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Abstract—Memristive technology is a promising emerging
technology, which can be used as storage and processing element.
Memristors are non-volatile, compact, fast, and energy efficient.
They can be used in logic designs to perform basic logical
operations in memory and thus avoid the von-Neumann bottle-
neck. Among various possibilities, stateful logics stand out, since
they can process the data with minimum data movement. Ma-
terial Implication (IMPLY), Memristor-Aided Logic (MAGIC),
Three Memristors Stateful Logic (TMSL) and Single-cycle In-
memristor XOR (SIXOR) are the some of the main examples of
memristor-based stateful logics. Given the maturing state of the
memristive technology, in this paper, we evaluate the effect of
non-idealities of this technology, especially the device variations,
on the operations of stateful logic. In particular, we focus on two
well-received logics, namely IMPLY and TMSL, and analyze the
effect of various operational conditions and device variations on
the functionality of these gates.

Index Terms—Memristor, Logic design, Resistive RAM, State-
ful Logics, IMPLY, TMSL.

I. INTRODUCTION

Theory and the basis of the memristors was firstly presented
by Leon Chua in 1971 [1] but it was only in 2008 that Hewlett
Packard (HP) Laboratories connected the dots between their
Titanium-dioxide with the theoretical memristors [2]. Since
then, a substantial amount of research and development has
been dedicated to memristive circuits and systems for storing
data [3]–[7], logical operations [8]–[13] and calculations [14]–
[17] and implementation of many emerging paradigms, such
as stochastic computing [18]–[20]. In-Memory Computation
(IMC) is one of the most important applications of memristors
since it can omit the need of data transition to the processing
unit. This reduces the delay and energy for the data movement
and alleviates the Von-Neumann bottleneck problem [21].
Memristors can be used as the basic structure of logic gates
such as Material Implication (IMPLY) [8], [9], Memristor-
Aided Logic (MAGIC) [10], Fast and Energy-efficient Logic
(FELIX) [12], Three Memristors Stateful Logic (TMSL) [11]
and Single-cycle In-memristor XOR (SIXOR) [13]. In afore-
mentioned logics, both input and output are represented as the
state (resistance value) of the input and output memristors and
therefore are categorized as ‘stateful’ logics [8], [9]. Stateful
logics allow for computation inside the memory array, without
any need for the data ever leaving the memory array (in-array
computing). This is the minimum possible data movement,
which maximizes the potential for improvements impeded by
large data movements.

Fig. 1: Memristive logic gates. (a) IMPLY logic and (b) TMSL logic.

Design methodology of the IMPLY and TMSL gates are
presented in [8], [9] and [11], respectively. There is a con-
siderable degree of freedom in design choices of the applied
voltages, pulse length and other parameter settings. Some of
these choices depend on the specifications of the underlying
technologies. However, current public models are often based
on projections or reflect a limited properties of the actual
technology. For instance, until very recently no model had
incorporated device variations, even though it is a well-
known effect with significant impact on the functionality of
memristive circuits and systems [22]. A new memristor model
presented in [23], however, does incorporate measurement-
based device variations and its respective distribution for a
commercially available technology. Hence, it allows us to
conduct new studies on the interplay of these variations and
various setting parameters of memristive logics. Our study pro-
vides an important and necessary insight into the compatibility
of these logics and the target memristive technology, as well as
suitable setting parameters (operational conditions) to improve
the reliability of operations and reduce fault probabilities.

In the rest of this paper, we first present the fundamentals of
the logics under study in Section II. In Section III, we present
the simulations setup and the obtained results. We discuss the
results in Section IV and conclude the paper.

II. FUNDAMENTALS

The resistance of a memristor (or its memristance) can
take any value between Ron and Roff , which represent the
minimum and maximum resistance of a memristor. These
are also called Low Resistance State (LRS) or L and High
Resistance State (HRS) or H, respectively. How these values
are considered (assigned to) logical values (‘1’ and ‘0’, or
True and False) is a choice that -as we see below- are different
in different logics. To avoid potential confusions, in the rest
of this paper, by default we refer to the resistance value of
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TABLE I: The truth table of IMPLY and TMSL AND and NAND

Case No. in1 in2 IMP AND NAND
0 H H L H L
1 H L L L H
2 L H H L H
3 L L L L H

memristors (e.g., H and L) and not the assigned logical values,
unless necessary.

1) IMPLY: IMPLY is the first presented stateful logic which
can be implemented stand-alone or inside a crossbar to build
different circuits such as adders [24], [25] and multipliers [26],
[27]. As shown in Figure 1(a), IMPLY has a simple structure
consisting of two memristors connected to a resistor, RG. The
memristors P and Q are the inputs where initial memristance
represents their logical value as inputs. After applying two
voltage pulses called Vcond and Vset to P and Q, respectively,
the final memristance of Q will represent the output state.

In logic function of P → Q, the output state is always L
except for the input logic combination of LH (Case 2), given
in Table I. In IMPLY, conventionally L is considered as logical
value of ‘1’ (True) and H as ‘0’ (False). Therefore, implying H
(False) from L (True) is False (H). As elaborated in [27] and
[28], there are some basic conditions for choosing the value
of RG, Vset and Vcond to ensure correct operations. RG is
considered as Ron<RG<Roff . The values of Vset and Vcond

should follow the constraints Vcond<Vth<Vset, and (Vset –
Vcond) < Vth (Vth is threshold voltage of the memristor).

2) TMSL: The circuit diagram of TMSL logic is shown in
Figure 1(b), which consists of three memristors and a resistor
(RG). TMSL can be used to implement AND and NAND
logical operations [11]. The amplitude and pulse length (T)
of the applied voltage sources (Vset and Vcond) can directly
change the output state. However, the value of RG can effect
on the output state, and it should satisfy Ron<RG<

Roff

2 . So
the selection of proper values is crucial for correct operation.

To perform NAND operation, as given in Table I, a wide low
voltage pulse (Vcond), is applied to the input memristors and
a narrow high voltage pulse (Vset), is applied to the output
memristor. The output memristor is initialized to H (in this

Fig. 2: Variation of output state for different values of (a) RG, (b)
Vset, (c) Vcond and (d) T for IMPLY logic.

logic assigned to ‘1’ or True logic). The output memristor
should remain in H in all cases, except Case 0. Hence, the
value of Vset should be high enough (Vcond < Vset) to switch
the out memristor in this case. On the other hand, Vcond<Vth

is necessary to avoid changing the output state when one of
the memristors is in L.

Implementation of the TMSL-based AND logic gate is
similar to NAND. However, the difference is in the value and
duration of voltage sources. Here, a narrow and high voltage
pulse is applied to the input switches (Vcond), and a wide and
low voltage pulse is connected to the output memristor (Vset)
to perform AND operation as given in Table I.

III. SIMULATIONS AND EVALUATION

The explained logic gates are investigated using Spice
simulation with LTSpice. To simulate the logics, a new and
recently presented memristor model called BELIEVER [23]
is used. The memristor model used here is a Self Directed
Channel (SDC) ReRAM [29]. BELIEVER incorporates pa-
rameters such as device variations and leakage or drift [23],
which enable more realistic evaluation of circuits and systems.
In each simulation (leading to a point in each diagram) one
parameter is changing over the given range and the other
parameters are the same as the values in the respective
reference. For each combination of parameters the circuit is
run 200 times1 to obtain a statistically relevant data regarding
the effect of device variations and its impact on the correct
operation of the respective logic with the given configuration
(a specific combination of parameters). MATLAB is used to
process the results. The output memristance (memristor state)
is mapped to logical values and the error rate is calculated
based on the Logic Threshold (LTh), which was selected to
be in the middle of L and H.

The reported ER is the rate of incorrect outputs in percent
in all simulated runs for each point. In Figures 2, 4 and 6, the
mean value of all 200 runs in each point is shown as well as the
minimum and maximum values of output states in that point.

1A larger number of runs did not show any significant change in the results.

Fig. 3: Variation of error rate for different values of (a) RG, (b) Vset,
(c) Vcond and (d) T for IMPLY logic.
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To make the diagrams more clear and easier to understand,
the cases whose output states are correct with zero error rate
are not shown in Figures 2 to 7.

1) IMPLY: According to [23], the default configuration for
IMPLY in the technology modeled by BELIEVER includes
Vset=0.6V, Vcond=0.4V, RG=40kΩ and T=50µs. As mentioned
before, the value of RG should be selected between Ron

(4.92kΩ) and Roff (545.54kΩ). The behavior of the out
memristor for different values of the resistor in the range of
4kΩ to 550kΩ is shown in Figure 2(a) and only for Case 0
since the output memristance in other cases is independent
from the value of RG and there is no erroneous output state.
In addition, in Case 0 a larger RG (>30kΩ) can change the out
memristance state to the values larger than the LTh. Figure 3(a)
illustartes the output error rate for Case 0. As we see in this
figure, RG > 60kΩ leads to a completely incorrect output.

The variations of output state and error rate based on
different values of Vset are presented in Figure 2(b) and
Figure 3(b), respectively. There is an optimum point with
zero error rate, which as shown in Figure 3(b) happens at
Vset=0.8V. Cases 1 and 3 are independent from variation of
Vset because Q is in L state and thus with every value of Vset

it can remain its state. As expected, in Case 0 if the value of
Vset becomes equal or smaller than Vcond, memristance of the
out cannot change to L, and the output state will be larger than
LTh. Hence, the error rate in Fig. 3b will be high. However,
for Vset>0.5V there is no problem as the output state can
reach the desired value. In Case 2, high voltages can change
Q to L. Therefore, Vset should be lower than 1v to retain the
output voltage larger than the threshold.

As shown in Figure 2(c) and Figure 2(d), Case 0 is the
only one that is sensitive to both Vcond and pulse length (T).
If the applied voltage to the p memristor becomes more than
Vset, p changes to L and the output memristor stays in H.
Thus, Vcond should be smaller than Vset to minimize the error
rate. As shown in Figure 2(c), in all cases except Case 0 the
output state is correct. However, larger Vcond can lead to more

Fig. 4: Variation of output state for different values of (a) RG, (b)
Vset, (c) Vcond and (d) T for TMSL-based AND logic.

incorrect outputs. On the other hand, by increasing the pulse
length, the output memristor has more time to change its state
to L and reach the stable value in Case 0, which leads to a
decrease in error rate, as seen in Figure 3(d) too. In other cases
the output memristor does not change its state regardless of
the values of Vcond and T.

2) TMSL: According to [11], [23], considered default val-
ues in this paper for simulation of the AND logic gate with
TMSL are Vset=0.5V, Vcond=1V, RG=40kΩ and T=100µs.
Here, the maximum pulse width is 100 µs, which is the pulse
width of Vset, as Vcond has a shorter pulse width. The variation
of output state and the error rate of simulated AND gate are
shown in Figures 4 and 5, respectively. There is no error in
Case 0 for different values of RG, Vset, Vcond and T. Plotted
output states for Cases 1 and 2 in Figure 4(a) show incorrect
outputs for different values of resistor. Moreover, the error
rate of Case 3 is high. So, the assumed default values cause
wrong outputs for any values of resistor. Similarly, based on
Figure 5(b), the default values cause wrong outputs with 100%
error rate regardless of the value of Vset in Cases 1 and 2. In
Case 3, for Vset ≤ 0.4V the out memristor changes to L but
larger Vset can maintain out mermistor in H. So error rate
will increase as shown in Figure 5(b). In Figure 4(c) there are
some points with zero percentage error rate (Vcond < 0.4V) in
all cases of Vcond sweep, which are the best choices to set the
Vcond voltage source. As shown in Figure 4(c), by increasing
the voltage source, the output state is also increasing more
than LTh in all cases (except for Case 0) and produces wrong
outputs with high error rate.

The results of pulse length sweep are illustrated in Fig-
ure 4(d) and Figure 5(d). With the default values, the output
state will be wrong for each value of T in Cases 1 and 2. But
in Case 3 smaller pulse length causes more correct answers
with lower error rate, as illustrated in Figure 5(d). Here, like
the other AND simulations, the output memristance in Case 0
is not influenced by the variations of T.

The TMSL-based NAND gate is simulated with the default
values of Vset=1V, Vcond=0.5V, RG=40kΩ and T=100µs. Fig-

Fig. 5: Variation of error rate for different values of (a) RG, (b) Vset,
(c) Vcond and (d) T for TMSL-based AND logic.
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Fig. 6: Variation of output state for different values of (a) RG, (b)
Vset, (c) Vcond and (d) T for TMSL-based NAND logic.

Fig. 7: Variation of error rate for different values of (a) RG, (b) Vset,
(c) Vcond and (d) T for TMSL-based NAND logic.

ure 6 shows the impact of parameters sweep on the output
state. As shown in Figure 6(a), there is a wide range of changes
in the output state for Case 0. A larger resistor decreases the
mean value of output state for this case, and thus the error
rate decreases as well, as illustrated in Figure 7(a) . The value
of 40kΩ for RG is a good choice for minimum error rate in
Cases 1, 2 and 3 based on Figure 7(a). However, there is a high
error rate for small resistors in Case 0 because small resistors
allow the out memristor to change its state to H. By setting
RG<200kΩ the output memristor can change its state from H
to L but larger resistors increase the output error rate.

There is a range of points in Figure 6(b) and Figure 7(b)
for tuning the value of Vset to have a smaller error rate. Based
on the observations, 0.9V<Vset<1.1V has the minimum error
rate in all cases. By increasing Vset the output state of out will
be more likely correct in Cases 1, 2 and 3 but in Case 0 the
output memristor cannot change to L and error rate increases.
Sweeping Vcond (shown in Figure 6(c)) the behavior of output
state is similar in Cases 0, 1 and 2. In Case 3, generated outputs
are completely correct. Given that the output state in Case 0

TABLE II: Reliable situations for parameter setting

Logic
Parameter Error Rate RG Vset Vcond T

(%) (kΩ) (V) (V) (µs)

IMPLY

0 40 0.8 0.4 50
<5 40 0.7 0.4 50

<10 4 0.6 0.4 50
40 0.6 0.4 200

TMSL AND
0 40 0.5 0.4 100
<5 40 0.5 <0.4 100
<10 - - - -

NAND <10 - - - -

is L, Vcond > 0.5V increases the error rate. There is just one
point in which there is no case with 100% error rate. Therefore,
Vcond=0.5V is the best choice since in all other voltages there
is at least a case with 100% error rate. In Figure 6(d), the
circuit is simulated with various pulse width in the range of
0.1µs<T<200µs. The mean value of out state increases in all
cases when T increases in the range. Hence, the error rate in
Cases 1, 2 and 3 decreases whereas it increases in Case 0 (as
shown in Figure 7(d)). However, there is a crosspoint with
minimum error rate that happens at T = 55µs which has the
error rate of 46.5% in Case 0 and a bit lower otherwise.

IV. DISCUSSION AND CONCLUSIONS

Based on the results reported in the previous section, we
can determine the suitable operation conditions of the inves-
tigated logics, IMPLY and TMSL, with respect to different
design parameters. Table II represents the reliable situations
in which the output memristance will be “correct” (i.e., has
a limited error rate) in all input combinations and despite
device variations. There is a point with zero error rate in
IMPLY and AND logics. Situations with acceptable error rate
(<10%) are also mentioned in this table. This means that
these parameter values should produce a reliable operation
(correct in more than 90% of cases) for these two gates in the
technology modeled by the BELIEVER model [23]. Based on
our experiments, NAND gate has at least 46.5% error rate.
This means that we could not find any set of parameter values
that lead to a reliable operation for this gate in the technology
modeled by the BELIEVER model [23]. We plan to extend
our search space in the future, to examine whether a reliable
configuration in our technology can be found. Nonetheless,
we note that in a different memristive technology, this gate
may have a configuration that works reliably. This includes a
potential future version of this same technology that may have
a smaller device variation.

On the other hand, we need to note that we considered a
LTh that divided the overall range to two halves for the two
logic values (levels). In a more constringent logic, where there
is a buffer zone between the logics (e.g., 30% buffer zone and
each logic level constituting 35% of the overall range), the
error rate for all above logic would increase and limit the
configuration set that can lead to reliable operations. We plan
to extend our study by expanding the range of design space
explored for these logics and by conducting a similar study
for other in-array logics such as FELIX, SIXOR and MAGIC.
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