-
mate results, the Sobol, Niederreiter, and VDC sequences emerge
as the top performers. As can be seen in Fig. 1 (a), compared to
Sobol sequence, VDC sequence shows a better convergence when
increasing the length of the bit-streams.

3.2 Benchmark-II: SC Addition
Next, we evaluate the accuracy of the SC Scaled-Addition operation.
We utilize a 2-to-1 MUX with two 8-bit precision input operands
similar to the multiplication operation. For this SC operation, the
two addends (the main inputs of the MUX) are correlated (𝑆𝐶𝐶 = 1),
while the MUX select input is uncorrelated to the addends [1]. To
meet this requirement, we use a random sequence to generate
the main input bit-streams and another sequence to generate the
bit-stream corresponding to the MUX select input. For two-input
addition, a bit-stream corresponding to 0.5 value is generated for the
select input. Fig. 1 (b) presents the accuracy results of SC addition
in terms of MAE for different bit-stream lengths for each sequence.
Accurate output (0.0% MAE) can be achieved with a bit-stream
length of 29 by using sequences such as Sobol, Niederreiter,
and VDC. After 24 bit-stream lengths, the VDC sequence achieves
the minimum MAE among the other sequences. By increasing the
bit-stream length (𝑁), we can see that the MAE tends to be zero.

3.3 Mid-Level Stream Correlation
Based on the accuracy analysis presented in Sections 3.1 and 3.2, we
can see that the standout sequences in terms ofMAE for 2-inputmul-
tiplication and scaled addition are VDC, Sobol, and Niederreiter
sequences. But this accuracy is guaranteed for single-stage computa-
tion. Still, how random sequences affect the mid-level computations

Y2
Module-2

Y1
Module-1

X1 X2 X3 X4
RNG RNG

Module-3

Level
1

Level
2

X1 X2 X3 X4

(a) (b)

c
o
r
r
.

u
n
c
o
r
r
.

y

X1 X2 X3 X4

(c) y

X1 X2 X3 X4

(d) y

c
o
r
r
.

u
n
c
o
r
r
. c
o
r
r
.

u
n
c
o
r
r
.

Figure 2: (a) Generic two-level circuit with no correlation control
in the mid-level (b) SC Design 1: Minimum of multiplications: 𝑃𝑦 =

𝑀𝑖𝑛 ((𝑃𝑋 1×𝑃𝑋 2), (𝑃𝑋 3×𝑃𝑋 4)) (c) SCDesign 2:Maximum ofmultipli-
cations:𝑃𝑦 = 𝑀𝑎𝑥 ((𝑃𝑋 1×𝑃𝑋 2), (𝑃𝑋 3×𝑃𝑋 4)) (d) SCDesign 3:Absolute
subtraction of multiplications: 𝑃𝑦 = | (𝑃𝑋 1 × 𝑃𝑋 2) − (𝑃𝑋 3 × 𝑃𝑋 4) |.

of cascaded logic systems remains unexplored in the literature. In
this regard, we provide additional analysis for the well-performing
Sobol and VDC sequences with relatively decent Neiderreiter se-
quences. Here, we also include the conventional RNG unit of the
SC systems, LFSR, in our evaluations.

Remind that for correct and accurate operation, some SC circuits
require uncorrelated bit-streams (e.g., multiplication using bit-wise
AND). In contrast, others require correlated inputs (e.g., minimum
using bit-wise AND). Satisfying the correlation requirements in the
intermediate stages of some cascaded computations is challenging.
While the correlation between the input bit-streams of the first
stage can be controlled in the bit-stream generation, the outputs of
the previous stages are processed for the intermediate stages. For
instance, consider the two-level circuit structure shown in Fig. 2 (a),
where the logic elements in the first layer operate on uncorrelated
bit-streams. In contrast, the circuit module in the second layer
requires correlated bit-streams. Determining the correlation level
between the outputs (𝑌1 and 𝑌2) is difficult when generating bit-
streams independently from different random sequences.

Prior works proposed two methods for correlation manipula-
tion of the bit-streams in the intermediate stages: 1) In-stream
correlation manipulation [3], and 2) SC-to-binary conversion and
regeneration of bit-streams. Both of these solutions take additional
hardware costs. Here, we provide a statistical analysis of the first
and second levels of cascaded circuits with pairs of AND, OR, and XOR
gates when using different random sequences. To this end,Module-1
and Module-2 in the design of Fig. 2 (a) are replaced with AND-AND,
OR-OR, XOR-XOR, AND-OR, AND-XOR, and OR-XOR gates, respectively,
with uncorrelated bit-stream inputs 𝑋1, 𝑋2, 𝑋3, and 𝑋4. We exam-
ine the correlation level between the output bit-streams 𝑌1 and 𝑌2.
Fig. 3 presents the 𝑆𝐶𝐶 results from over 105 test runs. We made
an interesting observation: the designs with Sobol, Niederreiter,
and LFSR-based sequences exhibit a correlation around zero, form-
ing a bell-shaped distribution for the 𝑌1 and 𝑌2 outputs. However,
we observed that the circuit constructed with the VDC sequences
generates positively correlated 𝑌1 and 𝑌2 outputs after the first-
level stage with AND-AND, OR-OR, and AND-OR.

NANOARCH ’23, December 18–20, 2023, Dresden, Germany Moghadam, et al.

(a)

(c) (d)

(b)

Figure 3: VDC (a), Sobol (b), Niederreiter, and (d) LFSR-based gener-
ator results of mid-level circuit output correlations (𝑆𝐶𝐶). Sobol uses
sequences 1, 2, 3, and 4. VDC uses bases 2, 4, 8, 16. Niederreiter uses
sequences 1, 2, 3, and 4. LFSR uses four different maximal lengths
LFSRs with polynomials: (i) 𝑥8 +𝑥6 +𝑥5 +𝑥4 + 1, (ii) 𝑥8 +𝑥4 +𝑥3 +𝑥2 + 1,
(iii) 𝑥8 +𝑥6 +𝑥3 +𝑥2 + 1, and (iv) 𝑥8 +𝑥6 +𝑥5 +𝑥1 + 1. Bit-stream length,
𝑁 , is 256.

Table 1: MAE (%) Comparison of the Circuits Shown in Fig. 2.

MAE (%) VDC S N LFSR

Min. Selector
𝑃𝑦 = 𝑀𝑖𝑛((𝑃𝑋1 × 𝑃𝑋2), (𝑃𝑋3 × 𝑃𝑋4)) 3.7 6.6 6.9 6.7

Max. Selector
𝑃𝑦 = 𝑀𝑎𝑥 ((𝑃𝑋1 × 𝑃𝑋2), (𝑃𝑋3 × 𝑃𝑋4)) 5.8 7.0 6.7 6.2

Absolute Subtractor
𝑃𝑦 = |(𝑃𝑋1 × 𝑃𝑋2)− (𝑃𝑋3 × 𝑃𝑋4)| 9.2 13.6 13.6 12.9

Based on our observations, the VDC sequences can be utilized in
different configurations of the cascaded circuits where the design
requires different levels of correlations. In this regard, the three
circuit topologies presented in Figs. 2 (b), (c), and (d) are anticipated
to yield fewer errors. In these circuit topologies, multiplication
is performed in the first layer on uncorrelated bit-streams, and
correlated bit-streams are required for the SC operations in the
second layer. Fig. 2 (b) presents a circuit that selects the minimum
of two multiplication results, Fig. 2 (c) presents a circuit that selects
the maximum of two multiplication results, and Figs. 2 (d) presents
a circuit that computes the absolute difference of the multiplication
results. Table 1 provides the MAE results of the circuits shown in
Fig. 2 based on 105 test runs. As it can be seen, the VDC sequences
achieve the best results (lower MAEs).

4 PROPOSED SEQUENCE GENERATOR
In this section, we propose a novel hardware design for generating
VDC sequences and evaluate the implementation cost compared to
prior LD sequence generators. Alaghi and Hayes [2] implemented
a Halton sequence generator consisting of mod counters, digit
converters, and an adder. Liu and Han [17] proposed a Sobol se-
quence generator by using some Direction Vectors (DVs). The DVs
(𝑉𝑥 (𝑥 = 0, 1, ..., 𝑁 − 1)) are generated using some primitive polyno-
mials and stored in a Direction Vector Array (DVA). By employing
different DVs, different Sobol sequences can be produced. At any

..

....
bnbn-1bn-2 b3b2b1b0

b3b2b1b0 bnbn-1bn-2

by-log2(B) grouping

Signif. inversion

b7b6b5b4b3b2b1b0

b0b1b2b3b4b5b6b7

b7b6b5b4b3b2b1b0

b1b0b3b2b5b4b7b6

by-log2(2)

grouping

Signif.

inversion

8
-
b
i
t

C
o
u
n
t
e
r

E
x
a
m
p
l
e
s

by-log2(4)

grouping

Signif.

inversion

G
e
n
e
r
a
l

R
u
l
e

b7b6b5b4b3b2b1b0

b2b1b0b5b4b30b7

b7b6b5b4b3b2b1b0

b3b2b1b0b7b6b5b4

by-log2(8)

grouping

Signif.

inversion

by-log2(16)

grouping

Signif.

inversion

(a)

(b)

.

Figure 4: Proposed VDC sequence generator. (a) The general rule to
hard-wiring bits for reversing operation (significance inversion), and
(b) Example for the 8-bit counter to generate base-2, base-4, base-8,
and base-16 (up to base-256 is possible) VDC sequences.

cycle, a priority encoder finds the least significant zero (LSZ) in
the output of a counter. Depending on the position of the LSZ, a
DV is selected from the DVA. A new Sobol number is recursively
generated by XORing the respective DV and the previous Sobol
number.

Prior work suggested a look-up table-based approach for VDC
sequence generation [10]. In this work, we propose a low-cost VDC
sequence generator with simple hardware implementation for effi-
cient and lightweight generation of the VDC sequences, specifically
for powers-of-2 bases. Our design involves using 𝑙𝑜𝑔2 (𝑁)-bit coun-
ters for bases of 2𝑁 , where 𝑁 is the bit-precision of the bit-stream.
To conduct a fair comparison with previous random generators and
assess the performance for various image processing applications,
we target bit-streams of up to 𝑁=256 (sufficient for representing
8-bit grayscale image data). Therefore, we require up to 256 random
numbers from the VDC sequence generator to generate each bit-
stream. The general algorithm to generate a base-B VDC sequence
consists of five steps:
① Generating integer numbers. ② Converting an integer number
to its base-B representation. ③ Reversing the base-B representation.
④ Converting the base-B representation to a binary number. ⑤

Converting the input number within the [0, 1) interval to corre-
sponding 8-bit binary number in the [0, 256) range, to be connected
to the binary comparator.

The complexity of the hardware design for this algorithm is
closely tied to the chosen base. We classify the hardware designs
into two categories depending on the base values.

4.1 Class-I: VDC Generator with Non-Powers-of-2
To implement this type of VDC sequence generator, we combine the
first two steps, ① and ②, by utilizing a base-B counter to generate
integer numbers in a specific base representation. For instance, a
Binary Coded Decimal (BCD) counter can be employed for a base-10
representation. Step ③ can be done by using a wiring technique
in the hardware design. Step ④ can be implemented by employing
adders and MUXs. This step is relatively complex and takes more

Accurate and Energy-Efficient Stochastic Computing with Van Der Corput Sequences NANOARCH ’23, December 18–20, 2023, Dresden, Germany

bnbn-1bn-2 b3b2b1b0 Reserving

log2(PAR)-bits PAR=4

by-log2(B) grouping

Signif. inversion..

....

b3b2b1b0 bnbn-1bn-2

(a)

.

bnbn-1bn-2 b3b2b1b0

P
a
r
a
l
l
e
l
i
z
a
t
i
o
n

R
u
l
e

Parallel Indexingb1b0=00 b1b0=01 b1b0=10 b1b0=11

6
-
b
i
t

C
o
u
n
t
e
r

E
x
a
m
p
l
e

(
P
A
R
=
4
,

B
=
1
6
)

b7b6b5b4b3b2b1b0by-log2(16)

grouping

Signif.

inversion(b)

b3b2b1b0b7b6b5b4

Parallel Indexing
b3b200b7b6b5b4
b3b201b7b6b5b4
b3b210b7b6b5b4
b3b211b7b6b5b4

Figure 5: Parallel VDC sequence generator. (a) The general rule to
assign parallel indexing bits, and (b) Base-16 example with 𝑃𝐴𝑅=4
concurrent generation.

hardware resources compared to the other steps. Step ⑤ can simply
be achieved by an 8-bit shift operation.

The Hammersley and Halton sequences extend the VDC sequence
to higher dimensions, representing each dimension in a different
prime base-B. Consequently, the hardware implementation of these
sequences falls under this particular type of sequence generator.
The need for counters with prime radices and base conversion
make the Halton sequence generator of [2] complex to implement
in hardware. The hardware limitations of the design of [2] motivate
us to explore the second class of VDC generators for the powers-of-2
bases.

4.2 Class-II: VDC Generator with Powers-of-2
To implement this type of sequence generator, a binary counter
with sufficient bits is utilized to represent the desired range of
integer numbers in step ①. To convert the value of a binary counter
to its base-B representation (step ②), we consider groups of 𝑙𝑜𝑔2 (𝐵)
bits, starting from the least significant bit. If the last group lacks
enough bits, some additional 0 bits are appended via zero padding
to ensure it forms a complete group. The reversing operation in
step ③ is done by hard-wiring each group of bits, treating them as
a single digit in base-B. The process of converting a base-B number
to its equivalent binary representation is the inverse of step ②. In
this process, each group or base-B digit is considered as equivalent
𝑙𝑜𝑔2 (𝐵) bits of binary representation and any exceeding bits beyond
the counter in step ① is discarded. For instance, consider a simple
8-bit precision VDC sequence generator for base-16. An Up-Counter
counts toward 256, and the resulting sequence is obtained by hard-
wiring the output of each T Flip-Flop (T-FF) in a reverse manner.
This is done to inverse the significance of each group, i.e., the least
significant group becomes the most significant group, and vice
versa. Fig. 4 (a) shows the overall idea behind the proposed VDC
sequence generator. After grouping each bit from the counter; the
inversion (via hard-wiring) reverses the bit significance, the new
binary output is ready for comparison in the SNG block. Fig. 4 (b)
illustrates examples of different bases. Assuming that the target
𝑁 is known in the SC system at the beginning of each operation,
𝐵 is constructed by 𝐵=𝑁 , and the grouping-inversion steps with
hard-wires are implemented in advance.

Our proposed Class-II VDC sequence generator can also operate
in parallel. Fig. 5 illustrates how more than one sequence element
of a VDC sequence (in any base) can be generated in parallel at any
time. Let us define 𝑃𝐴𝑅 as the number of sequence elements to be
generated in parallel. First, 𝑙𝑜𝑔2 (𝑃𝐴𝑅) bits are reserved at the least
significant positions. The remaining bits require a reduced precision
counter (e.g., 8→6 in Fig. 5). At any clock cycle, the reserved bits
are filled with 2(𝑙𝑜𝑔2 (𝑃𝐴𝑅)) possible logic values (parallel indexing).
Fig. 5 shows an example for 𝑃𝐴𝑅=4. In this example, each output
repeats four times to fill the reserved bits with 00, 01, 10, and 11.
The outputs at any cycle produce four consecutive VDC numbers.
Fig. 5 (b) illustrates another example of 𝑃𝐴𝑅=4 for VDC base-16.

5 SC IMAGE PROCESSING
In this section, we evaluate the performance of the VDC sequences
and the hardware efficiency of the proposed VDC sequence generator
in SC image processing case study. Prior work has used SC for
low-cost implementation of different computer vision tasks from
depth perception to interpolation [5, 6, 12, 21, 25]. We evaluate the
sequence generator in an image scaling application.

Interpolation refers to the process of estimating or calculating
values between two known data points. Linear interpolation is a
method used to estimate values between two known values based
on a linear relationship [8]. It assumes a straight line between the
available values and calculates intermediate values along that line.
In image processing, linear interpolation is used to estimate pixel
values between two neighbouring pixels. It is commonly employed
when performing operations such as rotation, translation, or affine
transformations on images. Bilinear interpolation is a specific case
of linear interpolation applied in two dimensions. Instead of esti-
mating values along a straight line, it estimates values within a
two-dimensional grid of pixels [9]. Bilinear interpolation consid-
ers the four nearest pixels to the target location and calculates a
weighted average based on their values. Theweights are determined
by the distances between the target location and the surrounding
pixels; thereby, an image scaling task can be performed [20].

Assume we have an original image, 𝐼 , with pixel values repre-
sented by a 2-D array. We want to estimate the pixel value at a non-
integer coordinate (x, y) in the image. The four surrounding pixels
to consider are (𝑥1, 𝑦1), (𝑥1, 𝑦2), (𝑥2, 𝑦1), and (𝑥2, 𝑦2), where (𝑥1, 𝑦1)
represents the pixel at the bottom-left corner of the target loca-
tion, and (𝑥2, 𝑦2) represents the pixel at the top-right corner. Let us
denote the pixel values as 𝐼 (x, y), 𝐼 (𝑥1, 𝑦1), 𝐼 (𝑥1, 𝑦2), 𝐼 (𝑥2, 𝑦1), and
𝐼 (𝑥2, 𝑦2). The bilinear interpolation formula to estimate the pixel
value 𝐼 (x, y) is as follows: 𝐼 (x, y) = (1−𝑢) (1−𝑣)×𝐼 (𝑥1, 𝑦1)+(1−𝑢)𝑣×
𝐼 (𝑥1, 𝑦2) +𝑢 (1−𝑣) × 𝐼 (𝑥2, 𝑦1) +𝑢𝑣 × 𝐼 (𝑥2, 𝑦2), where𝑢 = 𝑥 −𝑥1 (frac-
tional distance between 𝑥 and 𝑥1) and 𝑣 = 𝑦−𝑦1 (fractional distance
between𝑦 and𝑦1). The values (1−𝑢) (1−𝑣), (1−𝑢)𝑣 ,𝑢 (1−𝑣), and𝑢𝑣
are the weights assigned to each surrounding pixel. These weights
represent the contribution of each pixel to the interpolated value.
The interpolation formula can be compared to a multiplication-
based SC MUX structure [7], where neighbouring pixels are fed into
the main MUX inputs, and the location information is fed into the
selection ports. In this scenario, a 4-to-1 MUX can be expressed in
terms of probabilities as follows: 𝑃𝑰 (x,y) = (1 − 𝑃𝒖) (1 − 𝑃𝒗)𝑃𝑰 11
+(1 − 𝑃𝒖) (𝑃𝒗)𝑃𝑰 12 + (𝑃𝒖) (1 − 𝑃𝒗)𝑃𝑰 21 + (𝑃𝒖) (𝑃𝒗)𝑃𝑰 22 .

NANOARCH ’23, December 18–20, 2023, Dresden, Germany Moghadam, et al.

VDCOriginal
Image

S N LFSR

PSNR:47.88dB
SSIM: 0.9970

PSNR:46.49dB
SSIM: 0.9937

PSNR:47.77dB
SSIM: 0.9960

PSNR:45.80dB
SSIM: 0.9929

Scaling ×2

×2

Figure 6: Visual results of SC image scaling using different SNGs
(with VDC, Sobol, Niederreiter, or LFSR) and a 4-to-1 MUX.

Table 2: Hardware Cost Comparison of the Image Scaling process.

LD
Sequence

Area
(𝝁𝒎2)

Energy*

(𝒑𝑱)
Delay*

(𝒏𝒔)
Total Energy

(𝝁𝑱)

Sobol 2017 17.55 366 0.781
Parallel 4× Sobol 4548 16 91.5 0.713
Proposed VDC 715 5.60 317 0.250
Parallel 4× VDC 2040 2.40 71 0.107

* Energy and Delay for producing each output pixel. Bit-stream Length (𝑁) is 256.

Fig. 6 visually demonstrates the results of 2× image scaling with
an SC circuit composed of SNGs for data conversion and a 4-to-1
MUX unit. We evaluated the SC circuit for the cases of using the VDC,
Sobol, Niederreiter, and LFSR random sequences in the SNG
units. The values shown in Fig. 6 exhibit the superior performance
of the VDC sequences. Furthermore, we evaluate the performance
and energy consumption in 45nm CMOS technology when process-
ing the Pepper image (107 × 104 image size) for the two cases of
VDC and Sobol. The results are reported in Table 2. As reported,
the non-parallel and the 4× parallel designs of the VDC-based imple-
mentation save area by 64% and 55%, energy by 67% and 85%, and
delay by 13% and 22% compared to the non-parallel and 4× parallel
Sobol-based implementation, respectively.

6 CONCLUSIONS
This study explores new design possibilities for SC by analyzing
some well-known random sequences in the literature. As a promis-
ing random sequence for the SNG unit of SC systems, we evaluated
the performance of the Van der Corput (VDC) sequences, revealing
their interesting correlation properties. We proposed a lightweight
hardware design for VDC sequence generation. The proposed gener-
ator provides a higher hardware efficiency compared to the SOTA
LD sequence generators. We evaluated the performance of the
VDC-based SNGs in an image scaling case study. Our performance
evaluation and hardware cost comparison show comparable or bet-
ter numbers compared to the SOTA. Our finding opens possibilities
for incorporating the VDC sequences in other emerging paradigms
that require orthogonal vectors, such as hyperdimensional comput-
ing. The VDC sequences can be utilized to address the computational
needs and improve the performance of such paradigms. We leave
studying this aspect for our future work.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foundation
(NSF) grant #2019511, the Louisiana Board of Regents Support

Fund #LEQSF(2020-23)-RD-A-26, the Louisiana Space & Sea Grant
Opportunities (LaSSO) award #NA22OAR4170105, and generous
gifts from Cisco, Xilinx, and Nvidia.

REFERENCES
[1] Armin Alaghi and John P. Hayes. 2013. Exploiting correlation in stochastic circuit

design. In ICCD. Asheville, NC, USA, 39–46.
[2] Armin Alaghi and John P. Hayes. 2014. Fast and accurate computation using

stochastic circuits. In 2014 DATE. 1–4. https://doi.org/10.7873/DATE.2014.089
[3] Sina Asadi, M. Hassan Najafi, and Mohsen Imani. 2021. CORLD: In-Stream

Correlation Manipulation for Low-Discrepancy Stochastic Computing. In 2021
ICCAD. 1–9. https://doi.org/10.1109/ICCAD51958.2021.9643450

[4] Sercan Aygun, Mehran Shoushtari Moghadam, M. Hassan Najafi, and Mohsen
Imani. 2023. Learning from Hypervectors: A Survey on Hypervector Encoding.
arXiv:2308.00685 [cs.LG]

[5] Sercan Aygun, M. Hassan Najafi, Mohsen Imani, and Ece Olcay Gunes. 2023.
Agile Simulation of Stochastic Computing Image Processing with Contingency
Tables. IEEE TCAD (2023). https://doi.org/10.1109/TCAD.2023.3243136

[6] Sercan Aygün, Mustafa Altun, and Ece Olcay Güneş. 2017. Sobel filter operation
in image processing via stochastic arithmetic-logic unit design. In 2017 IEEE SIU.
https://doi.org/10.1109/SIU.2017.7960479

[7] Timothy J. Baker and John P. Hayes. 2022. CeMux: Maximizing the Accuracy of
Stochastic Mux Adders and an Application to Filter Design. ACM TDAES 27, 3,
Article 27 (jan 2022), 26 pages. https://doi.org/10.1145/3491213

[8] T. Blu, P. Thevenaz, and M. Unser. 2004. Linear interpolation revitalized. IEEE
Transactions on Image Processing 13, 5 (2004), 710–719. https://doi.org/10.1109/
TIP.2004.826093

[9] K.T. Gribbon and D.G. Bailey. 2004. A novel approach to real-time bilinear
interpolation. In DELTA 2004. 126–131. https://doi.org/10.1109/DELTA.2004.
10055

[10] Vincent T. Lee. 2019. Towards practical stochastic computing architectures for
emerging applications. Ph. D. Dissertation. University of Washington, Seattle,
USA. http://hdl.handle.net/1773/43658

[11] Vincent T. Lee, Armin Alaghi, Rajesh Pamula, Visvesh S. Sathe, Luis Ceze, and
Mark Oskin. 2018. Architecture Considerations for Stochastic Computing Ac-
celerators. IEEE TCAD 37, 11 (2018), 2277–2289. https://doi.org/10.1109/TCAD.
2018.2858338

[12] Peng Li, David J. Lilja, Weikang Qian, Kia Bazargan, and Marc D. Riedel. 2014.
Computation on Stochastic Bit Streams Digital Image Processing Case Studies.
IEEE TVLSI 22, 3 (2014).

[13] Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jeffrey Draper,
Bo Yuan, Jian Tang, Qinru Qiu, and Yanzhi Wang. 2019. HEIF: Highly efficient
stochastic computing-based inference framework for deep neural networks. IEEE
TCAD 38, 8 (2019), 1543–1556. https://doi.org/10.1109/TCAD.2018.2852752

[14] C. Devon Lin and Boxin Tang. 2022. Latin Hypercubes and Space-filling Designs.
arXiv:2203.06334 [stat.ME]

[15] Zhendong Lin, Guangjun Xie, Wenbing Xu, Jie Han, and Yongqiang Zhang. 2021.
Accelerating Stochastic Computing Using Deterministic Halton Sequences. IEEE
TCAS II 68, 10 (2021), 3351–3355. https://doi.org/10.1109/TCSII.2021.3073680

[16] Siting Liu and Jie Han. 2017. Energy efficient stochastic computing with Sobol
sequences. In 2017 DATE. 650–653. https://doi.org/10.23919/DATE.2017.7927069

[17] S. Liu and J. Han. 2018. Toward energy-efficient stochastic circuits using parallel
sobol sequences. IEEE TVLSI 26, 7 (2018).

[18] Luka Marohnic et al. 2012. Plastic Number: Construction and Applications.
[19] M. Hassan Najafi, Devon Jenson, David J. Lilja, and Marc D. Riedel. 2019. Per-

forming Stochastic Computation Deterministically. IEEE TVLSI 27, 12 (2019),
2925–2938. https://doi.org/10.1109/TVLSI.2019.2929354

[20] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.
1995. Numerical Recipes in C: The Art of Scientific Computing. Camb. Univ. Press,
New York, NY, USA.

[21] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja. 2011. An Architecture
for Fault-Tolerant Computation with Stochastic Logic. Computers, IEEE Trans. on
60, 1 (Jan 2011), 93–105. https://doi.org/10.1109/TC.2010.202

[22] Mohsen Riahi Alam, M. Hassan Najafi, and Nima TaheriNejad. 2021. Exact
Stochastic Computing Multiplication in Memristive Memory. IEEE Design & Test
38, 6 (2021), 36–43. https://doi.org/10.1109/MDAT.2021.3051296

[23] Paishun Ting and John P. Hayes. 2017. Eliminating a hidden error source in
stochastic circuits. In 2017 IEEE DFT. 1–6. https://doi.org/10.1109/DFT.2017.
8244436

[24] J. G. van der Corput. 1935. Verteilungsfunktionen. I. Proc. Akad. Wet. Amsterdam
38 (1935), 813–821.

[25] Ran Wang, Jie Han, Bruce F. Cockburn, and Duncan G. Elliott. 2016. Stochastic
Circuit Design and Performance Evaluation of Vector Quantization for Different
Error Measures. IEEE TVLSI 24, 10 (2016), 3169–3183. https://doi.org/10.1109/
TVLSI.2016.2535313

https://doi.org/10.7873/DATE.2014.089
https://doi.org/10.1109/ICCAD51958.2021.9643450
https://arxiv.org/abs/2308.00685
https://doi.org/10.1109/TCAD.2023.3243136
https://doi.org/10.1109/SIU.2017.7960479
https://doi.org/10.1145/3491213
https://doi.org/10.1109/TIP.2004.826093
https://doi.org/10.1109/TIP.2004.826093
https://doi.org/10.1109/DELTA.2004.10055
https://doi.org/10.1109/DELTA.2004.10055
http://hdl.handle.net/1773/43658
https://doi.org/10.1109/TCAD.2018.2858338
https://doi.org/10.1109/TCAD.2018.2858338
https://doi.org/10.1109/TCAD.2018.2852752
https://arxiv.org/abs/2203.06334
https://doi.org/10.1109/TCSII.2021.3073680
https://doi.org/10.23919/DATE.2017.7927069
https://doi.org/10.1109/TVLSI.2019.2929354
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.1109/MDAT.2021.3051296
https://doi.org/10.1109/DFT.2017.8244436
https://doi.org/10.1109/DFT.2017.8244436
https://doi.org/10.1109/TVLSI.2016.2535313
https://doi.org/10.1109/TVLSI.2016.2535313

	Abstract
	1 Introduction
	2 Background
	2.1 Random Sequences
	2.2 Stochastic Computing (SC)

	3 Design Space Exploration
	3.1 Benchmark-I: SC Multiplication
	3.2 Benchmark-II: SC Addition
	3.3 Mid-Level Stream Correlation

	4 Proposed Sequence Generator
	4.1 Class-I: VDC Generator with Non-Powers-of-2
	4.2 Class-II: VDC Generator with Powers-of-2

	5 SC Image Processing
	6 Conclusions
	Acknowledgments
	References

