
An IMPLY-based Semi-Serial
Approximate In-Memristor Adder

Fabian Seiler∗ Nima TaheriNejad+∗
∗Technische Universität Wien (TU Wien), Austria, +Heidelberg University, Germany

fabian.seiler@student.tuwien.ac.at, nima.taherinejad@ziti.uni-heidelberg.de

Abstract—To alleviate the Von Neumann bottleneck, new
technologies and computing paradigms have been a hot topic
in research and development in recent years. Memristors offer
new innovative possibilities from technological and computational
points of view. They can store data well and are suitable for in
In-Memory Computation (IMC) since they are able to perform
logical operations in memory. Another emerging computing
paradigm to reduce computing time and area consumption is
approximate computing, which is used in error-resistant appli-
cations. Here, we propose a novel approximated full adder hat
uses the stateful logic Material Implication (IMPLY) in a semi-
serial structure. We embedd this full adder in a Ripple Carry
Adder (RCA) that we then evaluate on the circuit-level. The
error metrics were evaluated and compared to State-of-the-Art
(SoA) IMPLY-based adders. At 8-bit our approach requires up
to 29% fewer steps and up to 34% less energy compared to the
exact algorithm, while the Normalized Median Error Distance
(NMED) is less than 0.01 for most scenarios. The proposed adder
is applied in image processing and the respective quality metrics
are calculated. All of the tested approximation degrees create a
satisfactory result since the Peak Signal-to-Noise Ratio (PSNR)
is over 30 dB. Thanks to the proposed approach, we save more
than 13.5mJ of energy in gray-scale filtering of a 684×912 8-bit
image compared to the exact calculations.

I. INTRODUCTION

There is currently a stagnation in the improvement of com-
puter performance caused by problems such as the slowdown
of Moore’s Law [1] or the von Neumann bottleneck. As a
consequence of it new emerging technologies and paradigms,
like the memristor technology, in-memory computing, and ap-
proximate computation, arose. For approximated computation,
an inaccuracy in the calculation is accepted in order to improve
speed, area, and energy consumption [1]–[3]. Approximated
computation is used in error-resistant applications such as
image and video processing. Other application areas such as
machine learning, pattern recognition, communication, data
mining and robotics are also relevant [1], [4]. With In-Memory
Computation (IMC) it is possible to bypass the von Neumann’s
bottleneck since the computations can be performed directly
in memory. The memristor is ideally suited for IMC, since it
can store data through its resistive state [5]–[7] and logical
operations can be performed with it [8], [9]. Among various
memristive logics, the stateful logic Material Implication (IM-
PLY) is compatible with the crossbar array and is ideal for
IMC [8], [10].

In this work, we present a novel approximated addition
algorithm that is based on the semi-serial topology [11].
With this approach, we were able to drastically reduce energy
consumption and the number of computational steps required
in comparison to the exact algorithm.

In Section II, we review the necessary background and the
current State-of-the-Art (SoA). A detailed explanation of the
algorithm and the design methodology can be found in Sec-
tion III. In Section IV, we simulated the presented algorithm
on circuit-level, verified its functionality and performed an
error analysis using standard metrics. A comparison with SoA
full adders is done in Section V. We simulated three image
processing applications and did a respective quality check with
the presented full adders in Section VI. In Section VII, we
conclude the paper and discuss future work.

II. BACKGROUND

A. Memristor and IMPLY

A memristor is a two-terminal nonvolatile memory that
stores its logical values as electrical resistance. The minimum
(Ron) and maximum (Roff ) resistance values of the memristor
can be reached by the applied voltage and the direction of
current flow [12]. One of the conventions is to assume the
minimum resistance value is equivalent to a logical ‘1’ and
the maximum resistance value equal to a logical ‘0’ [13]–[15].
Advantages of the memristor include low power consumption,
as well as low write-time and small dimension of the device
[16]–[18]. There are plenty of ways to perform calculations
with memristors [19]–[21]. Among various logics [17], [22]–
[24], in this work, we only use IMPLY, which established
itself as the first stateful logic and was proposed by Hewlett
Packard (HP) [8], [25], [26]. The basic structure to perform
IMPLY operations is shown in Figure 1, where the resistive
states of the input memristors a and b represent the logical
inputs. The IMPLY operation is represented by a → b which
corresponds to the truth table in Table I and stores the result
in the b-memristor, overwriting the current state. For more
information regarding the details of IMPLY logic, we refer
the reader to [8], [16], [25], [26].

Full adders that are based on IMPLY can be divided
into serial [8], [9], [13], parallel [13], [16], [25] and hybrid
structures that combine serial and parallel [14], [27]. The
serial structure consists of only one row (or column), which
simplifies the design at the cost of its calculation speed. The
parallel structure can compute different steps in parallel rows,979-8-3503-3757-0/23/$31.00 ©2023 IEEE



Fig. 1: Structure of an IMPLY gate [8]

TABLE I: Truth Table of IMPLY logic [8]

a b b
′
= a → b

0 0 1
0 1 1
1 0 0
1 1 1

which can be connected through switches. This methodology
enables rapid computations at the expense of increased spatial
and energy requirements. Hybrid structures try to combine
the advantages of parallel and serial topologies in an efficient
manner. The semi-serial structure that was utilized in this work
is a hybrid structure that achieves a well-balanced trade-off
between energy consumption, area usage, and speed [11], [14].
This topology is displayed in Figure 2 and consists of two
parallel rows with input memristors, which both can connect
to four work memristors, cin and c-memristor via switches.
With the two separate sections, a parallelization of operations
is possible. This structure only requires 2n + 6 memristors
and 12 Complementary Metal-Oxide Semiconductor (CMOS)-
switches while it is able to compute an n-bit addition in only
10n+ 2 steps.

B. Approximate Computing and Quality Metrics

With approximate computation, we improve factors such
as energy consumption, area usage, and speed but decrease
accuracy as a trade-off. To evaluate the degree of inaccuracy,
error metrics were used in SoA publications like [28]–[34].
The most important and used metrics in this work are Er-
ror Distance (ED), Error Rate (ER), Mean Error Distance
(MED), Normalized Median Error Distance (NMED), and
Median Relative Error Distance (MRED). There exist many
variants of approximated full adders in different technologies
[3], [31], [32], [35], [36]. Approximated adders based on
memristors have been proposed in [37], [38] where they used
the Memristor Ratioed Logic (MRL) [24]. Approximated full

Fig. 2: IMPLY based semi-serial n-bit adder structure [14]

adders that utilized IMPLY have also been presented only very
recently in [15], [34], where new approximate algorithms for
the serial structure were proposed. Here, we propose a novel
new algorithm for an approximated full adder in the semi-
serial structure and compare our results with the SoA.

III. PROPOSED APPROXIMATE FULL ADDER

Since this work is based on IMPLY logic, only IMPLY
and FALSE operations are basic operations used. These two
operations form a complete logic set, and we are able to
emulate any Boolean logic with them [13], [39]. As we are
working in the semi-serial structure from [11], we leveraged its
inherent parallelization capability. We developed the approxi-
mation in this work by introducing an error in the truth table
of Cout in the case [a,b,c] = “100”. We additionally utilized
the similarity Sum ≈ Cout, to only require one additional step
to calculate Sum. With this approximation, we are creating
three erroneous cases in the truth table of Sum. This leads
to Cout having an ER of 1

8 and Sum having an ER of 3
8 .

The full truth table can be found in Table III. We determined
the conjunctive normal form and found an efficient emulation
of the boolean functions with IMPLY operations. The logical
functions that we used are

Cout = bc+ a = a → (b → c) (1)

Sum = bc+ a = a → (b → c) (2)

As the Boolean operations NOT, OR and NAND can be
emulated very efficiently, we used only those. As both OR
and NAND require one negated input it is possible to combine
them to save an additional step. To be able to read out the result
of the calculation, we used the a-memristor to save Sum.
So that the algorithm can be used in a Ripple Carry Adder
(RCA) configuration, the algorithm was designed so that the
Cout is stored in the c-memristor. The complete procedure of
the proposed algorithm is listed in Table II. The step colored
in blue is only executed once before the first iteration and
resets the work memristors. This reset can be parallelized
in repetitions of the algorithm. In the following steps, we
are working in two sections in parallel to fully utilize the
parallelization potential of the semi-serial structure. We first
saved the inversions of the first input bit and the carry-in in
the work memristors. We did that to emulate b NAND c and
additionally free the c-memristor in the second step. In steps
3 and 4, we calculate Cout and store it in the c-memristor.
Additionally, we are resetting the a-memristor. In the last
step, we store the result of Sum in the a-memristor and reset
the work memristors for the next iteration. This approximated
algorithm requires 5n+1 steps and 2n+3 memristors for an
n-bit calculation.

IV. CIRCUIT-LEVEL SIMULATIONS AND ERROR METRICS

A. Simulation setup

We simulated the proposed approximated full adder in LT-
SPICE to confirm and verify the functionality of the algorithm.



TABLE II: Exact Procedure of the proposed approximated full
adder algorithm, with w1 and w2 as work memristors

Steps Section 1 Section 2 Equivalent Logic
- w1 = w2 = 0 False(w1, w2)

1 w
′
2 = a → w2 w

′
1 = c → w1 w2 = a, w1 = c

2 c = 0 w
′′
1 = b → w

′
1 False(c), w1 = b → c

3 c
′
= w

′′
1 → c c = b → c

4 a = 0 c
′′
= w

′
2 → c

′
False(a), c = a → (b → c) = Cout

5 a
′
= c

′′ → a w1 = w2 = 0 a = a → (b → c) = Sum, False(w1, w2)

TABLE III: The truth table of the exact and the proposed
approximated full adder

a b c Exact Sum Exact Cout Ax Sum Ax Cout
0 0 0 0 0 1 0
0 0 1 1 0 1 0
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 1 0 0 1
1 0 1 0 1 0 1
1 1 0 0 1 0 1
1 1 1 1 1 0 1

TABLE IV: VTEAM setup parameter

Parameter voff von αoff αon Roff Ron

Value 0.7V -10mV 3 3 1 MΩ 10 kΩ
kon koff woff won wC aoff aon

-0.5 nm/s 1cm/s 0 nm 3 nm 107 pm 3 nm 0 nm

TABLE V: IMPLY logic parameter

Parameter VSET VRESET VCOND RG tpulse
Value 1 V -1 V 900 mV 40 kΩ 30 µs

We used the Voltage-controlled ThrEshold Adaptive Memris-
tor (VTEAM) model [40] implemented in SPICE [11], [41].
The model parameters we selected are listed in Table IV. We
note that these parameters are the result of fitting the model to
discrete memristors. This leads to slower operations and larger
power consumption compared to integrated devices, similar
to how discrete CMOS devices compare to their integrated
counterparts. The specific parameters of the IMPLY logic
that we used in this simulation are listed in Table V. The
parameters were chosen this way because the same setup
was already used in [13], [16], [34], allowing for a good
comparison to existing approximated and exact full adder.

B. Simulation results

We simulated the algorithm for the approximated full adder
that we presented in Section III with the parameters described
above in the semi-serial topology from [11] on circuit-level.
We tested all 8 possible input combinations of “AinBinCin”
for functionality. A correct function is given if Sum and Cout

at the end of the respective algorithm results in the same
solution as described in the corresponding truth table. Each
step of the algorithm takes 30µs. Cout is calculated and stored
in the c-memristor in the fourth step, which corresponds to
the period between 120µs − 150µs. We used the fifth step
at 150µs − 180µs to calculate Sum and store it in the a-
memristor. All input combinations produced the expected out-
put. The output waveform of each memristor of the presented

Fig. 3: Simulation of the proposed algorithm with “Ain-
BinCin”=“110”

Fig. 4: Simulation of the proposed algorithm with “Ain-
BinCin”=“111”, showing an approximated (erroneous by de-
sign) output

algorithm was plotted at cases “AinBinCin”=“110” and “111”
to show a correct calculation of Sum and Cout in the first case
(Figure 3) and a calculation showing an error due to our chosen
approximation (Figure 4). To ensure correct functionality of
the full adder on circuit-level with multiple bits, we tested
the algorithm in a 4-bit RCA. For this, we let the lowest two
bits use the proposed algorithm and the higher two bits use
the exact full adder algorithm for a semi-serial topology from
[11]. Five random pairs of 4-bit numbers were added by our
LT-SPICE simulation and the results agree with our theoretical
calculations.

We calculated the energy consumption of the proposed
algorithm with the LT-SPICE energy consumption tool. We
simulated all possible input combinations a full adder could
take on. The result is defined as the average value of all
simulations. Since the first step of the algorithms is performed
only once before the first execution, it is not considered in
the energy consumption that is required per bit, because it is
negligible with respect to several bits of computation. The first
step consumes 55.5pJ . The complete energy consumption of
a RCA that includes the proposed algorithm is

Energy(n, k) = 1.6678k + 3.8435(n− k) + 0.865, (3)

where k represents the number of approximated adders and n
the total number of bits.

C. Error analysis

To evaluate the erroneous behavior of the approximated full
adder we presented in this work, we use the error metrics



TABLE VI: Error Metrics of the algorithm in a 8/16/32-bit
RCA with different approximation degrees

Approximated
Algorithm MED NMED MRED

8-bit RCA
Ax FA: 1/8 0.5 0.0010 0.0027
Ax FA: 2/8 1.1250 0.0022 0.0062
Ax FA: 3/8 2.2500 0.0044 0.0125
Ax FA: 4/8 4.4688 0.0087 0.0252
Ax FA: 5/8 8.9121 0.0174 0.0514
Ax FA: 8/8 203.38 0.9159 0.3980

16-bit RCA
Ax FA: 2/16 1.1469 0.0000087 0.0000024
Ax FA: 4/16 4.4258 0.000033 0.000098
Ax FA: 6/16 18.0559 0.00014 0.00038
Ax FA: 8/16 71.0475 0.00054 0.0015
Ax FA: 10/16 285.9959 0.0022 0.0062
Ax FA: 16/16 51626 0.8665 0.3939

32-bit RCA
Ax FA: 4/32 4.3603 < e-09 < e-08
Ax FA: 8/32 71.8584 < e-08 < e-07
Ax FA: 16/32 18132 0.0000021 0.0000061
Ax FA: 24/32 4761400 0.000554 0.0015
Ax FA: 32/32 3.527e+09 0.8776 0.4105

MED, NMED, and MRED to efficiently evaluate the accuracy
of the adder. A more detailed information can be found in
[28]–[33]. We performed the following simulations in MAT-
LAB with Cin=‘0’. We created a behavioral-level model of the
RCA, which can model variable approximation degree and the
number of bits.

1) Error metrics for 8-bit RCA: For the 8-bit case, we
applied all input combinations to the RCAs with different
approximation degrees. With this setup the MED, NMED
and MRED were determined. We used the approximated full
adders for the Least-Significant Bits (LSBs) of the RCA. The
cases with one to five approximated full adders were recorded
in Table VI. We observed that the MED and thus also the
NMED roughly double per included approximated full adder.

2) Error metrics for 16-bit and 32-bit RCA: In the analysis
of 16-bit and 32-bit RCA, we used one million randomly
generated numbers as input variables. We did this because
for a complete evaluation 22n input combinations would
be required, which is computationally intensive. We again
simulated a RCA with different approximation degrees and
determined the error metrics which are displayed in Table VI.
The results of the 16- and 32-bit simulations yield drastically
reduced NMED and MRED values with the same percentage
of approximated adders, if compared to the 8-bit simulation.
This indicates that an approximated full adder generates a
substantially higher quality output with a higher number of
bits. Since only one million input combinations were validated,
the results are subject to stochastic deviations. However, the
current numbers should be a good representative since the one
million input combinations were selected at random.

V. CIRCUIT-LEVEL COMPARISON

A. Comparison with exact full adders

1) Energy consumption: We recreated the energy con-
sumption simulation of the exact algorithm in the semi-serial
topology [11] with the IMPLY specific values from Table V
to allow for a fair comparison. We measured that 3.8435nJ is
required on average per step and the extra steps together used
0.8053nJ . If we compare the result to the exact full adder in
the semi-serial structure [11], the presented algorithm is up to
34% more efficient for an 8-bit configuration (excluding any
steps that are only executed once).

2) Number of steps: Another important circuit-level metric
is the number of necessary steps per bit. As shown in Sec-
tion III our algorithm requires 5 steps per bit and a step to
reset the work memristors. The exact semi-serial algorithm
from [11] needs 10n+2 steps. If we combine both algorithms
in a RCA with k approximated and n− k exact full adder the
number of steps for n-bit is calculated through

Steps(n, k) = 5k + 10(n− k) + 3. (4)

In comparison at 8-bit, 5%− 29% fewer steps are required
by our proposed algorithm, depending on the approximation
degree.

3) Area usage: The third important comparison point on
circuit-level is the area usage, which is determined by the
number of required memristors and switches. The proposed
algorithm uses 2n+ 3 memristors for n-bit as well as 12 ad-
ditional CMOS-switches. Since the RCA only partly consists
of approximated adders, the area usage is based on the exact
semi-serial algorithm from [11]. It follows that the RCA needs
2n+ 6 memristors and 12 switches.

B. Comparison with approximate full adders

To give a comparison to the related SoA, we compare the
presented algorithms to the approximate full adders from [34],
since they also use IMPLY logic. We did not compare to
other approximate adders because the disparity would be too
significant to make a meaningful comparison. That is, they
are based on a different type of in-/near-memory computing
paradigm and logic, which would render the comparison un-
fair. We compared the algorithms at an approximation degree
of 5/8.

1) Energy consumption: Compared to the approximated
full adders from [34], the energy consumption of our algorithm
is worse by at least 52%. This is due to the different topologies
used. Both our approach and the SIAFA adders were able to
reduce the energy consumption by half if we compare it to the
respective exact algorithm for the given structure used.

2) Number of steps: The algorithm presented in this work
excels in speed. The algorithm we presented requires 45−50%
less steps than the SIAFA algorithms. This is a significant
difference, considering that both are approximated algorithms.



TABLE VII: Circuit-Level Comparison to the SoA full adder

Algorithm
Energy

consumption (nJ) No. of steps No. of
memristors

No. of
switches

n, k n=8-bit, k=5 n, k n=8-bit, k=5 n n=8-bit n
Serial Exact [13] 1.8531n 14.8248 22n 176 2n+3 19 0

Semi-Serial Exact [11] 3.8435n + 0.81 31.558 10n + 2 82 2n+6 22 12
SIAFA 1,3 [34] 0.6444k + 1.8531(n-k) 8.7813 8k + 22(n-k) 106 2n+3 19 0
SIAFA 2 [34] 0.8049k + 1.8531(n-k) 9.5838 8k + 22(n-k) 116 2n+3 19 0
SIAFA 4 [34] 0.6431k + 1.8531(n-k) 8.7748 8k + 22(n-k) 106 2n+3 19 0

Proposed 1.6678k + 3.8435(n-k) + 0.865 20.7345 5k + 10(n-k) + 3 58 2n+6 22 12

3) Area usage: Both algorithms number of memristors are
in the order of 2n memristors for n-bit adders (ours needs
3 more memristors). The algorithm we presented requires an
additional 12 CMOS switches, while the algorithms from [34]
do not.

4) Error metrics: The presented algorithm has the same ER
and has almost the same NMED and MRED as SIAFA1 and
SIAFA3, which exhibit the best accuracy out of the algorithms
presented in [34]. In comparison to SIAFA2 and SIAFA4, the
proposed full adder demonstrates a superior NMED, which
is lower by 34% and 16% at an approximation degree of 5/8.
The same trend applies to the 16-bit and 32-bit error metrics. It
should be noted that a stochastic deviation is expected in these
simulations, which was explained in more detail in Section IV.

VI. APPLICATION IN IMAGE PROCESSING

Image processing is an error-resistant application that is
used in many different aspects of our lives such as medicine,
industry, automation, robotics, and media [36]. We simulated
the presented algorithm in an RCA structure using MATLAB.
We assessed various levels of approximation and determined
the quality metrics Peak Signal-to-Noise Ratio (PSNR) and
Mean Structural Similarity Index Measure (MSSIM) [42]. The
quality metrics of each application are presented in Table VIII.

A. Image addition

Image addition is one of the most basic applications of
image processing and is used for masking and enhancing [31].
To simulate this, we added each pixel of the first image to
the corresponding pixel of the second image and halved the
result. We added two 8-bit standard images using a RCA with
varying approximation degrees. With one to five approximated
full adders the PSNR threshold of 30dB was surpassed, which
demonstrates the acceptable image quality when using these
adders. With six or more approximated adders it could not be
reached. The resulting images with different approximation
degrees are shown in Figure 5.

B. Image subtraction

We carried out the image subtraction, by inverting the
subtracted image and representing it as 2s complement. Oth-
erwise, the procedure is the same as with image addition.
Image subtraction is often used for motion detection, robotics,
medicine, and surveillance systems [36]. We took two 8-
bit images from the image database of [43] as an example.
The PSNR value was acceptable for up to five out of eight

Fig. 5: Results of image addition with different approximation
degrees: (a) rice, (b) cameraman, (c) exact image addition, (d)
one ax adder, (e) three ax adder, (f) five ax adder

TABLE VIII: Quality metrics of image processing applications

Approximated
Algorithm

Image
addition

Image
subtraction

Gray-scale
filter

PSNR
(dB) MSSIM PSNR

(dB) MSSIM PSNR
(dB) MSSIM

Proposed (1/8 Ax FA) 51.12 0.9976 58.76 0.9974 52.90 0.9984
Proposed (2/8 Ax FA) 47.17 0.9941 51.80 0.9909 49.93 0.9970
Proposed (3/8 Ax FA) 43.31 0.9860 45.26 0.9520 45.49 0.9910
Proposed (4/8 Ax FA) 38.31 0.9603 39.45 0.8602 40.22 0.9693
Proposed (5/8 Ax FA) 32.93 0.8934 33.74 0.7183 34.05 0.9003

approximated adders, while the MSSIM deteriorates rapidly
with increased approximation. The results with one, three, and
five approximated full adders are presented in Figure 6.

C. Gray-scale filter

The gray-scale filter transforms a colored RGB image into
an image with only gray-scale pixels. To accomplish this the
individual color values are added together in two iterations
and the result is divided by three. This was simulated with
different approximation degrees on a standard image. This
simulation reaches the PSNR threshold of 30dB with five or
fewer approximated adders in an 8-bit RCA. The resulting
images with different approximation degrees are shown in
Figure 7.



TABLE IX: Application level comparison to exact semi-serial adder [11]

Algorithm Image addition (256x256 8-bit Image) Image subtraction (512x512 8-bit Image) Gray-scale filter (684x912 8-bit Image)
Energy/

pixel (nJ)
Total

Energy (mJ)
Steps/
pixel

Total Steps
(million)

Energy/
pixel (nJ)

Total
Energy (mJ)

Steps/
pixel

Total Steps
(million)

Energy/
pixel (nJ)

Total
Energy (mJ)

Steps/
pixel

Total Steps
(million)

Semi-Serial Exact [11] 31.558 2.068 82 5.374 31.558 8.273 82 21.496 63.116 39.372 164 102.305
Proposed (1/8 Ax FA) 29.434 1.929 78 5.112 29.434 7.716 78 20.447 58.875 36.727 156 97.314
Proposed (5/8 Ax FA) 20.735 1.359 58 3.801 20.735 5.436 58 15.204 41.469 25.869 116 72.362

Fig. 6: Results of image subtraction with different approxima-
tion degrees: (a) first image [43], (b) second image [43], (c)
exact image subtraction, (d) one ax adder, (e) three ax adder,
(f) five ax adder

Fig. 7: Results of the gray-scale filter with different approxi-
mation degrees: (a) standard image, (b) exact gray-scale filter,
(c) one ax adder, (d) three ax adder, (e) five ax adder

D. Application-level comparison

1) Using Exact Semi-Serial Adder [11]: To effectively
compare our algorithm with the exact approach [11] in image
processing we looked at the difference per pixel for each
application. We compared the RCA structures with one and
five out of eight approximated adders with the exact 8-bit
RCA. The approximation degrees in between behave linearly
and so were left out. If we sum up the required energy and
steps per pixel, we get the total energy consumption and

number of steps per image processing application. With our
approach, 9% − 37% less energy and 5% − 29% fewer steps
are required for the image processing applications while the
accuracy is still acceptable as shown in Table VIII. We were
able to save 13.5mJ of energy and about 30 million steps for a
gray-scale filter of a 684x912 8-bit image. An overview of the
improvements for image addition and subtraction is presented
in Table IX.

2) Using Approximated Adder from [34]: As explained
in Section V, since the topology from [34] differs from
the semi-serial structure we have used, stark differences in
energy consumption and number of steps are expected. This
was explained more in-depth in Section V. The following
comparisons were done with an approximation degree of 5/8.

In image addition, our algorithm shows the best results
together with SIAFA1. In image subtraction, our algorithm
shows better PSNR than SIAFA1-3 by 1dB but exhibits worse
results than SIAFA4. At gray-scale filtering the presented
algorithm demonstrates worse PSNR than SIAFA1,3 but still
improves over SIAFA2,4 by at least 2.5dB.

VII. CONCLUSION

In this paper, we presented an approximated algorithm that
utilizes IMPLY logic in a semi-serial topology. The main focus
of the approximation was to lower the required steps per bit
and the energy consumption while maintaining sufficient ac-
curacy for error-resistant applications. With our methodology,
we managed to save up to 34% energy and 5%− 29% of the
steps required per bit. In comparison to other IMPLY-based
approximated adders at 8-bit, we were able to save 45− 50%
steps with our proposed algorithm, at equal or better accuracy.
We verified the functionality of our algorithm using LT-SPICE
and evaluated the proposed algorithm in a RCA. We conducted
a behavioral-level simulation and evaluated the error metrics
using MATLAB. We did a comparison to the exact semi-serial
algorithm and SoA approximated IMPLY-based adders. We
applied the presented algorithm in various image processing
applications and evaluated the performance of the proposed
algorithm with varying approximation degrees. We showed
how this method leads to large improvements in speed and
energy consumption at the application level. Our results in-
dicate that for up to five out of eight approximated adders
the results of PSNR are sufficient for all applications. Further
analysis of different approximations in hybrid structures and
their applicability in 16-bit and 32-bit RCA and other fields
are important areas for future research.
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