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Abstract—Approximate computing is a new way of performing
calculations in digital systems. By applying this method, per-
formance metrics, e.g., speed, are improved, but in return for
this, the accuracy of the calculations is reduced. Memristors
are electrical elements that can be used to perform logical
calculations along with data storage. This makes memristors a
good choice for In-Memory Computation (IMC). IMPLY logic is
the first stateful logic proposed for memristive IMC. Approximate
computing in memory, particularly using memristive stateful
logic, has not been explored yet. In this paper, we combine
these two concepts and propose a novel algorithm for serial
IMPLY-based adders to implement an approximate full-adder.
The proposed approximate full-adder was assessed in an image
processing application, and image quality metrics like Peak Signal
to Noise Ratio (PSNR) were calculated. In addition, different
error quality metrics like Error Distance (ED) and Mean ED
(MED) were assessed. Our study shows that the proposed method
can achieve up to 40% improvement whereas maintaining the
introduced error in an acceptable range (i.e., a PSNR above
32.4).

Index Terms—Full-adder, Approximate Computing, IMPLY,
Processing In-Memory, Image Processing

I. INTRODUCTION

One of the basic operations in arithmetic is addition. Half-
adder and full-adder are the basic cells for implementing addi-
tion in digital circuits. Approximate computing is a promising
solution for reducing circuits complexity, and as a result,
energy consumption, speed, and area factors improved, but
this novel computation method can be applied only in error-
resilient applications such as image processing [1]. By apply-
ing approximate computing, image quality is reduced due to
the reduced computational accuracy. Therefore, image quality
metrics such as PSNR, Structural Similarity Index (SSIM), and
Mean SSIM (MSSIM) should be used to ensure output quality
[1]. In addition, different error quality metrics are introduced
to assess the accuracy of calculation, like Error Rate (ER),
ED, MED, and Normalized MED (NMED) [2].

In-Memory Computation (IMC) is a new computational
method as an alternative to the Von-Neumann computer archi-
tecture [3]. Utilizing this architecture tackles problems such
as transferring a large amount of data to the processor and
reducing energy consumption and processing time [4], [5].
Among various technologies for IMC, memristive technol-

TABLE I: The truth table of IMPLY logic

a b a → b = b’
0 0 1
0 1 1
1 0 0
1 1 1

ogy stands out. Memristors are non-volatile devices that can
store data [6]–[10] and perform logical operations [4], [11]–
[15], and calculations [16]–[20]. An integrated storage and
calculation unit further decreases unnecessary data transfer
and alleviates the Von-Neumann bottleneck further [21]. This
advantage is more significant when working with big data
(e.g., sorting data [22]).

In this article, a novel memristor-based approximate full-
adder is proposed that can be used for IMC. In the next section,
the Material Implication (IMPLY) logic and its application in
boolean logic with memristors are reviewed. The proposed
approximate full-adder is introduced in the third section. The
fourth section presents circuit-level simulation results, and a
circuit-level comparison is made between the exact memristor-
based adder structure and the proposed design in this article.
The proposed approximate full-adder was assessed in three
different scenarios, and in this section, error analysis metrics
were assessed. In the fifth section, the proposed approximate
full-adder is assessed in an error-resilient image processing ap-
plication. Simulation results and image quality metrics reached
from each scenario were assessed and reported. We conclude
the paper in section VI.

II. IMPLY LOGIC AND ADDERS

The memristor is an electrical element that can play an
important role in the IMC [3], [5]. There are several ways to
implement memristor-based digital circuit, as listed in [15] too.
This article uses the IMPLY method [11], [12], which is the
first stateful logic for memristors proposed by Hewlett Packard
(HP). Stateful logic is a logic in which both inputs and outputs
are represented by the state of the input and output memristors
(as opposed to voltage and current in traditional CMOS).
Applying this logic with memristors allows data storage and
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Fig. 1: Circuit implementation of IMPLY logic gate [12].

processing to be done together and in a complementary way
and without data ever leaving the array. The truth table of the
IMPLY logic is seen in Table I. Ain and Bin are the inputs,
and the result of Ain IMPLY Bin (Ain → Bin) is stored in
Bin. Here, logic zero is equivalent to High Resistance State
(HRS), and logic one is equivalent to Low Resistance State
(LRS) [23]. The circuit-level implementation of IMPLY is
shown in Figure 1. For a correct operation, the following must
hold [24]: Ron << RG << Roff , VCOND < VC < VSET ,
and VSET − VCOND < VC , where VC is the memristor
threshold voltage (i.e., the necessary voltage to change the
memristor’s state).

There are several full-adder designs that use IMPLY logic
for their implementation. These adders are implemented using
a serial structure [24]–[27], parallel structure [24], [27], or a
combination that is neither fully serial nor fully parallel [23],
[28], [29]. Among these structures, serial is the simplest one
and most compatible with cross-bar architecture. In the serial
structure, as shown in Figure 2, all memristors are located
on one row (or column). In other structures, memristors are
located on different sections (rows or columns) and, when
necessary, are connected to each other using external switches.
The simplicity and compactness of the serial topology come
at the cost of slow calculations since only one IMPLY can
be performed at each cycle (no parallelism in operations). In
this work, we use the serial topology due to its advantages
and tackle its disadvantage by proposing a new approximate
algorithm that reduces the number of steps required for the
addition.

III. PROPOSED IMPLY-BASED APPROXIMATE
FULL-ADDER

In IMPLY logic, if the first operand is 0 and the second
operand is 0 or 1, the output is 1. If the first operand is
1, and the second operand is 0, the output is 0. In [26],
which is the fastest serial IMPLY-based adder, the authors

Fig. 2: The serial topology for IMPLY-based adders [30].

TABLE II: The truth table of the exact full-adder and the
proposed approximate full-adder

Ain Bin Cin Exact
Sum

Exact
Cout

Approximate
Sum

Approximate
Cout

0 0 0 0 0 1 ✕ 0 ✓
0 0 1 1 0 1 ✓ 0 ✓
0 1 0 1 0 1 ✓ 0 ✓
0 1 1 0 1 0 ✓ 1 ✓
1 0 0 1 0 1 ✓ 0 ✓
1 0 1 0 1 1 ✕ 0 ✕
1 1 0 0 1 0 ✓ 1 ✓
1 1 1 1 1 0 ✕ 1 ✓

TABLE III: Proposed approximate full-adder’s algorithm and
its steps using IMPLY and FALSE (s1 and s2 are the work
memristors)

Step Operation Equivalent logic
1 s1 = 0 FALSE(s1)
2 s2 = 0 FALSE(s2)
3 Ain → s1 = s1′ NOT (Ain)
4 Bin → s2 = s2′ NOT (Bin)
5 s1′ → Cin = C′

in NOT (Ain) → Cin

6 C′
in → s2′ = s2′′ Sum =

(
Ain → Cin

)
→ Bin

7 s1 = 0 FALSE(s1)

8 s2′′ → s1 = s1′ Cout = Sum

assessed different solutions to propose Sum and Cout logic
of an exact full-adder. The key aspect was to design based on
IMPLY properties and in the IMPLY-logic domain as opposed
to Boolean logic [26]. In this paper, the same solution is
applied to propose the approximate full-adder’s outputs. If
P= [01011111] and Q= [11001100], P → Q is [11101100].
By comparing this output with the exact full-adder’s Sum
(which is [01101001]), we can see that the proposed output is
inexact in three states (AinBinCin=“000,101, and 111”). Now,
if P= [11101100] and Q= [00000000], P → Q is [00010011].
This output is the same as exact Cout in seven states (except
in “AinBinCin=101”). The exact full-adder and the proposed
approximate full-adder’s truth table are shown in Table II. The
inexact output cases are specified by ✕ and the exact ones
specified by ✓. The proposed Sum is inexact in three states
out of eight, and the Cout is exact in seven states out of eight.
Hence, the Error Rate (ER= Number of incorrect outputs

The total number of outputs [31]) of the
proposed full-adder’s Sum is 3

8 , and the error rate of its Cout
is 1

8 . The proposed memristor-based approximate full-adder’s
Error Distance (ED= “Arithmetic difference of Exact full-
adder’s output and approximate full-adder’s output” [31]) is 3.
The step-by-step implementation of the proposed approximate
full-adder in the serial method using two work memristors is
listed in Table III.

IV. SIMULATION AND COMPARISON OF FULL-ADDER

A. Simulations

1) Setup: The functionality of the algorithm of the pro-
posed approximate full-adder was simulated in LTSpice by
using the VTEAM model [32]. The values of the pa-
rameters we used in this model are shown in Table IV.
The values applied for the IMPLY function simulation are
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TABLE IV: VTEAM model and setup values [33]

Parameter voff von αoff αon Roff Ron

Value 0.7 V −10 mV 3 3 1 MΩ 10 kΩ

kon koff woff won wC aoff aon

−0.5 nm/s 1 cm/s 0 nm 3 nm 107 pm 3 nm 0 nm

[33]: {VSET , VCOND, VRESET , RG, tpulse} = {1V, 900mV,-
5V, 40kΩ, 30µs}.

B. Simulation Results

Based on the algorithm of Table III, the initialization of
work memristors is done in a single cycle. In the sixth step
(120us-150us), the Sum value and in the eighth step (180 µs-
210 µs), the Cout value are calculated. All cases produced the
correct approximate output as listed in Table II. The output
waveform of the proposed approximate full-adder for two
sample inputs (AinBinCin=“000,110”) is shown in Figure 3.
That is, one case of the expected approximate (inexact) and
one case of expected exact output, respectively. The simulation
results confirm the correctness of the proposed algorithm.

Fig. 3: Proposed approximate full-adder’s simulation
outputs: (a) AinBinCin=“000”-Sum=’1’-Cout=’0’, (b)
AinBinCin=“110”-Sum=’0’-Cout=’1’.

C. Comparison

In this section, a comparison is made between the proposed
approximate adder and the fastest exact adder using serial
structure [26]. The proposed approximate full-adder can be
employed in an 8-bit ripple carry adder structure in combi-
nation with exact full-adders; first, the five most significant

TABLE V: Comparison between the proposed adders and the
State-of-the-Art (SoA) [26]

Algorithm Number of Steps Number of Memristors
n n=8-bit n n=8-bit

Exact: Serial [26] 22n 176 2n+3 19

Approx.: Proposed
8(n-5)+22(n-3) 134 4(n-5)+2(n-3)+1 23
8(n-4)+22(n-4) 120 4(n-4)+2(n-4)+1 25
8(n-3)+22(n-5) 106 4(n-3)+2(n-5)+1 27

TABLE VI: Different scenarios of approximate ripple carry
adder and error metrics analysis

Scenario MED NMED
1 2.0625 0.004
2 4.3516 0.0085
3 8.8555 0.0174

full-adders are exact, and the three least significant ones are
approximate (Scenario 1). Then four most significant bits were
calculated using exact full-adders, and the other four were
calculated by applying approximate full-adders (Scenario 2).
In the last scenario, the three most significant full-adders were
exact, and the other five were inexact (Scenario 3). The
number of steps and the accuracy of computations increase
by increasing the number of exact full-adders in the most
significant bits (See Table V, VI).

By applying the proposed approximate full-adder in the
scenarios mentioned, the number of steps improved between
24%-40% in the 8-bit ripple carry adder structure. The number
of memristors needed in each structure is also inserted in Table
V. The number of memristors applied in the proposed circuit
is reduced to 2n+3 by re-using the input memristors, which is
the same as SoA [26].

This reduction in the number of steps has been achieved
by applying approximate computing. Therefore, the proposed
structure cannot be applied in all computational applications
(the ED is 3), and it should only be applied in error-resistant
applications such as image processing. The accuracy of the
approximate computations can be examined in the 8-bit carry
ripple adder structure. ER and ED were assessed in Section III.
There exist other error metrics to assess the errors applied in
the mentioned computational structure. MED results from the
summation of ED divided by the number of outputs [2], [34],
[35]. Normalized MED (NMED) is another error metric that
is the normalized value of MED by applying the maximum
value of the exact 8-bit ripple carry adder structure [2]. All
65536 possible inputs applied to the 8-bit ripple carry adder
structure in MATLAB and the error metrics calculated are
shown in Table VI. We see that as the number of exact full-
adders increases in the most significant bits of the 8-bit ripple
carry adder, the MED and NMED values decrease.

V. APPLICATION IN IMAGE PROCESSING
Image processing is one of the error-resilient applications

that its computational complexity can be reduced by applying
approximate computing. Masking an image is a function that
can be done using image addition [2]. The computation com-
plexity is reduced if the approximate full-adders are applied
in the 8-bit adder architecture for image addition. Not only
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complexity of computations is reduced, but also the accuracy
of computations. Image quality metrics like PSNR, SSIM,
and MSSIM are assessed in approximate image processing
to evaluate the quality of computation in this error-resilient
application [1]. SSIM is an image quality metric that indicates
the errors and differences between two same-sized (P1 and
P2) images [31], [36]. The structure (s), contrast (c), and
luminosity (l) comparison are assessed in this metric [31],
[36]–[38]. In [2], [31], [36]–[38], the authors explained how
to calculate the mentioned image quality metrics in detail.

SSIM(P1, P2) = s(P1, P2)× c(P1, P2)× l(P1, P2) (1)

The proposed approximate full-adder is used in an 8-bit
ripple carry adder alongside the exact full-adder to assess its
functionality in the image addition application. Three scenarios
were selected to evaluate image quality metrics in this appli-
cation. The proposed approximate full-adder applied in three
(Scenario 1), four (Scenario 2), and five (Scenario 3) least
significant full-adders in the 8-bit ripple carry adder. Two sets
of images (256*256 grayscale and 512*512 grayscale [39])
were added by the mentioned ripple carry adder structures
and the image quality metrics calculated in MATLAB. The
results of the image addition simulation are shown in Table
VII (Figure 4) and Table VIII (Figure 5). These simulations
were done to assess the applicability of these approximate
structures in image addition as an error-resilient application.
The simulation results are acceptable in terms of image quality
in all three scenarios. That is, their PSNR is above 30dB,
which is the common threshold in the literature for acceptable
image quality [40]. In the first scenario, the image quality
metrics and error metrics were the best compared to the other
scenarios. As expected, image quality metrics decreased in the
third scenario in comparison to the first scenario. However, as
we see in Figure 4 and Figure 5, this decrease in the image
quality is not visible to human eyes, which makes this scenario
acceptable.

Fig. 4: Three scenarios of approximate image addition: (a)
cameraman, (b) rice, (c) exact image addition, (d) Scenario 1,
(e) Scenario 2, (f) Scenario 3.

TABLE VII: First image addition simulation and its image
quality metrics

Scenario PSNR (dB) SSIM MSSIM
1 44.5148 0.9899 0.99
2 38.67 0.9644 0.9649
3 32.9823 0.8974 0.8996

Fig. 5: Three scenarios of approximate image addition: (a) first
image [39], (b) second image [39], (c) exact image addition,
(d) Scenario 1, (e) Scenario 2, (f) Scenario 3.

TABLE VIII: Second image addition simulation and its image
quality metrics

Scenario PSNR (dB) SSIM MSSIM
1 43.0406 0.9887 0.9952
2 38.2047 0.9541 0.9802
3 32.4464 0.8565 0.9268

VI. CONCLUSION

This paper introduces a new algorithm for an approximate
full-adder using the IMPLY logic and serial topology for
memristor-based IMC. By applying approximate computing,
the number of computational steps was reduced by 24-40%,
but it should be noted that the accuracy of the calculations also
decreased, which is a common compromise in approximate
computing. The ERSum of the proposed full-adder is 3

8 , the
ERCout is 1

8 , and the ED is 3. The proposed approximate
full-adder can be used along with the exact full-adder in error-
resistant applications such as image processing. The proposed
approximate full-adder was examined in three different scenar-
ios for image addition application. Different error metrics like
MED, NMED, PSNR, SSIM, and MSSIM were assessed to
examine the results of these three scenarios. The first scenario
has the most accurate results compared to the other scenarios,
but the number of steps needed was the highest. On the other
hand, as expected, scenario 3 as the fastest adder has the
largest error. However, the errors introduced due to using this
scenario are still undetectable by the human eye and well
beyond the minimum required PSNR, which is 30dB (the
PSNR of this scenario was 32.4 and above).
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