
Approximation-aware Task Partitioning on an
Approximate-Exact MPSoC (AxE)

S. Huemer†, A. S. Baroughi∗, H. S. Shahhoseini∗, and N. TaheriNejad§†
† Technische Universitat Wien, Vienna, Austria

stefan@huemer.tech
∗ Iran University of Science and Technology, Tehran, Iran
sadighbaroughi a@elec.iust.ac.ir, shahhoseini@iust.ac.ir

§ Institute of Computer Engineering (ZITI), Heidelberg University, Heidelberg, Germany
nima.taherinejad.ziti.uni-heidelberg.de

Abstract—As the demand for increased performance and re-
duced energy consumption continues to grow, Quality of Service
(QoS) adjustment approaches offer an effective way to tackle
those demands. One such method, approximation, has gained
popularity in recent years, facilitating faster executions as well
as a smaller power consumption by providing an approximated
result. The areas in which these trade-offs are acceptable are
numerous, but hardware-based solutions are usually domain-
specific and expensive to integrate. To tackle this issue, we
take a different approach, in which approximate hardware can
be used (or not) in a general purpose environment and via
software decisions. That is, a Multi-Processor System-on-Chip
(MPSoC) that contains Central Processing Units (CPUs) that
offer approximate calculations alongside the ones that offer exact
calculations. However, current task partitioning algorithms do
not consider the specific capabilities or requirements of such a
MPSoC. This paper introduces approximation-aware partitioning
algorithms using different strategies and compares the results
to the State-of-the-Art (SoA). Additionally, the resulted task
partitions are executed to gauge their quality compared to the
SoA. Experimental results show, that the usage of an approximate
CPU and approximation-aware task partitioning leads to an
increased partition success rate of 21.5%. Furthermore, the
execution, i.e., scheduling of the partitioned tasks until energy
starvation, achieves a 3.4% extended run-time.

Index Terms—Approximate-Exact MPSoC, task partitioning,
energy harvesting, RISC-V.

I. INTRODUCTION

The efficiency of several applications, including image
processing, multimedia processing, machine learning, and
scientific computing, which can tolerate a certain level of
inaccuracy, has increased over the last ten years as a result
of approximate computing as an emerging design paradigm
[?], [1]–[7]. Since RISC-V is a free and open instruction set
architecture (ISA), allowing a new age of processor innovation
via an open standard, exploiting approximation computing on
RISC-V framework has been studied recently. The energy
efficiency of the current RISC-V cores demonstrates that they
are appropriate for applications with limited resources [8], [9].

While approximate computing has gained a lot of atten-
tion as a method to reduce Quality of Service (QoS) for

higher performance, utilizing approximation in a heteroge-
neous Multi-Processor System on a Chip (MPSoC) consisting
of approximate as well as exact calculating Central Processing
Units (CPUs) allows a system to benefit from approximation
as well as exact calculations. However, existing partitioning
algorithms do not take the special characteristics of mentioned
system into account, thus creating partitions that might be
invalid. Not considering the benefits of approximation might
cause the resulting partition to be sub-optimal, but does
not result in an invalid partition. However, should a task
that requires exact computation to reach a correct result, be
assigned to an approximate CPU, the partition is invalid as
the result is incorrect. This is mostly the case in cryptography
tasks, or calculated memory accesses.

To investigate potential improvements from such a system,
we consider a task-set of independent non-preemptive periodic
tasks having firm deadlines. This task-set is partitioned on a
MPSoC, called Approximate-Exact MPSoC (AxE), compris-
ing 2 nodes, one having an approximate and the other one
an exact CPU, the difference as the former one approximates
multiplications. The partitioning is done by a controller node
which can schedule the partitioned tasks as well. The commu-
nication between the controller and the other nodes, as well
as the memory access of the latter, is done via an Network on
a chip (NoC).

The contributions of this paper include:

• Approximation-aware task partition algorithms.
• Evaluation and comparison of the performance and suc-

cess rate of different approximation-aware strategies.
• Scheduling of the partitioned tasks to investigate the

quality of the partitions, i.e., how long they can run until
energy starvation sets in.

The rest of this paper is organized as follows: In Sec-
tion II, we review related work briefly. The MPSoC used, is
described in Section III, and Section IV defines the models.
Section V explains the proposed approximation-aware task
partitioning algorithms and their characteristics. Section VI
briefly explains the scheduling algorithm used on the task
partitions. Section VII shows and discusses the results, and
finally Section VIII concludes the paper.979-8-3503-3757-0/23/$31.00 ©2023 IEEE

II. RELATED WORKS

The partitioning algorithm that is used as a basis and a
reference, Energy Harvesting - Reasonable Allocation (EH-
RA) was introduced in [10] as a bin-packing approach used on
a Multi-Processor System-on-Chip (MPSoC) utilizing energy
harvesting. In [11] the scheduling algorithm, Earliest Deadline
- Harvesting (ED-H) was presented which was also utilized in
conjunction with an energy harvesting system.

Reference [12] proposed an Approximate-Exact MPSoC
(AxE) system, which is also used in this research. Additionally
the special considerations of such a system are discussed, i.e.,
the need for a task requiring exact calculations to a CPU
providing exact calculations. Reference [13] proposed another
general purpose system offering approximation techniques.
They introduced Risk-5, a RISC-V extension, offering a low-
overhead software interface to enable or disable approximation
functionality via Control and Status Registers (CSRs). It is
noteworthy that the authors offer the possibility of deacti-
vating any hardware modules that are not in use to further
reduce the energy consumption. ISA extension and multi-
level precision control mechanisms have been researched for
software adaptability in [14] and reference [15] proposed
a non-intrusive assembly technique for approximating thus
allowing any software to make use of it without any change
to the source code.

Approximation was used during the task partitioning in [16]
and [17]. The approximation approach is used to find a solu-
tion that maximizes the number of tasks that are successfully
allocated. However, the MPSoC which used in that study does
not support approximate computing.

To our knowledge, no prior research has adapted task
partitioning for use in a MPSoC consisting of both exact as
well as approximate CPUs.

III. APPROXIMATE AND EXACT MULTI-PROCESSOR
SYSTEM-ON-CHIP (AXE)

Figure 1 illustrates an overview of the system that is used to
conduct the research. The system contains 2 nodes executing
tasks, an NoC based on CONfigurable NEtwork Creation
Tool (CONNECT) [18], a memory controller with a Block
Random Access Memory (BRAM) and a controller in charge
of partitioning and scheduling tasks. The controller is also
connected to a Universal asynchronous receiver-transmitter
(UART) facilitating the transmission of information regarding
the system. It is a heterogeneous system where the CPU of
one node uses exact multiplication while the CPU of the
other one uses approximate multiplication. This system can be
explored on FPGA platform, but in this paper we present the
software emulation of this system, where reported hardware-
related numbers are obtained through Application Specific
Integrated Circuit (ASIC) synthesis on a 45nm technology.
As a reference, a version of this system is used, referred to as
ExE that contains only nodes with exact multiplication.

(exact)

(approximate)

Fig. 1: Overview of AxE system.

A. CPUs

The CPUs of the nodes are instances of the PicoRV32 [19],
a RISC-V based CPU.

It was chosen due to its small size and the co-processor
interface it supports, the Pico Co-Processor Interface (PCPI),
an interface to extend the functionality of the CPU utilizing
custom non-branching instructions.

1) PicoRV32: The PicoRV32 is an instance to use the
RV32IM instruction set.

2) PiXoRV32: Based on the PicoRV32, the PiXoRV32
has been created by incorporating approximate multiplication
[12]. The approximation circuit has been obtained from the
EvoApproxLib project [20] first presented in [21]. In this
instance, the multiplier mul16s GV3 pdk45, a signed 16-bit
multiplier, has been used. This is done either as a replacement
to the exact multiplication, or as an additional instruction
utilizing the PCPI. For this research the latter option was
chosen, i.e., replacing the exact multiplication, to keep the
size as small as possible.

IV. MODELS AND DEFINITIONS

We explain the characteristics of nodes and the properties
of tasks, including their worst-case execution time, energy re-
quirement, and relative deadline. Additionally, we present the
task-set used in the experiments, including the improvement
in execution time on an approximate CPU, if applicable.

A. Nodes

Each node Pj is characterized by:
• Ej : the charge available to the node
• eMaxj : the highest worst-case energy requirement of the

tasks assigned to the node
• archj : the architecture of the node (exact or approximate)
• Γj : the tasks assigned to the node
The total power consumption of the different nodes, or more

specifically, their respective CPUs has been analysed at 45nm
NaNgate Technology [12]:

• PicoRV32, the exact CPU: 5.07mW
• PiXoRV32, the approximate CPU: 4.76mW

For simplicity a node containing a CPU using an exact or
approximate multiplier will be referred to as an exact node
and an approximate node, respectively.
B. Tasks

Each task τi is periodic, non-preemptive and characterized
by the following properties:

• Ci: worst-case execution time for each available archi-
tecture

• Ei: worst-case energy requirement for each available
architecture

• Di: relative deadline
• Ti: period
The worst-case execution time Ci for each task has been

determined by executing it on a node of the system while
recording the start and end times using both to calculate the
difference. Note that every task has to be executed on all
architectures that are available i.e. once on an approximate
node and once on an exact node. It should be mentioned,
during this evaluation, the other nodes are not executing any
tasks. However, the results are valid as there is no advantage
for the node executing the task currently under investigation
by running on a system which is otherwise idle. As the CPUs
of the other nodes might be idle, the node is still polling the
memory for tasks to execute. This causes traffic over the NoC
similar to the traffic created by a CPUs executing task.

Using this worst-case execution time and the power mea-
surements of the node, the worst-case energy requirement Ei

is calculated. Like the worst-case execution time, this is done
for each available architecture.

The relative deadline Di as well as the period Ti are
not dependent on the architecture of the node and have the
same value i.e., 0 < Ci < Di = Ti for each task τi.
It is set to a random multiple of the worst-case execution
time of the architecture providing the exact multiplication i.e.,
Di = Ti = [ran1 : ran2] ∗ Ciexact with 0 < ran1 < ran2. In
contrast to the worst-case execution time and the worst-case
energy requirement, this value is the same regardless of the
architecture of the node the task is assigned to. Practically this
means that every task that executes faster using approximation
and is assigned to an approximate node has more slack time
then i.e., more time to execute the task before the deadline.

C. Task-set

A task-set of n independent periodic tasks is defined as
Γ = τ1, τ2, ..., τn.

For the experiments the task-set presented in Table I is used.
This task-set is initially designed to explore the potential of
employing such a system and serves as a proof-of-concept.
In this table, the worst-case execution time is shown for each
task and each architecture as well as the difference between
them, i.e., the improvement if they are being executed on an
approximate CPU. Should there be no difference between the
two times, then the task simply has no multiplications and thus
no instruction that is effected by the approximation.

V. APPROXIMATION-AWARE TASK PARTITIONING

As the worst-case execution times of a task are known
for both approximate as well as exact nodes before they
are partitioned, it would seem trivial to pick the ones that
have a smaller execution time on an approximate node and
prioritize the assignment to it. However, there are some tasks
that should not be approximated even if they would have a

TABLE I: Task-set

Program
Execution time Ci in ms

Difference in ms
exact approx

aes 1651.60 1651.60 0

blowfish 397.57 397.57 0

dhrystone 26.63 26.52 0.12

grayscale 89.83 25.55 64.28

msort 21.45 21.45 0

norx 57.09 57.09 0

primes 2.69 2.69 0

qsort 26.93 5.22 21.71

sha256 50.50 50.44 0.06

sharpen 95.57 78.07 17.50

square mmult 9.61 7.67 1.94

TABLE II: Approximability of the task-set

Task
Approximation

Improvement Type
applicable NA1

aes neither

blowfish neither

dhrystone approx

grayscale approx

msort neither

norx neither

primes neither

qsort exact

sha256 exact

sharpen approx

square mmult approx

1(Approximation is) Not Applicable.

better execution time and energy profile on an approximate
node [12]. For example, a cryptography task becomes pointless
if approximated and memory accesses to indices determined
by approximation will lead to invalid memory accesses e.g.
SHA-256. Table II shows the tasks and how they are effected
by approximation. Examining the entry for ‘qsort’, we can
see that we gain an improvement if it is executed on an ap-
proximate node. However, this would result in invalid memory
accesses, meaning, that approximation is not applicable. Note
that although ‘aes’ is a cryptography task, our implementation
does not use multiplications and therefore could be executed
on an approximate node with any repercussions.

For simplicity, tasks requiring exact multiplication are going
to be referred to as exact tasks and tasks that benefit form
approximation and do not require exact results, approximate

tasks. There is a third class of takes that don’t benefit from
approximation and don’t require exact execution, i.e., they
contain no multiplication instructions, referred to as “neither”
here.

The requirement of having exact tasks assigned to an exact
node introduces an additional criteria for a partition to fail. In
addition to the the processor utilization having to be smaller
than 1 i.e., Up < 1, the utilization specifically to the exact
node must also be smaller than 1 i.e., Upexact

< 1. The latter
simply means, that if an exact task does not fit on an exact
node, the criteria is violated and the partition invalid. Note
that the energy-requirement is not taken into account here as
it is proportional to the worst-case execution time.

As the preferred assignment for both approximate as well as
exact tasks is clearly their corresponding node, the focus of the
different strategies is on what to do with tasks that are neither
exact nor approximate. The pseudo code for all strategies is
shown in Listing 1. We present them in the rest of this section.

Listing 1 Pseudo code of approximation-aware strategies.
def assign_tasks():

for task in tasks:
pick candidate nodes
for node in nodes_list:
if (node.util + task.util) < 1:

nodes.add(node)
if nodes.is_empty():

return partition_failed
node = find_node(task, nodes)
if node:

node.assign(task)
node.utilization += task.utilization

else:
return partition_failed

def find_node(task, available_nodes):
if the task is approximateable and
there is an approximate node in the
candidate nodes, then return the
first approximate node in the list
if task is approx and nodes.have(approx):

return nodes.get_approx()
elif task is exact and nodes.have(exact):
return nodes.get_exact()

if strategy is AA-b:
return nodes.get_emptiest()

elif strategy is AA-a:
if task is neither and nodes.have(exact):

return nodes.get_exact()
elif task is neither and nodes.have(approx):

return nodes.get_approx()
elif task is approx and nodes.have(exact):
return nodes.get_exact()

elif strategy is AA-e:

if task is neither and nodes.have(approx):
return nodes.get_approx()

elif task is neither and nodes.have(exact):
return nodes.get_exact()

elif task is approx and nodes.have(exact):
return nodes.get_exact()

return partition_failed

A. Approximation-aware approximate focus (AA-a)

To achieve the highest benefit of approximation, the most
straightforward way is to make sure that every approximate
tasks fits on an approximate node. In order to make sure these
assignments can be done, tasks with no preference are assigned
to an exact node. Therefore the load on the approximate nodes
is kept low, allowing approximate tasks to be assigned to it,
with a high probability.
B. Approximation-aware exact focus (AA-e)

This safer strategy foregoes possible improvements of ap-
proximation to make sure, that exact tasks fit on an exact node.
Other tasks are therefore assigned to an approximate node, i.e.,
the load of the exact nodes is kept as low as possible.
C. Approximation-aware balanced (AA-b)

The last strategy uses the emptiest node, i.e., the node with
the least processor utilization, for assignments of tasks with
no preference. Although there is no special attention on exact
tasks, it is expected that the overall load is small enough for
an exact node to accommodate it.

VI. TASK SCHEDULING

A successful partition does not necessarily reflect the par-
tition’s quality in terms of executing the tasks with efficiency
from the point of view of low energy consumption and
balanced utilization on CPUs.

To compare the partitioning results, the algorithm ED-H
[11] is used to schedule them. This algorithm was presented
for use in a system utilizing energy harvesting and is chosen
as it places additional restrictions on a system model, making
its execution more challenging. In this paper, a battery model
is used, which considers a separate battery connected to each
node. As the tasks cannot be reassigned after the partition, the
system fails if the battery of one node is depleted.

It follows the Earliest Deadline First (EDF) approach of
picking the task with the earliest deadline first and additionally
checks to see if the execution of the task causes energy star-
vation. Should this be the case, the execution is delayed until
the related battery has enough charge. The energy storage is
considered empty if the following applies: 0 ≤ E(t) < eMax,
with eMax being the highest worst-case energy requirement
of the tasks in the task-set.

Therefore, even if there is enough charge left to execute a
task, the system idles until that battery has recharged to at least
eMax. Should that idle time be too long and a task misses
its deadline, then the system is considered to be starved of
energy.

VII. RESULTS AND DISCUSSION

A. Approximation-aware task partitioning

1) Setup: In order to get variation into the task-set, the
periods of the tasks are determined by a random variable
multiplied with a worst-case execution time of the tasks.

This random number is determined by a random number
generator that uses a range of 5 i.e., [r : r+5]. Beginning with
the range [1 : 6], the boundaries of the range are increased by

2 3 4 5

2
0

%
4
0

%
6
0

%
8
0

%
1
0
0

%

r

% of partitions

ExE EH-RA
AxE AA-a
AxE AA-e
AxE AA-b

Fig. 2: Average partition success rate.

0.25 for each run until the range of [5 : 10] is reached. For
each step, the task-set is partitioned 100 times, defining the
success rate of the algorithm in that range. Overall the success
rate is expected to improve with the higher range as the task
utilization will shrink and therefore putting a smaller load on
the nodes they are assigned to.

2) Results: Figure 2 illustrates the average successful parti-
tions using the proposed algorithms as well as State-of-the-Art
(SoA) EH-RA algorithm. The latter will be used as a reference
to see how much can be improved by approximation. Consider
that we are running EH-RA on, ExE, a system having 2 exact
nodes since this algorithms does not consider the level of
heterogeneity involved in AxE. The proposed approximation-
aware algorithms are running on, AxE, a system having an
approximate node as well as an exact one.

For AA-a, successful partitions do start pretty early on in
comparison with EH-RA, but it takes a long time for the best-
case to surpass even 10% in the range of [3 : 8] and the average
case achieving this at [3.5 : 8.5]. This is far worse than the
ExE system configuration using EH-RA, voiding all the gains
from approximation. Figure 3a shows that the criteria Upe > 1
is the main reason for the poor performance. Note that AA-a
strategy favors the exact node for any task that has no clear
preference, thus making it harder for exact tasks to be assigned
specifically to an exact node.

The percentage of successful partitions using AA-e has
greatly improved over the previous approach and is on average
better than the success rate of the ExE system. Figure 3b shows
that failures are mostly due to processor utilization violations,
i.e., Up > 1. Failures due to an exact task not fitting on an
exact node have greatly diminished.

A minor improvement is gained by using AA-b which
focuses on keeping the load of the nodes balanced. Figure 3c
depicts an increased failure rate due to exact tasks not having
enough space on an exact node, i.e., Upexact > 1. However,
due to the overall reduced load obtained by AA-b, the failures
due to Up > 1 are reduced sufficiently, that this approach has
a better partition success rate compared to the previous one.

B. Task partition schedulability/longevity

To estimate the quality of the task partitions, we schedule
the partitions using ED-H disregarding potential charges by
the energy harvesters, thus running the system until one of the
nodes starves of energy. The initial charge is set to 10, 000J
for each node.

Figure 4 shows the very last seconds before the energy star-
vation set in. As mentioned above, tasks cannot be reassigned
to another node and that each node has its own battery. Thus,
the execution of a partition can fail if the partitioning algorithm
put a disproportional load on one of the nodes, causing the
corresponding battery to drain quicker and the system starving
of energy wasting the charges of the other batteries. This is
the reason that the energy starvation can set in while the total
remaining energy is still quite high. Most noticeable is this in
the case of the AA-e strategy that failed with more than 450J
charge left in the battery of the other node.

The scheduling based on the AA-a partitioning algorithm
was successful despite AA-a’s low success rate. However, if
a task set can be partitioned with this method, the highest
possible improvement form approximation can be achieved.
This is due to the preferred assignment of tasks with no
preference to an exact node, thus making sure any approximate
task can be assigned to an approximate node. Therefore, this
puts a disproportional load on the exact node and leads to
starvation of energy.

Another reason this method is scheduled so successfully is
the partition of the ‘aes’ task to the approximate node. This
task has a disproportional worst-case execution time compared
to the rest and, thus, also a disproportionate worst-case energy
requirement. Therefore, it is hard to find a node that has a
load small enough to accommodate this task. As the AA-a
partitioning algorithm puts the most load to the exact node,
which results the approximate one to stay relatively empty
and the ‘aes’ task is assigned to it and not the exact one.
In all other cases, the exact node is executing the ‘aes’ task.
Simply speaking, the execution of any tasks on an approximate
node requires less energy than on an exact one because the
approximate one requires less power. Although there is no
benefit of this task being assigned to the approximate node,
the generally lower energy requirement causes the load of this
task to not have such an impact on the overall performance of
the system.

Utilizing AA-e yields a great partition success rate. How-
ever, its run-time is very poor, yet better than the reference
system using 2 exact nodes. The reason for this is the small
gain from approximation. As any task with no clear preference
has been assigned to the approximate node, thus causing
approximate tasks not to fit on it anymore.

Using the third and last approach, AA-b the load of the
nodes is spread more evenly, resulting in a slight improvement
over AA-a. Although the ‘aes’ task is assigned to the exact
node and ultimately prompted the energy starvation, the load
balancing made sure that not too much burden is placed on
the exact node.

2 3 4 5

2
0

%
4
0

%
6
0

%
8
0

%
1
0
0

%

r

% of partitions

Up > 1 Upexact > 1

Success

(a)

2 3 4 5

2
0

%
4
0

%
6
0

%
8
0

%
1
0
0

%

r

% of partitions

Up > 1 Upexact > 1

Success

(b)

2 3 4 5

2
0

%
4
0

%
6
0

%
8
0

%
1
0
0

%

r

% of partitions

Up > 1 Upexact > 1

Success

(c)

Fig. 3: Reason for partition failures for the proposed strategies (a) AA-a (b) AA-e (c) AA-b.

1,960 1,980 2,000 2,020 2,040

2
0
0

4
0
0

6
0
0

Execution time (s)

Energy (J) of all batteries

ExE EH-RA AxE AA-a
AxE AA-e AxE AA-b

Fig. 4: Run time (s) until energy starvation

ExE EH-RA AxE AA-a AxE AA-e AxE AA-b
0

0.2

0.4

0.6

0.8

1
Processor utilization

CPU 0
CPU 1

Fig. 5: Processor utilization for different partitioning algo-
rithms

C. Processor utilization

Figure 5 shows the processor utilization of the proposed
algorithms as well as EH-RA. Although the AA-a and AA-
e algorithms are imbalanced, AA-b was able to spread the

load more evenly. By observing the utilization of EH-RA and
AA-b you might notice, that the overall utilization of AA-b
is lower. This is due to the approximation which lowers the
task’s utilization and thus reduces the process utilization.

VIII. CONCLUSION

In this paper, the potential improvements that a software-
programmable approximate-hardware in a general purpose
MPSoC platform were studied. In particular, a MPSoC execut-
ing periodic tasks has been investigated. Although, traditional
task partitioning algorithms are not made to deal with the
special requirements of such a system, they can be adapted and
yield significant improvements in performance. For the exper-
iments, algorithms dealing with low-power energy-harvesting
systems have been used as a basis for this research, since
a major reason for using approximate computing is saving
energy.

By increasing the period of the tasks we observe the
partition success rates using the different approaches. The
improvement was demonstrated very well when the period
was set to a random multiple in the range [3.75 : 8.75] of the
worst-case execution time, i.e., Ti = Ci∗rand[3.75 : 8.75]. On
average the AxE configuration could be partitioned 92.5% of
the time using AA-b, while ExE using EH-RA only achieves
71%, i.e., an increase of 21.5%.

Based on these partitions the system was executed and the
tasks scheduled using ED-H. In the experiments ExE, the
reference system, using EH-RA for the task partition was only
able to run for 1974s, while AxE using AA-b achieved a run-
time of 2041s, an additional 67s or 3.4%. Given the nature of
energy-harvesting system this means more than an additional
minute of charging, potentially avoiding energy starvation by
bridging a time frame of low energy generation. We note that
in the tasks that more approximate multiplications can be used,
or hardware that benefits from other approximate accelerators,
this advantage is expected to scale up. In our future work, we
plan to focus on task partitions on such MPSoC with more
nodes and a more extensive and diverse task-set.

REFERENCES

[1] G. Burel, H. Saif, M. Fernandez, and H. Alani, “On semantics and deep
learning for event detection in crisis situations,” 2017.

[2] N. Amirafshar, A. S. B., H. S. Shahhoseini, and N. Taherinejad, “An
approximate carry disregard multiplier with improved mean relative error
distance and probability of correctness,” in Euromicro Conference on
Digital Systems Design 2022 (DSD2022), 2022, pp. 1–7.

[3] W. Wang, Y. Yang, X. Wang, W. Wang, and J. Li, “Development of
convolutional neural network and its application in image classification:
a survey,” Optical Engineering, vol. 58, no. 4, p. 040901, 2019.

[4] S. E. Fatemieh, M. R. Reshadinezhad, and N. TaheriNejad, “Approx-
imate in-memory computing using memristive imply logic and its
application to image processing,” in IEEE International Symposium on
Circuits and Systems (ISCAS), 2022, pp. 1–5.

[5] N. TaheriNejad and S. Shakibhamedan, “Energy-aware adaptive approxi-
mate computing for deep learning applications,” in 2022 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2022, pp. 328–328.

[6] S. E. Fatemieh, M. R. Reshadinezhad, and N. TaheriNejad, “Fast and
compact serial imply-based approximate full adders applied in image
processing,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 13, no. 1, pp. 175–188, 2023.

[7] N. Amirafshar, A. S. B., H. S. Shahhoseini, and N. Taherinejad, “Carry
disregard approximate multipliers,” pp. 1–14, 2023.

[8] I. Elsadek and E. Y. Tawfik, “RISC-V resource-constrained cores: A
survey and energy comparison,” in 2021 19th IEEE International New
Circuits and Systems Conference (NEWCAS), 2021, pp. 1–5.

[9] R. Molina-Robles, A. Arnaud, M. Miguez, J. Gak, A. Chacón-
Rodrı́guez, and R. Garcı́a-Ramı́rez, “An energy consumption benchmark
for a low-power risc-v core aimed at implantable medical devices,” IEEE
Embedded Systems Letters, 2022.

[10] H. E. Ghor, M. Chetto, and R. E. Osta, “Multiprocessor real-time
scheduling for wireless sensors powered by renewable energy sources,”
in 2018 IEEE/ACS 15th International Conference on Computer Systems
and Applications (AICCSA), 2018, pp. 1–6.

[11] M. Chetto, “Optimal scheduling for real-time jobs in energy harvesting
computing systems,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 2, no. 2, pp. 122–133, 2014.

[12] A. S. Baroughi, S. Huemer, H. S. Shahhoseini, and N. TaheriNejad,
“AxE: An approximate-exact multi-processor system-on-chip platform,”
in 2022 25th Euromicro Conference on Digital System Design (DSD),
2022, pp. 60–66.

[13] I. Felzmann, J. F. Filho, and L. Wanner, “Risk-5: Controlled approxi-
mations for RISC-V,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 4052–4063, 2020.

[14] T. Trevisan J et al., “Approxrisc: An approximate computing infrastruc-
ture for RISC-V,” RISC-V Workshop in Barcelona, May 2018, poster.

[15] N. A. Said et al., “FPU bit-width optimization for approximate com-
puting: A non-intrusive approach,” in 2020 15th Design Technology of
Integrated Systems in Nanoscale Era (DTIS), 2020, pp. 1–6.

[16] J. D. Lin, A. M. K. Cheng, and G. Gercek, “Partitioning real-time
tasks with replications on multiprocessor embedded systems,” IEEE
Embedded Systems Letters, vol. 8, no. 4, pp. 89–92, 2016.

[17] J. Lin and A. M. Cheng, “Real-time task assignment with replication
on multiprocessor platforms,” in 2009 15th International Conference on
Parallel and Distributed Systems, 2009, pp. 399–406.

[18] M. K. Papamichael and J. C. Hoe, “Connect: Re-examining conventional
wisdom for designing NOCs in the context of FPGAs.” Association
for Computing Machinery, 2012.

[19] C. Wolf. Yosyshq/picorv32: Picorv32 - a size-optimized risc-
v cpu. Last Accessed: June 22, 2023. [Online]. Available:
https://github.com/YosysHQ/picorv32

[20] Faculty of information technology Bozetechova. Evoapproxlib —
approximate circuits library — 8-bit unsigned multiplier. Last Accessed:
June 22, 2023. [Online]. Available: https://ehw.fit.vutbr.cz/evoapproxlib/

[21] V. Mrazek et al., “Evoapprox8b: Library of approximate adders and mul-
tipliers for circuit design and benchmarking of approximation methods,”
in DATE, 2017, 2017, pp. 258–261.

