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Abstract—This survey provides an overview of the state-of-
the-art in runtime adaptive Approximate Computing (AxC) for
Deep Learning (DL) algorithms, highlighting the challenges and
opportunities in the field. The survey covers a broad spectrum
of applications, including medical applications, computer vision,
and natural language processing. Various power-constrained
platforms, such as System-on-Chips (SoCs), Application Specific
Integrated Circuits (ASICs), and Field Programmable Gate Ar-
rays (FPGAs), are explored for their utilization in implementing
runtime adaptive AxC. The survey explores various techniques,
such as dynamic quantization, adaptive pruning, and low-rank
approximations, offering a detailed discussion of their advantages
and disadvantages. Specifically, in some surveyed research works,
the runtime approximation is achieved through the utilization
of machine learning algorithms, with a notable emphasis on
Reinforcement Learning (RL). These approaches aim to realize
runtime conditions and exploit them appropriately. By pro-
viding insights into the advancements and trends in runtime
adaptive AxC, this survey serves as a valuable resource for
researchers and practitioners interested in this rapidly evolving
area of computing. This survey conducts an in-depth investigation
into the application, challenges, and scope of runtime adaptive
AxC techniques, aiming to mitigate energy consumption while
preserving acceptable levels of accuracy in DL models. Our
primary focus lies on Convolutional Neural Networks (CNNs),
with an emphasis on their application in diverse domains. In
striving for comprehensiveness, the survey encompasses selected
research works that extend beyond CNNs, including alternative
DL models like Recurrent Neural Networks (RNNs). our scope of
applications, focuses on CNNs; however, to make a comprehensive
survey, we cover some surveyed research works that contain other
DL models, such as RNNs. It also highlights the importance
of considering specific application requirements and available
resources when choosing the appropriate technique.

Index Terms—Energy-Aware, Runtime Approximate Comput-
ing, Adaptation, Machine Learning, Deep Learning

I. INTRODUCTION

Recent research illustrates that the energy consumption of
computers would be larger than the energy that world energy
resources can generate by 2040 [1]. Internet of Things (IoT)
and edge devices, such as cameras, cellphones, sensors, and
bio-sensors have a pervasive presence in our daily lives. For
instance, smartphones containing many different sensors are
utilized for many applications in many different domains.
They could be used as a health-monitoring device, voice
assistance, real-time translation, and many other applications.
IoT and edge devices are generally power-constrained. They
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Fig. 1: An example of approximation in the human brain, which
allows a habitual or native English speaker to read the text despite
its many spelling errors [9].

are usually supplied by batteries and have limited functionality
compared to compared to devices that connect to electrical
outlets and rely on a continuous and stable power supply.
Recently a hot trend has been to run and use Deep Learning
(DL) models on the IoT [2] and edge devices [3] have given
a dramatic increase in demand. For instance, nowadays, many
smartphones have the ability to conduct face recognition using
their cameras, speech recognition using their microphones, and
health monitoring using their bio-sensors.

In recent years, the field of DL has seen significant growth.
However, the computational demands of these algorithms can
be extremely high, making them challenging to implement on
resource-constrained devices. The energy consumption of DL
models is a significant concern as it directly impacts the battery
life of the device and the performance of the system [4]–[7].
For instance, the power consumption of Nvidia Tesla V100
Graphics Processing Unit (GPU), in a usual computation unit
for the DL algorithms, could reach up to 250 watts [8]. The
high computational complexity of these algorithms also result
in the need for powerful and expensive hardware, which is not
always feasible for resource-constrained devices. Approximate
Computing (AxC) offers a potential solution to this problem
by allowing for the use of approximate versions of these
algorithms that still produce acceptable (accurate enough)
results while reducing computational demands. Among Ma-
chine Learning (ML) algorithms, DL models try to mimic the
human brain and biological neuron functions. The human brain
makes approximations in its routine tasks and performance. An
example of approximation in the human brain is presented in
Figure 1.

As mentioned above, ML and DL algorithms inher-
ently need enormous energy to be implemented on power-
constrained devices. To have energy consumption improve-
ment, we need to deal with this trade-off. We can consider
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Fig. 2: Temporal dynamics of computation precision for energy-
efficient computing.

accuracy-speed-energy as a space, which one needs to find a
point that meets the requirements.

Runtime adaptive AxC is a specific approach in AxC
that allows the precision of computations to be adjusted
dynamically at runtime, based on the specific requirements of
the application and the available resources. As illustrated in
Figure 2, adaptiveness allows us to land on different points
of this space, based on the runtime conditions. The figure
shows that the minimum computation precision necessary for
exact computations may vary over time and across different
time intervals. This observation motivates the exploration
of energy-saving opportunities by compromising computation
precision compared to conventional computing approaches.
However, it is important to note that in certain scenarios, our
adaptive approaches may not satisfy the minimum requirement
due to the maximum allowable approximate precision. As a
result, a compromise in quality may be observed. Therefore,
the adoption of adaptive approximate computing introduces
a trade-off between energy conservation and computational
precision, which can be dynamically managed over time based
on prevailing conditions, specific requirements, and other
pertinent factors. This approach can be particularly useful for
DL algorithms, as it allows for the optimization of the energy-
accuracy the trade-off for these algorithms. The use of runtime
adaptive AxC in DL algorithms is driven by the need to reduce
the computational demands of these algorithms in order to
enable their implementation on resource-constrained devices.
By using runtime adaptive AxC, it is possible to significantly
reduce the energy consumption of these devices while still
maintaining acceptable levels of accuracy.

Additionally, some of the computations could be conducted
inexactly and still lead to correct outputs. For instance, ResNet
50 [10] is a well-known DL model for object recognition
and consists of 50 layers. It is trained by images captured in
different situations, such as in low light, sunny, and shadow
conditions. Making the decision for some of them is not
challenging because the subject is perfectly recognizable (e.g.,
the light condition is great and the object is completely in
the frame). For some others, decision-making is more diffi-
cult (e.g., in low-light conditions). Nevertheless, the ResNet
50 conducts all the computations in all 50 layers for both
situations to make the decision. For the images with better

(a) A clear image of a dog (b) An opaque image of a dog

Fig. 3: Complexity difference in recognizing the same class of
objects, in this case, a dog.

conditions, some computations are redundant, and the decision
could be made using much fewer computations compared to
complex images.

As shown in Figure 3, both images contain a dog that
should be recognized by the ResNet 50. However, the decision
making for the left image, Figure 3a, could be done using
less computations due to better data and conditions (good
lighting in the image, distinguished background, and location
of the subject). Accordingly, the accuracy of the algorithms
could be modified during the time and based on such (or
other) reasons [11]. Runtime adaptive AxC can also be used
to adapt the precision of computations based on the situational
requirements of the application. For example, in a self-driving
car application, the precision of computations might need to
be higher when the car is in a busy urban area compared to
when it is on a highway. By using runtime adaptive AxC, it is
possible to adjust the precision of computations in real-time, in
order to optimize the energy-accuracy trade-off for the specific
requirements of the application.

There are a number of techniques that have been proposed
for runtime adaptive AxC in DL. These include dynamic quan-
tization [12], adaptive pruning [13], and low-rank approxima-
tions [14]. Such AxC methods could be applied at software,
hardware, and architecture levels. The level of AxC could be
adjusted based on some criteria and conditions such that we
can efficiently perform inherently intensive computations on
power-constraint devices and platforms.

In this article, we provide an overview of the state of the
art in runtime adaptive AxC for DL models and algorithms,
highlighting the challenges and opportunities in the field, to
serve as a useful resource for researchers and practitioners
interested in this rapidly-evolving area of computing. The
works surveyed in this paper cover a broad spectrum of
applications, such as medical applications, computer vision,
and natural language processing. Moreover, various power-
constrained platforms such System-on-Chips (SoCs), Appli-
cation Specific Integrated Circuits (ASICs), and Field Pro-
grammable Gate Arrays (FPGAs) have been used in these
works. Each of these techniques has its own set of advantages
and disadvantages, and the choice of technique will depend on
the specific requirements of the application and the available
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resources.
The rest of this paper is organized as follows. In Section II,

we introduce the taxonomy used in this survey. We elaborate
on the surveyed research works in Section III. In Section IV,
we discuss what we learned in our survey and analyze them.
Finally, in Section V, we provide our conclusions about the
issues, hot topics, and trends in this topic.

II. TAXONOMY

In this survey, we study runtime adaptive approximate DL
algorithms with the following criteria in mind:

• whether they use a ML approach for the approximation,
• awareness level of the algorithm,
• approximation level,
• implementation platform,
• data dependency, and
• application.
We have classified the surveyed research works into the cat-

egories mentioned above to highlight their main contribution.
Additionally, we use a subset of categorization for AxC
that is more fit for runtime situations and based on DL
applications. Similar to traditional AxC taxonomy, approaches
and techniques are categorized into three main groups, i.e.,
1) Algorithmic (Program/Software), 2) Hardware (Circuit),
and 3) Architecture.
Each of these categories incorporates several sub-categories.
This taxonomy is illustrated in Figure 4, and we briefly review
its classes in the rest of this section.

1) Algorithm: DL models have demonstrated their
effectiveness in various domains. In return for this outstanding
performance, they need heavy computational power inherently.
Usually, DL models consist of several different layers. For
instance, VGG19 [15] consists of sixteen convolution layers,
three fully connected layers, five MaxPool layers, and one
SoftMax layer. VGG19 needs 19.6 billion FLOPs for each
inference. To reduce these complexities, we can use software
(algorithmic) approaches.
Pruning: Pruning is the elimination of weights and
connections in a DL model that have low-significance
and low-importance [16]–[20]. The criteria for importance
detection are various such as the value of connection [21],
importance [22], and filter correlation [23]. Moreover, the
magnitude of pruning or the pruning rate is a trade-off
between accuracy and speed.
Quantization: The ML and DL models’ parameters are
presented by the float32 format in many ML frameworks
such as TensorFlow [24] and PyTorch [25]. It means that for
each parameter, we need 4 bytes in the memory. For instance,
for the VGG19 with 138 million parameters, about 500
megabytes are needed in the memory [15]. By Quantization,
the bit-width of the parameter representation (32 bit) could
be reduced [12], [26]–[28]. By this reduction, we can reduce
the memory demand for saving and computing the parameters
and also the computation power demand for them. There
are different degrees of Quantization [29] such as float16,
float8, int8, 4-bit representation, 2-bit representation, and
even binary (1-bit) neural network (BNN), which is an

extreme application of Quantization in the Convolutional
Neural Networks (CNNs) [30].
Weight Sharing: Weight sharing gathers the weights and
parameters into sets to reduce the size of the networks. By
weight sharing, each parameter is assigned to a specific value
from a definite set [31]–[33]. Moreover, weight sharing can
enable multiplications to be conducted by lookup tables and
lower power consumption [34].
Weight and Activation Sparsification: Weight and activation
sparsification is a general form of pruning that is applied
to both weights and activation values [35]–[37]. Typically,
the sparsification approaches are classified into two general
groups [38]: i) non-structured and, ii) structured. Each of
these approaches has its own advantages and disadvantages.
For instance, non-structured sparsification leads to random
connection removal between the neurons, whereas structured
sparsification can reduce computation resources significantly
for the convolution layers.
Approximating Networks: By this approach, the main
components of a neural network are approximated, replaced,
or (and) removed [39]. For instance, to reach lower
computation demands, the number of the hidden layers in a
neural network can be reduced, or neurons can be replaced
with the approximate ones [40].
Approximation of processes: In approximation of processes,
certain steps and disciplines in exact and standard processing
are skipped to reduce the consumption of power and
computational resources. A well-known approach here is
skipping several rows in the weight matrix of a neural
network to reduce the number of the needed operations [41].
Knowledge Distillation: Knowledge distillation is a technique
for neural network compression and size reduction based on
the information and knowledge that is gained by a trained
network. In this technique, a smaller neural network (sub-
neural network) is trained by a bigger neural network [42].
In some types of this technique, an ensemble of models
(teachers) train the simple and/or shallow model (student) to
distillate the knowledge from the teachers to the student [43],
[44]. In this procedure, the main target is that the student
networks can mimic and imitate the teachers’ behavior as
much as possible with the least accuracy reduction.
Loop Perforation: Loop perforation is a well-known
approximation technique that can be adopted in DL training
processes. In this technique, a percentage of iterations are
skipped to reduce the computational overhead [45], [46].
Tiling and Data Reuse: Using the tiling technique, massive
data can be decomposed to smaller tiles that can be stored
in the on-chip cash memory to reduce the Dynamic Random
Access Memory (DRAM) read accesses [47]–[49]. DRAM
or off-chip memory reads need much more power and cause
longer delay compared to Static Random Access Memory
(SRAM) or cache memory reads. Besides, tiling provides
scalability to the entire architecture to make the different
components compatible with on-chip memory storage.
Input-Dependent Computation: Different parts and regions
of input data may make different contributions to the
output of a Deep Neural Network (DNN). By utilizing the
input-dependency computation concept, and analyzing the
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Fig. 4: Taxonomy of runtime adaptive and approximate DL algorithms

contribution of each data part to the output, the importance of
each part can be illustrated [50]–[52]. Therefore, the needed
computation for the redundant or low-importance part can be
recognized and approximated, replaced, or removed to have
more compression, higher execution time, and lower power
consumption [52], [53].

2) Hardware: The techniques and approaches in this
category are implemented and conducted at the hardware
level. AxC at the hardware level involves designing
accelerators and circuits that bear inaccuracies in their
computations, prioritizing efficiency over precise results
to make them particularly useful in certain applications
where minor errors are tolerable. Many techniques jointly
consider software and hardware to improve the effectiveness,
implementation, and approximation. The main sub-categories
of hardware approximation are presented as follows:
Approximate Adders: Adder is the primary arithmetic
operator for the computations [54]–[56]. Indeed, other
arithmetic operators such as multipliers, subtractors, and
dividers are derived from the adder [57]. Approximate adders
are adders that are not entirely accurate. In these kinds of
adders, some logical units are removed or replaced by simpler
ones to reduce the area, power consumption, or delay of the
adder. In approximate adders, it is often tried to sacrifice the
Least-Significant Bit (LSB) as much as possible to reduce the
error due to approximation [58].
Approximate Multipliers: Multiplication is one of the most
used arithmetic operations in computations, especially for
DL. [59]–[61]. Similar to adders, approximate multipliers are
inaccurate and low-latency, energy-efficient multipliers with
fewer units and areas than the exact ones.

Approximate Memory: Reading and writing are two
energy-intensive operations that occur many times for DL
applications [62]–[64]. To reduce the energy consumption of
these operations, the approximation concept can be applied
to them [65]. There are two main memory categories in
the computation units: SRAM and DRAM. For having the
approximate memory, the operation voltage of SRAMs and
the refresh rate of the DRAMs can be modified [66]–[68].
By these regulations, we can save energy, while achieving
sufficient accuracy considering the application constraints
[66].
Quantization: Quantization can also be applied at the
hardware level [69], [70]. The standard representation bit-
width for the weights, activations, arithmetic operations, and
memory read and write is float32. The bit-width can be
decreased to reduce resource usage, such as 8-bit, 4-bit, and
1-bit representation in the most sparse representation. [69],
[71]. These quantized units can be directly implemented at
the hardware level [72], [73]. For instance, the 8-bit buffers
can be dedicated to the weights and activations values [69].
Furthermore, for the arithmetic computation, low-bit adders
and multipliers can be used to reduce the energy consumption
of the hardware implementation and deployment of the DL
models [73].
Stochastic Computing: stochastic computing is inherently
different from conventional computing approaches and usually
demands much less power to be conducted [74]–[76]. There
are many stochastic approaches at the hardware level for
DL applications. Several examples are provided as follows:
i) weight representation by using stochastic rounding [69],
ii) training using stochastic gradient descent (SGD) [77]
or stochastic variance reduction gradient (SVRG) [78],
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iii) using Binary Interface Stochastic Computing (BISC) for
implementation [79], iv) using stochastic discrete neurons
[80], v) network binarization to reduce its size by using
stochastic binarization [81], and vi) using stochastic times
smooth units mask in CNNs to have facilitation in conditional
computation which leads to massive compression for CNN
networks [82].

3) Architecture: These approaches try to achieve approx-
imation goals via a suitable design and implementation of
different system components to improve the collaboration
of these components and the system’s holistic performance
according to the application.
Data Storage Approximation: This is a method to store
data by using memory access operations that are performed
on the unreliable cache memories and are not protected
against read/write errors [83]. Data storage approximation
would have various impacts on the performance depending
on the applications and their input characteristics [84]. There
could also be awareness and dependency on the input data
[85]. By using this technique, low-latency, and low-energy
overhead can be reached by having a partially-protected cache
architecture compared to the fully-protected cache memory.
Selective Approximation: Here, the processes are conducted
with the approximate processing elements that have formed a
hierarchy structure that provides distinct points on energy vs.
quality trade-off [86]. This hierarchy structure has three pri-
mary levels, Approximate Processing Elements (APE), Mixed
Accuracy Processing Elements (MAPE), and Completely Ac-
curate Processing Elements (CAPE). This selection method
is conducted by a hardware mechanism based on precision
scaling and error monitoring.
Using Approximate Non-Volatile Memories: This technique
can explore the energy-quality tradeoff in the non-volatile
memories such as STT-RAM [87], MRAM [88], and PCM
[89], [90] for the probability and availability for minor errors
in read/write operations to gain extensive improvements in
energy efficiency and saving. Many mechanisms have been
used for this purpose, including i) lowering the sensing cur-
rent [91], ii) lowering the sensing period and simultaneously
increasing the reading current [92], iii) lowering the writing
period or current [93], and iv) modifying the reading voltage
[83]. With these techniques, there will be an adaptivity that can
modify the performance of the systems based on the desired
constraints and the application. In summary, this approach
aims to reduce the cost of data movement in the processing.
Using Accelerators: Although general-purpose computation
units such as Central Processing Units (CPUs) are ubiquitous
nowadays, their performance is not much splendid given
the compute-intensive nature of the DL algorithms [94]. To
address this problem, hardware accelerators with more appro-
priate structures have been developed for this purpose, such
as GPUs, FPGAs, and ASICs [95]–[97]. Many software and
toolkits such as TensorFlow [24] and PyTorch [25] have been
developed for this hardware. Certain DL frameworks such
as TensorFlow Lite [98] have been developed for resource-
constraint, embedded, edge, and IoT devices.

In this survey, 23 recent adaptive runtime AxC approaches
in DL have been studied and classified using our taxonomy.

III. APPROXIMATE COMPUTING IN ACTION

Inspired by properties of adaptive AxC, we acquire approxi-
mation techniques in computer science applications, including
DL applications. Such techniques can be categorized into two
main groups, namely A. ML-based approximation approaches,
and B. non-ML-based approximation approaches. To investi-
gate the performance and accuracy, the survey proposes the
utilization of certain criteria and metrics, depending on the
application, such as accuracy, recall, etc. In the following,
we evaluate the potential, space, and possibilities of the
application for approximation based on the sophistication of
the algorithms, the application’s complexity, demands from the
implementation.

A. ML-based approximation approaches

Due to the abilities of the Reinforcement Learning (RL)
methods in handling the runtime situations and uncertain-
ties and also conducting adaptation, we divided the ML-
based approaches category into two sub-categories, i.e., 1) the
ML-based approaches that use RL, and 2) the ML-based
approaches that use other methods.

1) RL-based approaches : The first study focuses on mem-
ory, as memory usage involves the most power-intensive op-
erations [66]. To reduce the power consumption of read/write
operations, they designed an approximation framework with
two approximation knobs. One of them controls the system’s
main memory (DRAM), and the other controls and conducts
the approximation on the on-chip cache memory (SRAM). For
the DRAM, the approximation is conducted by modifying the
refresh period, and for the SRAM, it is done by regulating the
operating voltage. The framework, similar to all the surveyed
works, is at runtime and also is input-dependent. The SEAMS
(Self-Optimizing Runtime Manager for Approximate Memory
Hierarchies) is implemented by using RL to consider the
features of input data, the complexity of input data, and the
Quality of Service (QoS) or the approximation and learning
policies. They have evaluated their framework in three differ-
ent applications, image processing, ML, and financial analysis.

The authors reported that they reached up to 37% power
saving while considering the QoS of the application. Moreover,
they reported the superiority of the SEAMS as a runtime
algorithm compared to the DART [99] as a design-time state-
of-art. The overall schematic of SEAMS is presented in
Figure 5.

In [18], the authors utilize RL to apply a runtime pruning
approximation on the weights of VGG16 [15]. To the runtime
property of the proposed framework, in contrast with classi-
cal pruning methods, the framework applies the pruning on
the VGG16 dynamically and according to the structure and
complexity of the input images. For instance, if the subject
is located in a good place with great low-noise and light
conditions, much lower computation is needed to classify this
image.
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In DL models, the first layers learn the simple features of
the input data, e.g., edges and corners in an image, while the
deep layers learn more complex features, e.g., patterns and
objects in the input image data [18]. Thus, pruning can be
adopted based on the complexity of the input data. In this
study, RL is applied by a Recurrent Neural Network (RNN)
with an encoder and decoder for each layer of the VGG16 to
have appropriate learning from the behavior of the network and
also the circumstantiality of the input image data. The authors
introduce certain parameters in their method to offer a tradeoff
between speed (complexity) and accuracy (performance). They
demonstrate the outperformance of their method against the
state of the art. Their framework achieved up to 5.9 times
speed improvement with negligible deterioration in the model
performance. The overall schematic of the framework is shown
in Figure 6.

In [100], Rao et al. propose the Runtime Network Routing
(RNR) framework that focuses on the algorithm and is the
extension of RNP (Runtime Network Pruning) introduced in
[18]. RNR selects certain paths from the input layer to the
output layer based on the input data features, the complexity
of the input data, and available resources. This is performed
dynamically and in the runtime. They achieve significantly
lower error rates for VGG16 in various levels of speedup
(up to 10 times reduction in FLOPs) compared to the state-
of-the-art approaches. They also achieve up to 5.9 and 1.51

times speed up in inference time for VGG16 and ResNet-
50 [10], respectively. The other novelty of RNR is that each
path in a DNN behaves like an individual decision-making
algorithm. The authors showed that aggregating the results
of these paths, similar to ensemble algorithms, can produce
better results compared to traditional DNNs. Figure 7 shows
the overall schematic of the RNR framework.

RNN

encoder i+1 encoder idecoder i-1 decoder i

convolutional blocks
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...

selected path pruned path

RNN ...

convolutional blocks
Ci

convolutional blocks
Ci+1

global average pooling global average poolingselect
0100

select
0001

Fig. 7: The overall schematic of runtime neural routing framework
[100]

2) Classical ML-based approaches : In [27], Taylor et al.
propose an adaptive runtime DNN model selection to have
a software approximation for the embedded systems. They
use k-nearest neighbour (KNN), decision tree, Support Vector
Machine (SVM), and CNNs to achieve adaptivity and reduce
the required resources and energy based on the input data.
Their aim is to run an image classification algorithm on an
NVIDIA Jetson TX2. They performed feature extraction to
extract properties such as brightness, aspect ratio, contrast,
and edge lengths and employed model selection to select the
best DL model for the input image. The inference would
be performed based on the DL model that is selected by
the ML method in the model selection stage. The existing
Neural Networks (NNs) for the selection are diverse versions
of Inception [101], ResNet [10], and MobileNet [102]. On
average, the latency of inference based on their approach is
less than a second and 1.8 times faster than the Inception
model, which achieves the highest accuracy. Furthermore, their
approach uses only 25% of available RAM in the worst case.
The energy footprint of the methodology is 4x and 24x lower
than MobileNet and ResNet, respectively. For the improvement
of top-1 and top-5 accuracy criteria, the proposed methodology
reach 16.6% and 6% for MobileNet, 7.6%, and 0.34% for
Inception, and 10.7% (just top-1) for ResNet models. In sum-
mary, their approach achieves up to 96% of the performance
of the best possible case called Oracle. The overall schematic
of the proposed methodology is depicted in Figure 8.

In [26], Taylor et al. extended the adaptive model selection
of DNN inference on embedded systems. In their work,
they considered machine translation applications and RNNs
algorithm that is usually employed for sequential, time-series,
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and temporal data. They also consider the naı̈ve Bayes, in
addition to previous algorithms, as ML approach to select the
appropriate DNN based on the character of the input data.

Their approach achieved an overall top-1 accuracy above
87.44% for image classification, which means a 7.5% im-
provement in average accuracy and a 1.8 times reduction in
inference time compared to the most-accurate single DNN
models. Furthermore, their approach reduced the inference
time by 1.34 times compared to the single most capable model
without a significant accuracy drop for machine translation.
The feature engineering process is illustrated in Figure 9.

In [28], the authors introduce an AxC framework at the
hardware level and aim to use 8-bit and 16-bit approximate
multipliers with 20 different designs, approximate degrees,
and settings. Awareness of the input data and considering the
Quality of Results (QoR) is mandatory for adaptation, and to
this end, they use a decision tree and a shallow neural network
as two lightweight ML-based approaches. Their application is
in the image processing domain. The approximate hardware
components are the multipliers based on the Approximate Mir-
ror Adder (AMA) with five different designs and four different
approximate degrees. The training procedure of the ML-based

adaptive runtime controlling frameworks is conducted by the
data generating based on the input structure. Through these
approaches, they reached input dependency. So, when the
proposed framework faces the inputs for multiplication, the
framework selects the most appropriate approximate multiplier
(degree and type) component based on what it “learned” in
the training procedure. The hardware platform used in this
research work is an FPGA from the Virtex-6 family. Based on
the selected approximate multiplier component on the runtime,
they achieved different improvement levels in energy con-
sumption. The power reduction reached from 27.2% to 93.4%,
with an average of 60.8%. Regarding the energy reduction, the
authors reported a reduction ranging from 23.2% to 99.4%,
with 65.5% on average. The area reduction and delay reduction
range between 10% and 90% and -12% and 92%, respectively.
The adaption time is reported to be negligible compared to the
total execution time. The proposed framework performance
meets the Target Output Quality (TOQ) by an appropriate
margin in all the applications. The specification of each of the
approximate multipliers that are used in this work is illustrated
in Table I.

TABLE I: Specification of approximate multipliers [28]

Design Dynamic
Power (mW)

Slice
LUTs

Occupied
Slices

Period
(ns)

Frequency
(MHz)

Energy
(pj)Type Degree

AMAl

D1 306 79 23 8 129 2376
D2 253 76 29 8 128 1977
D3 196 77 29 9 105 1860
D4 38 75 27 7 136 279

AMA2

D1 271 69 23 9 107 2522
D2 207 63 29 9 107 1940
D3 165 57 23 10 102 1613
D4 29 46 18 10 103 281

AMA3

D1 322 67 23 9 108 2970
D2 262 58 20 7 134 1962
D3 189 55 21 9 109 1727
D4 36 32 14 3 323 111

AMA4

D1 263 56 29 6 163 1610
D2 210 47 19 7 148 1416
D3 124 40 16 6 170 730
D4 31 13 7 1 723 43

AMA5

D1 242 53 26 7 143 1698
D2 183 41 19 6 176 1042
D3 113 31 11 5 216 523
D4 30 6 6 1 1416 21

Exact 442 85 33 9 114 3866

In [11] , the authors proposed hardware-efficient approxi-
mate accelerators to implement DL algorithms on the FPGAs
as an error-resilient application. The authors proposed AxC
at the hardware level based on the Dynamic Partial Recon-
figuration (DPR) for FPGA implementation. Similar to their
previous research work, their approximated hardware core is
the approximate multipliers implemented by the DPR feature
and on the FPGAs in this research work. In other words, the
authors integrated the DPR and AxC.
According to their study on the suitable ML-based approach
for adaptive runtime AxC implementation, they selected the
decision tree algorithm for this purpose called “design se-
lector”. Using the design selector based on the decision tree
algorithm allows modifications on the runtime without any
reset. Furthermore, they evaluated the energy consumption
aspect with more in-depth studies by conducting informative
investigations on area, execution time, energy, throughput,
accuracy, etc.
Finally, their proposed framework reached 81.82%, 80.4%, and
89.4% of the exact execution time (by considering the user-
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given TOQ) for image blending, audio blending, and image
filtering applications, respectively.

Leroux et al. [103] introduce an innovative adaptive multi-
branch model selection for automated anomaly detection in
surveillance videos, emphasizing adaptiveness, awareness of
real-world challenges (dynamics), and energy-efficient per-
formance. Existing approaches excel on clean datasets but
struggle in adverse weather conditions and evolving scenes.
The proposed adaptive model incorporates a trainable prepro-
cessing step, efficiently adapting to the changing and dynamics
of environments. Moreover, multiple branches selection shows
enhancement in foreground feature exploration, improving
anomaly detection accuracy during day-night and sunny-rainy
(adversarial ) conditions in addition to power efficiency.
Experimental validation on distorted datasets and real-world
surveillance data demonstrates superior performance compared
to existing methods.

In [104], the authors address the challenge of Global
Channel Pruning (GCP) for multitask model compression to
reduce the computation and memory costs on mobile plat-
forms. Existing works face difficulties when handling multi-
task pruning due to task mismatch and inter-layer filter inter-
actions. To tackle this, the authors propose the Performance-
Aware Global Channel Pruning (PAGCP) framework. PAGCP
optimizes the joint saliency of filters from intra and inter-
layers, preserving globally task-related filters. A sequentially
adaptive classification-based pruning strategy is developed
with a performance-aware oracle criterion to evaluate filter
sensitivity to each task. Experimental results on multiple
multitask datasets show that PAGCP achieves over 60% re-
duction in FLOPs and parameters with minor performance
drops. Additionally, the proposed framework achieves 1.2x to
3.3x acceleration on cloud and mobile platforms. Real-time
application potential on mobile devices is also showcased,
making PAGCP a promising solution for efficient multitask
model compression.

B. Non-ML-based approximation approaches

1) Approximation by awareness-based concepts :
The runtime adaptive AxC approaches are not conducted and
implemented only by ML-based approaches. The other work
which has conducted AxC based on the memory is [105].
Galijaard et al. have proposed a “memory awareness” frame-
work for execution and inference on various DNN models
in different applications. They aim to improve the runtime
performance of the DL model’s inference without any addi-
tional computational resources on edge. Authors have designed
a novel memory-aware policy called “MEMA” to manage
and handle the loading and execution tasks in the inference
procedure. Their framework is layer-wise and decomposes the
inference on each layer of the network to the three main
subtasks, including i) initialization ii) loading iii) execution.
Subsequently, by utilizing their novel memory-aware policy,
the memory usage is scheduled by order of the layers, the
dependency between the layers, the complexity of each layer,
constraints of the application, and some other criteria to have
the best memory usage and footprint. The overall schematic

of MEMA is illustrated in Figure 10.
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Fig. 10: Specification of DNNs in MEMA evolution [105]

Moreover, in the evaluation section, many applications and
CNNs have been covered, such as AgeNet [106], GenderNet
[106], FaceNet [107], and SoS-GoogleNet [108]. By the power
consumption aspect, they achieved between 40% to 60%
improvement in memory demand and up to 5x in execution
time in a memory space-constrained platform.

In [109], the authors present a novel ResNet-based archi-
tecture with a focus on adaptive computation, awareness of
computational cost, and energy consumption. The network
leverages the shortcut connections in ResNets, enabling deep
structures without suffering from vanishing gradients. By in-
corporating parameter sharing and adaptive computation time,
the proposed model achieves a significant 90% reduction in
model size, emphasizing its energy-efficient nature. Moreover,
the adaptive computation time feature allows the network
to dynamically adjust its computational cost based on the
complexity of the input image, resulting in substantially lower
energy consumption compared to conventional ResNets.

In [110], the authors improved their previous work [105]
(MEMA) by expanding their cases and covering DNNs, par-
allel computing, model profiler, measuring the dependency
between the tasks, and using workers for their implementation.
Moreover, Cox et al., in their new framework called (MASA)
have implemented the multi-inference, meaning the execution
on several DNNs simultaneously that can be used in many
cases such as health monitoring. In addition to the MEMA
in MASA, the peak memory demand of each layer has been
considered in the policies, as mentioned in combination with
the dependency measurements between the layers and tasks.
MASA aims to minimize the average response time of multi-
DL inferences by balancing tasks over the available resources
by considering constraints.

The task is a multi-DL inference over DNNs: AgeNet, Gen-
derNet, FaceNet, SoS, GoogleNet, TinyYOLO [111], Emotion
Net [112], and Scene Net [113] in the lifelogging application.
The specifications of the networks have been illustrated in
Table II.

Finally, by proposing the MASA, they achieved up to 79%
reduction in response time and 7% improvement in power
consumption in different limited memory storage and two
defined scenarios.

Meloni et al. proposed an architectural-aware framework for
this purpose in the edge DL domain [114]. The authors pro-
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TABLE II: Specification of deep neural networks in MASA evolution
[110]

Network Inference Storage (MB) Memory Usage (MB) #Conv Layer #FC Layer # Total Layer
AgeNet Age 44 183 3 3 19

GenderNet Gender 44 186 3 3 19
FaceNet Face 217 875 5 3 23

SoS Saliency 218 875 5 3 21
GoogleNet Saliency 23 404 22 2 151
TinyYOLO Object 62 263 9 - 39
EmotionNet Emotion 378 761 5 3 22

MemNet Memorability 217 880 5 3 22
SceneNet Object 221 892 5 3 23

posed a framework which is called “ALOHA”. As the authors
mentioned, they considered three main objects for ALOHA,
i) security: to avoid the unsecured connection between the
edge devices and server for computation, ii) power efficiency:
which is the main target of any AxC approaches, and iii) adap-
tiveness: to have the best modification and optimization based
on the dynamic of the systems, input data, environment, etc.
ALOHA contains three phases. In the first phase, the optimal
algorithm configuration suitable for the specific application
(use-case) is selected. This selection is made by using different
tools and components, such as the genetic algorithm, a Design
Space Exploration (DSE) engine, training configuration (in
case of training a DNN), NN configuration (e.g., pruning
or quantization), security evaluation and performance/power
evaluation.
The second phase’s task is optimization and mapping on a het-
erogeneous low-energy target processing platform. This phase
also has different components, such as a system-level DSE
engine and Architecture Optimization Workbench (AOW).
Finally, the last phase is the optimization of power and
energy saving during the deployment, which is conducted
using middleware generation and code customization. They
considered the VGG16 as their primitive DNN and then
derived two custom DNNs from it for training and also testing
on the mentioned hardware platform. They achieved a 48.31%
reduction in required FLOPs and a 4x compression compared
to the reference model only by their quantization method by
considering the compression aspect.

In [115], Meloni et al. introduced a use-case and an imple-
mentation of the CNN algorithms by using the ALOHA. The
authors aimed to propose a software framework to provide
automation for optimal algorithm configuration selection and
optimized implementation by considering the given hardware
and architectural constraints.

In addition to the proposed methodology (ALOHA) in
[114], they mentioned that the components of the ALOHA
communicate with each other by using HTTP/REST APIs. But
on the other hand, in this recent research work [115], they put
their focus on quantization and memory usage (as on the most
energy-intensive operations in the computations).

Indeed they declared that using higher bit formats poses that
pressure on the memory bandwidth, which would lead to more
power usage because of data transfer from DDR to on-chip
memory. They reported reaching approximately 2x in perfor-
mance (i.e., GOPs/s – Giga operation per second) in which 8-
bit format representation (the quarter precision representation
format) is selected for both weights and activations in the
VGG16 model without significant degradation in the accuracy.
In the noise-based attack case, the provided robustness by the

ALOHA improves the accuracy of the CNN up to 55%. The
overall schematic of ALOHA is illustrated in Figure 11.
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Fig. 11: The overall schematic of ALOHA [114]

In [116], Parra et al. propose a two-stage hardware-aware
adaptive approximation methodology for CNNs. It exploits
kernel-wise resilience, unlike traditional low-power acceler-
ators that use layer-wise quantization and approximation. In
the first stage, quantization and approximation are applied in
a generic manner, using 8-bit for activations and 4-bit for
weights. The second stage applies kernel-wise approximation
and optimization, identifying relevant features in the CNN
through back-propagation. The methodology was implemented
in ResNet-8, ResNet-14, and ResNet-20, trained on the CI-
FAR10 dataset. Evaluations showed a 28% power saving in the
first stage and up to 34% energy saving in the second stage,
with no accuracy drop. The kernel-wise approach is found
to result in the most available approximation, with accuracy
maintenance as the main constraint. The proposed optimization
is shown in Figure 12.
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Fig. 12: The overall schematic of hardware-aware optimization
methodology [116]
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In [117], the authors focus on Quantization-Aware Training
(QAT), a model compression technique that leverages weight
and activation redundancy. Existing QAT methods require end-
to-end training on the entire dataset, leading to lengthy training
times and high energy costs. To improve training efficiency, the
paper introduces a novel perspective through coreset selection,
which aims to enhance data efficiency by exploiting training
data redundancy.

The authors introduce a quantization-aware adaptive coreset
selection (ACS) method, which intelligently selects data for
each training epoch. Evaluation of the proposed method is
performed on various networks (ResNet-18, MobileNetV2)
and datasets (CIFAR-100, ImageNet-1K) under different quan-
tization settings. Notably, the method achieves an impres-
sive 68.39% accuracy for 4-bit quantized ResNet-18 on the
ImageNet-1K dataset using only a 10% subset, resulting in an
absolute gain of 4.24% compared to the baseline.

In [118], the authors propose Adaptive Sharpness-Aware
Pruning (AdaSAP), a method that optimizes the loss landscape
to create robust sparse networks. AdaSAP combines adaptive
weight perturbation for pruning and consistent regularization
towards flatter regions, unifying the goals of generalization
across domains and domain-specific compression. The method
demonstrates strong performance across various experiments,
outperforming state-of-the-art pruning techniques significantly
in image classification and object detection tasks on ImageNet
and Pascal VOC datasets. AdaSAP excels in both clean and
robust performance, showcasing superior results in image
classification and object detection tasks compared to other
pruning techniques. Additionally, the authors believe AdaSAP
could also benefit unstructured pruning, despite the paper’s
focus on structured channel pruning.

2) Approximation by other concepts, : In addition to
dealing with the accuracy-performance trade-off, AxC can be
utilized for other applications such as detecting and defending
against adversarial attacks in DL models [119]. DL models
are susceptible to adversarial attacks that can alter inputs to
produce incorrect results that can harm the victim or benefit
the attacker. However, these approaches are insufficient for
stronger, high-confidence adversarial attacks.

To address this, a hardware-accelerated defense called
DNN-SHIELD is proposed [119], which adapts the strength
of the response to the confidence of the adversarial input. This
approach employs dynamic and random sparsification of the
DL model to achieve approximation efficiently with fine-grain
control over the approximation error.

Adversarial inputs are detected by comparing the out-
put distribution characteristics of sparsified inference to a
dense reference. An adversarial detection rate of 86% was
achieved when applied to VGG16 and 88% when applied to
ResNet50 [10], exceeding the detection rate of state-of-the-art
approaches with lower overhead. Experiments indicate that an
FPGA-based accelerator implementation of software/hardware
co-design reduces the performance impact of DNN-SHIELD
compared to CPU and GPU software-only implementations.
With the increasing prevalence of IoT and DL, their usage is
becoming increasingly widespread, especially for medical pur-

poses [120]–[126]. Health monitoring is critical for ensuring
the well-being of patients and early detection of any health
issues.

Scrugli et al. [127] proposed a runtime adaptive IoT algo-
rithm (model) for health monitoring. The authors aimed to
adapt the operating point and make it selective in accordance
with the computational load, to minimize power consumption
in runtime. The monitoring system consists of a sensor node
that detects and senses patients’ EEG signals. The sensed data
is then processed at the edge and sent to the cloud. The
hardware platform has five different operating modes with
varying operating frequencies and power usage. To reduce
energy consumption during data transmission, the authors
considered two scenarios for runtime adaptation: sending raw
data and sending processed data.

The second scenario is further divided into two modes,
one in which raw data is processed using peak detection to
compute the heartbeat rate and the other uses a CNN-based
processing unit to detect patterns and recognize anomalous
events. The evaluations showed power savings ranging from
7% to 43%, with detailed formalized power consumption
modeling for each case. Memory usage and battery life were
also reported, with battery life ranging from 10 to 22 days
depending on the operation mode and the system using around
31% of the total memory available. The overall schematic of
the proposed method is shown in Figure 13.
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Fig. 13: The overall schematic of runtime adaptation in IoT node for
healthcare monitoring [127]

In [128], an adaptable automated approximate multiplier
optimization method is proposed, driven by input distribution
and polarity. Partial products are compressed through logic
and shift operations, leading to low hardware costs and little
to no performance loss.

The proposed method was tested on three different-scale
quantized DL models, including LeNet [129] on MNIST
[130], AlexNet [131], and VGG16 on CIFAR-10, resulting
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in 26.4% to 47.6% gains in PDA compared to state-of-the-
art approximate multipliers, with accuracy losses of no more
than 0.01%. The impact of input polarity on the accuracy of
asymmetric approximate multipliers was also demonstrated
through results obtained from AlexNet and VGG16. The
feasibility of producing a multiplier for similar applications
with similar data distributions was verified. The effectiveness
of the generated 16-bit signed multipliers was demonstrated
in an adaptive LMS-FIR filter, providing up to 27.1% savings
in PDA with negligible PSNR loss, compared to the state-of-
the-art approximate multipliers.

In [132], Lee et al. conducted an adaptive real-time DNN
model selection methodology for real-time object recognition
on resource-constrained hardware platforms. They considered
four versions of the YOLOv4 [111] (YOLOv4-416, YOLOv4-
tiny-416, YOLOv4-288, and YOLOv4-tiny-288) as DNNs
models that are used in their proposed methodology, which
is called transparencies object detection (TOD) to maximize
real-time accuracy on edge. Moreover, Lee et al. mentioned
that their proposed methodology would be for video streams
and real-time object detection, so the network should not
be expensive to evaluate each frame, and also the temporal
information of the frame should also be considered in the
methodology.
The authors mentioned that due to their studies, lightweight
NNs would generally be appropriate for large and fast objects.
On the other hand, the heavyweight ones are suitable for
small and slow objects. These illustrations provide evidence
for implementing runtime adaptive model selection to maintain
real-time inference accuracy. The main criteria which are used
to implement the runtime adaptive model selection policy are
the median of bounding box sizes (MBBs). As they mentioned,
mislocalization and false bounding is the main reason for the
frame drop in the real-time inference. So, they defined the
controller criteria based on the bounding boxes. Furthermore,
they have shown that the TOD has the best performance and
accuracy for almost all scenarios. Besides, they illustrated
the deployment and usage frequency, memory usage, power
consumption, and inference latency of each DL model and
the TOD methodology. The results showed that the power
consumption of the TOD (on average) is lower than the
individual usage of each DL model in real-time scenarios,
especially for the heavyweight DNNs. The overall schematic
of TOD is shown in Figure 14.

In [133], the authors present a design for layer-wise approx-
imate computation at varying approximation levels, aimed at
reducing the computational demands of DL models inference
while retaining accuracy. The optimal approximation level for
each layer of the DL model is determined through a sensitivity-
based high-dimensional search. Through extensive evaluations
of various DL model benchmarks for medium- and large-
scale image classification with CIFAR10 [134], CIFAR100
[134], and ImageNet [135], the methodology demonstrates
high flexibility and an optimal balance between accuracy and
throughput. An average speedup of 5x and a maximum of 8x
without accuracy loss is achieved through a novel approach,
which targets in-memory architectures as well as accelerators
based on bit decomposition of MAC operation.
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Fig. 14: The overall schematic of TOD. TOD selects the appropriate
DNN adaptivity at runtime due to the properties of sequential frames.
[132]

In [136], Sharif et al. propose ApproxTuner, a com-
prehensive approximation and optimization framework for
tensor-based domains. It conducts approximation and op-
timization in three phases: development-time, install-time,
and runtime, using both hardware-independent and hardware-
specific methods. ApproxTuner also includes a novel pre-
dictive approximation-tuning system for end-to-end accuracy
prediction. The framework has five software/hardware approx-
imation types and can adapt to changing system conditions for
meeting application goals. Evaluations showed improvements
in speedup and power saving for 11 benchmarks, including 10
CNNs. The overall schematic of ApproxTuner is illustrated in
Figure 15.

In [137], Neda et al. declare that a reduction in the
computational load of NNs is promised by the approach of
quantization, where the minimum bit-width that maintains
the original accuracy can vary greatly among different NNs
and even among different layers of a single network. Over-
provisioning of NN accelerators with sufficient bit-width is a
characteristic of most existing designs in order to preserve the
required accuracy across a wide range of NNs. The authors
present mpDNN, a multi-precision multiplier with dynami-
cally adjustable bit-width for DNN acceleration. The design
supports the run-time splitting of an arithmetic operator into
multiple independent operators with smaller bit-width, thereby
increasing throughput when lower precision is needed. The
proposed architecture, optimized for the LUT-based structure
of FPGAs, is designed for FPGAs. The improvement in
throughput of 3-15x by enabling run-time precision adjustment
is demonstrated through experimental results.

IV. DISCUSSION

In this section, we discuss what we surveyed, and deduce
about our studies. Table III summarizes the results of a
comprehensive survey of recent research works in the field of
runtime adaptive approximation methods. The table indicates
that a substantial proportion (70%) of the surveyed works were
published in recent years (2021 to 2023), with a majority
(74%) of the works being published in the last four years.
Figure 16 is a visual representation of the surveyed works

outlining the employed approaches and techniques. Notably,
a majority of the investigated research endeavors employing
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Fig. 15: The overall schematic of ApproxTuner [136]

TABLE III: Summary of the surveyed research works in adaptive
runtime AxC approaches and techniques for DL models.

Name Year Using ML
Approaches

Awareness Approximation
Level

Platform Dependency on
Nurture Of Data

[105] 2021 No Yes Hardware SoC Yes
[110] 2021 No Yes Hardware SoC Yes
[26] 2019 Yes No Software TPU Yes
[27] 2018 Yes No Software TPU Yes
[115] 2018 No Yes Software SoC No
[114] 2018 No Yes Software SoC No
[127] 2019 No No Software SoC Yes
[11] 2021 Yes Yes Hardware/

Architecture
CPU Yes

[18] 2017 Yes No Software GPU Yes
[66] 2021 Yes No Hardware FPGA No
[132] 2021 No No Software TPU Yes
[100] 2018 Yes No Software GPU Yes
[116] 2021 No Yes Software/

Hardware
GPU Yes

[136] 2021 No Yes Software/
Hardware/
Architecture

TPU Yes

[119] 2022 No Yes Software/
Hardware/
Architecture

FPGA/
GPU/
CPU

Yes

[128] 2022 No Yes Hardware TPU Yes
[133] 2022 No Yes Software/

Hardware/
GPU Yes

[137] 2022 No Yes Software/
Hardware

FPGA Yes

[109] 2018 Yes No Software TPU Yes
[103] 2022 Yes No Software GPU Yes
[104] 2023 Yes Yes Software SoC/GPU Yes
[117] 2023 No Yes Software GPU Yes
[118] 2023 No Yes Software GPU Yes

software-level approximations demonstrate a preference for
adopting ML-based approaches to achieve adaptivity. Con-
versely, approximate techniques characterized by hardware-
level approximations predominantly incorporate awareness as
a means to attain adaptiveness.

A. Statistical Analysis

One of the key findings of this survey is that runtime
approximation (online) is more suitable for addressing un-
seen and unpredictable conditions, situations, and dynamics,
compared to design-time (offline) approximation. Design-time
approximation only considers specific, default, and predicted
situations and dynamics, and designers use assumptions and
limited options to address unseen conditions. In contrast,
runtime adaptivity enables designers to handle a wide range
of diverse situations. However, the search space and the
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Fig. 16: Venn diagram visualization of surveyed research works.

number of possible states and configurations in approximation
and optimization are often extremely large which can hinder
the practical implementation of approximation algorithms and
methods in real-time applications. To overcome this challenge,
designers frequently employ ML-based approaches that are
appropriate for complex situations. Figure 16 shows that 35%
(8 of 23) of the surveyed works have utilized at least one ML
approach to address the complex search space and dynamics.

Another approach to optimizing the search space is to
consider the nature and structure of the input data (data
dependency). By taking into account data dependency, many
points in the search space can be eliminated, as they would not
have the capability to support approximation and optimization
due to the nature of the data. This results in a tighter search
space, as shown in Table III, where 91% of the surveyed
research works have utilized at least one of these concepts.
In addition to ML and data dependency, awareness is an-
other important concept that has the potential to be used
in dynamic environments, such as runtime adaptive approx-
imation and optimization. As the survey results illustrated
in Table III, many aspects of awareness have been used
in the surveyed research works, including input awareness,
accuracy awareness, hardware awareness, memory awareness,
and architecture awareness. These awareness types can be cate-
gorized into software/algorithm (input awareness and accuracy
awareness), hardware/circuit (memory awareness and hard-
ware awareness), and architecture awareness. Using awareness
is another approach that can reduce the search space and the
number of possibilities for approximation and optimization.
In the surveyed research works, approximately 61% have
used some form of awareness in their proposed approximation
approaches. Some works have combined awareness with either
ML-based approaches or data dependency to further narrow
the search space for approximation and optimization. Table III
provides a summary of the used approaches.

B. Approximation Approaches

As demonstrated in Figure 17, all the studies included
in the survey have employed at least one of the methods
outlined (utilizing ML-based approaches, awareness concepts,
and data dependency concepts) to address the challenge posed
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Fig. 17: Different used approaches in the surveyed research work

by the large search space and the potential for approximation
and optimization. Handling the large search space in the
approximation domain is an important aspect that should be
considered in research. Furthermore, 87% of the studies have
utilized data dependency concepts, highlighting the signifi-
cance of data dependency in approximation. Redundancy in
designs, computations, and configurations can be eliminated
by utilizing data dependency. Thus, the computational com-
ponents and structure should not be uniform for all input
data, as some data may be less complex and less informative
compared to others, and therefore, complex computations or
representations may not be necessary.

The second most commonly used method for reducing the
size of the search space and the number of approximate
possibilities is through ML-based approaches. These methods
have demonstrated their capability and potential in dealing
with sophisticated systems, dynamics, and environments. They
are mainly data-driven, capable of solving complex issues
and problems, derived directly (or indirectly in some cases)
from the data and training process. Some of these methods
include supervised algorithms such as SVM and decision trees,
which extract information and knowledge from the data in the
training process. The trained algorithms can process new and
unseen data by leveraging the knowledge acquired and finding
similarities with the training data, thereby making appropriate
decisions. In the surveyed studies, these decisions were fo-
cused on defining the search space, configuration possibilities,
and approximation knobs. RL was also utilized in several
studies. In this method, the algorithm acquires knowledge
and learns directly from data through observations within
the environment, employing diverse strategies and policies,
thereby enabling it to manage unfamiliar data and cope with
uncertainties.

The distribution of approximation levels among the sur-
veyed research works is shown in Figure 18. Our survey
found that the software level is the most commonly used
approximation level, with approximately 78% usage. There
are several reasons for this. Firstly, the approximation ap-
proaches are applied easier to the software (algorithm) level
than the hardware and architecture levels, due to lower costs,
lower time consumption, lower complexity, etc. Secondly,
as discussed above, many research works have utilized the
data dependency approaches. Due to the dynamics of the
data dependency approaches and the adaptivity concepts, the
best level for a high dynamic nature is the software (algo-

10

18

3

Hardware Level

Software Level

Architecture
Level

Fig. 18: Different employed approximate level in the surveyed
research works

rithm) level. Indeed, in about 89% of the research work with
software-level approximation, the data dependency concept
has been utilized. Thirdly, according to the applications of
the surveyed research works (which will be discussed in
the following), DL is the most used case as an application.
The DL approaches are inherently conducted at the software
(algorithm) level. Indeed, they are algorithms that can make
decisions, estimate and classify, predict, etc., using the learning
procedures and available data. Therefore, the software level
approximation would be the best option for these kinds of
computations and approaches due to implementing facility and
data-driven-oriented essence of software (algorithm) level.

C. Apprxomation in Applications

The application of 100% of the research works that use
approximation and optimization at the software level focus
DL algorithms. 83% of the works with DL model as their
applications utilize software-level approximation. 43% of the
surveyed work used approximation and optimization at the
hardware (circuit) level. Indeed, all (100%) the surveyed works
with the hardware level approximation are relatively recent
(after 2019).

Due to the increasing utilization of SoCs in the pervasive
IoT landscape, there is a growing trend toward adopting
resource-constrained hardware platforms for the implemen-
tation of DL applications. This is particularly relevant in
light of recent advancements in in-memory and near-memory
processing techniques.

Based on our survey, 91% of the works with hardware-
level approximation and optimization focus on DL algorithms.
Upon analysis and investigation, we found that 87% of the
approximation approaches in the DL domain employed data
dependency approaches, and 78% of these approaches were
at the software level approximation. Additionally, 61% of the
approaches utilized the awareness concept.

D. Hardware Platforms

With regards to the hardware implementation platform,
Figure 19 indicates that 57% of the hardware platforms are
resource-constrained, such as SoCs, TPUs, and FPGAs, while
only 8% are general-purpose platforms, such as CPUs. Due to
the nature of resource-constrained platforms, approximation
and optimization approaches are more critical for these types
of platforms than for power-intensive ones like CPUs and
GPUs. This is particularly relevant given the proliferation
of edge-AI devices and services in recent years, particularly
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applications [139]

with the growing use of IoT and AI algorithms. As a result,
the energy consumption of these devices is becoming a major
concern in the years ahead, especially considering one recent
study which found that by 2040, the power consumption of
computers could surpass the power generation of all world
resources [138].

V. CONCLUSION

Many applications, including DL, and other data-intensive
and data-driven applications, are often inherently error-
resilient and can tolerate some errors (in computations, Pro-
cesses, etc.) and a certain degree of approximation without
significant degradation in performance and accuracy. Many
redundancies (in various aspects) exist in these applications,
which can be reduced by applying approximation and opti-
mization. These redundancies provide ample room and ca-
pacity for approximation approaches when considering edge-
device implementations as the primary target, particularly with
regard to runtime and inference execution time, where time is a
significant and critical parameter. According to [139], 83% of
the runtime is spent on computations that can be approximated
in DL applications (on average).

Figure 20 illustrates the percentages of the computations
with approximation capability in different DL applications. As
shown, ML and DL algorithms have much room for applying
approximation and optimization. Based on the findings from
our survey, we outline current challenges and future research
directions.

TABLE IV: Energy consumption of various arithmetic components
(In 45nm Technology) [140]

Operation: Energy (pJ) Area (µm2)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137

16b FP Add 0.4 1360
32b FP Add 0.9 4184

8b Mult 0.2 282
32b Mult 3.1 3495

16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM
Read (8KB) 5 N/A

32b DRAM
Read 640 N/A

A. Trends

1) More Hardware Approximation: Our survey reveals that
all the works that have used the approximation at the hardware
level are from 2021 and 2022. In 2021 and 2022, 85% of the
surveyed works utilized hardware-level approximation. This is
due to two main reasons. First, the advantages and superiority
of using quantized number representation systems compared to
the standard 32-bit float number representation while keeping
accuracy. Using quantization, many principle computation
components, such as adders and multipliers, can be replaced
with lower energy-intensive and lower bitwidth ones. Table IV
depicts the energy consumption of each arithmetic operation
with different bit-width.

As shown, lower bit-width arithmetic computation units
consume less energy compared to 16-bit and 32-bit operations.
The quantization technique and low bitwidth operators have
been utilized in 85% of the surveyed works that used approxi-
mation methods at the hardware level. Moreover, quantization
leads to model compression. As shown, the energy consump-
tion of “memory” operations is much higher than arithmetic
operations. According to these results, the second main reason
for using approximation approaches at the hardware level
is memory usage (footprint). The distance of the memory
location directly affects its energy cost. As illustrated in
Table IV, the energy usage of DRAM reading (as an off-
chip memory) is 128x more than SRAM reading (as an on-
chip memory). As a result, researchers have focused on the
memories and their impact on computation costs, performance,
and speed. Indeed, 70% of the surveyed works utilizing
hardware approximation approaches considered memory as
their primary concern for hardware-level approximation. Some
have tried to make computations and data fit to put them
on cache memory (on-chip memory) instead of an off-chip
memory like DRAMs.

2) In- and Near-Memory Computing: The near-memory
and in-memory computation techniques have been gaining
significant attention in recent times. In [141], Iandola et al.
achieved up to 510x model compression without sacrificing
accuracy through employing pruning, quantization, and
other approximation methods. The results of their study are
summarized in Table V. In [136] and [133], an in-memory
AI accelerator is used as one of the hardware approximation
methods.
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TABLE V: Comparison of Model Compression [141]

CNN
Architecture

Compression
Approach

Data
Type

Original →
Compressed
Model Size

Reduction in
Model Size
vs. AlexNet

Top-1 ImageNet
Accuracy

Top-5 ImageNet
Accuracy

AlexNet None (baseline) 32 bit 240MB 1x 57.20% 80.30%

AlexNet SVD
(Denton et al., 2014) 32 bit 240MB →

48MB 5x 56.00% 79.40%

AlexNet Network Pruning
(Han et al., 2015) 32 bit 240MB →

27MB 9x 57.20% 80.30%

AlexNet Deep Compression
(Han et al., 2015) 5-8 bit 240MB →

6.9MB 35x 57.20% 80.30%

SquuezeNet
(Iandola et al.)

None
(baseline) 32 bit 4.8MB 50x 57.50% 80.30%

SquuezeNet
(Iandola et al.)

Deep
Compression 8 bit 4.8MB →

0.66MB 363x 57.50% 80.30%

SquuezeNet
(Iandola et al.)

Deep
Compression 6 bit 4.8MB →

0.47MB 510x 57.50% 80.30%

3) Informativeness: As many surveyed works have shown,
the computation components and approaches cannot be the
same for all input data, especially for runtime adaptive approx-
imation algorithms where the dynamics of the system are high,
and latency and accuracy are critical. 86% of the surveyed
research works have used data dependency concepts to address
these concerns, and 45% of them have also used ML-based
methods. However, the data is dealt with using elements that
are not related to the informativeness and explainability of the
input data.

In [27] and [26], the authors use ML-based approaches
for extracted features (from input data) that have shown
their abilities in tasks such as classification and regression,
but are not related to the “amount of information” in the
corresponding data. In other cases, [114], [115], [18], and
[100], the pruning is performed by considering general
constraints like accuracy degradation, sparsity, and value
of the weights and connections, but the importance of the
weights is determined by their values or by the approaches,
which are not related to the informativeness of the input
data. The key point is that the computation components
and approaches must be adapted to the specific parts of
input data and their characteristics, taking into account the
informativeness and explainability of the data.

B. Future Works

1) Need for New Metrics: Many DNNs outperform human
performance and perception, which can be considered redun-
dant in many applications [142]–[145]. Several examples are
provided in Figure 21. Therefore, we have the possibility of
making approximations based on the redundancies present in
the algorithms to achieve an optimized solution.

Our belief is that the current approximation approaches
do not fully consider the information flow in DNNs and the
informative parts of the input data. These crucial concepts
cannot be involved in approximation methods through generic
data-dependent criteria such as accuracy degradation, the use
of DSP-based features, or ML-based approaches with no
related loss functions. We believe that the next steps in runtime
adaptive approximation for DL model implementations on
resource-constrained devices should involve all surveyed
approximation approaches at the software, hardware, and
architecture levels. This should be achieved by considering
criteria and metrics that determine the information flow from
the input data and recognizing the informative parts of it.
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Fig. 21: The accuracy of the image classification algorithms com-
pared with human perception [146]

This will be even more critical and vital in real-time scenarios
when dynamics are high, power and resources are limited,
and latency is a concern.

2) Multi-Level Approximation: Another aspect that is not
sufficiently present in current research is the full utilization
of ML-based approaches for multi-level approximation.
Although ML has proven its ability in solving complex
problems, none of the surveyed works have used its full
capabilities for multi-level approximation. In the current
research works with ML-based approaches, the approximation
is only applied at one level, ignoring the potential benefits
of applying approximation at multiple levels, especially at
the hardware-software level. The utilization of ML-based
approaches would provide more potential and capabilities for
approximation.

3) Temporal Approximation: Another point with
potential for improvement in the current research space
is the consideration of temporal information in runtime
approximation approaches. Many DL algorithms in computer
vision applications, such as CNNs, U-Nets, GANs, etc.,
deal with multi-dimensional data such as 2D or 3D images
that contain spatial information. The order of the pixels is
significant for the algorithms and systems. In certain cases, the
algorithms also deal with spectral information, such as audio
data or hyperspectral images. Temporal information, which
is directly based on time, can also provide benefits, if used
in runtime approximation approaches. When DL algorithms
are implemented on resource-constrained platforms, they are
mainly used for real-world applications. Temporal information
will play a significant role in these real-world applications,
especially when it comes to adaptation. Each new situation
observed in adaptation can be compared to the previous
state in terms of changes over time, providing meaningful
information for the adaptation approach. Unfortunately, none
of the surveyed research works have considered or involved
temporal information in approximation.

4) Comprehensive Approximation: The final thoughts on
the subject of runtime approximation for DL algorithms on
power-constrained devices revolve around the idea that the
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approximation should be a comprehensive process. The ulti-
mate goal of this process should be to move from signals and
data, which are often redundant, to information, knowledge,
and wisdom, which are abstract and informative without
redundancy [147]–[149].

For DL applications, concepts such as attention mechanisms
[150] and transformers [150] can be utilized to minimize the
redundant and non-informative parts of the data. While the
approximation process may result in a loss of accuracy, this
trade-off can be compensated through the use of multimodality
and data fusion, making the approaches more comprehensive.
In essence, the aim of the runtime approximation should be to
transform the data and signals into meaningful information that
can be used for optimal computations and decision-making to
address energy consumption reasonably.
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