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Abstract—Application that use deep learning incur a sub-
stantial amount of energy consumption. Reducing this energy
footprint is important, especially for applications such as Internet
of Things (IoT) Embedded Systems (ESs), where resources
are scarce. Here, we present computational self-awareness as
a promising solution for intelligently adapt machine learning
algorithms at runtime to reduce their energy consumption. In
particular, we focus on approximation as a key enabler knob for
such adaptivity. We show that the benefits of such an approach
can be up to 2.5× energy savings.

I. INTRODUCTION

The number of Internet of Things (IoT) devices has been

exponentially increasing, raising the importance of the chal-

lenges Embedded Systems (ESs) face. Limited computational

resources, hardware, and energy source are among these

challenges, intensified by having to operate in highly dynamic

environments, see e.g. [1]. One of the promising solutions to

these challenges is woke system design or more commonly

known as self-aware system design [2], [3]. Woke systems are

a type of adaptive systems with a more intelligent awareness

built into them. We explain the basics of computational self-

awareness first and highlight the difference between self-*

systems and *-aware systems. Next, we show the benefits

of computational self-awareness in the context of wearable

healthcare systems [4], [5] and Multi-Processor System-on-

Chips (MPSoCs) for mobile devices [6], [7]. In the second

part of the talk, we focus on the use of adaptive approximate

computing as a key action knob for improving the efficiency

of deep learning applications. We focus on energy as the main

optimization target and energy-awareness as the enabler and

drive for adaptivity in the system.

II. ENERGY-AWARE APPROXIMATE DEEP LEARNING

As shown in [8], on average about 83% of runtime compu-

tations for many machine learning and deep learning applica-

tions can be approximated. This can lead to substantial savings

in power consumption, for instance in [9], the authors saved

63% of the power consumption by using approximations. This

adaptive approximation can be performed on the hardware,

e.g., using Dynamic Partial Reconfiguration (DPR) and by

instantiating of different arithmetic hardware units [10], or

using dynamic change of the frequency of operations [11].

It could also happen at the software level, e.g., by changing

the utilized machine learning algorithm based on input data,

such as [9] and [12], or by changing the memory access policy

used in [13]. The benefits of these approaches can be up to

2.5× savings in the energy consumption of the system. We

further details these approaches and their benefit in our talk.
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