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Abstract—Stress has become a prevalent issue affecting individ-
uals’ physical and mental well-being. Detecting stress is the first
crucial step to managing it and preventing it from causing other
health issues. In this paper, we present a new method to improve
the performance of detecting stress, using a comfortable to wear
sensor, namely Photoplethysmography (PPG), which is embedded
virtually in all smartwatches. To this end, we use PPG sensor data
from the publicly available wearable stress and affect detection
dataset (WESAD). Using new denoising processes, segmentation
methods, and key feature extract, we achieve 95.55% accuracy
in detecting stress using the Support Vector Machine (SVM)
algorithm. Simplifying the process alongside improved accuracy
in this paper facilitates smartphone usage as a real-time stress
detection, which we plan as future work.

Index Terms—Stress detection, machine learning, wearable
sensors, photoplethysmography, denoising, segmentation, feature
extraction.

I. INTRODUCTION

Stress is an individualized experience that varies among
people based on their unique susceptibility and resilience,
as well as the specific tasks they engage in [1]. It has a
major influence on human behavior, performance during work,
personal relationships, and bodily health [2]. Generally, there
are two types of stress that can potentially contribute to
the development of different diseases that are chronic and
acute. At the beginning of the “Major Depressive Episode”
research, researchers found there is a significant link between
chronic and acute stress [3]. Furthermore, persistent stress
was also connected to the onset of sudden events, and there
was a tendency indicating that a higher level of acute stress
is more strongly correlated with depression in individuals
experiencing high chronic stress compared to those with low
chronic stress [3]. In addition to depression as an impact of
acute stress on individuals’ health, chronic stress exerts a
notable impact on the immune system [4], increasing heart
attacks and strokes, and eventually leading to the development
of various illnesses [5].

In recent years, with the advancement of technology, many
different sensors have been available to monitor the physiolog-
ical states of individuals [6]–[11]. Sensors could be invasive
(which need to be placed under the skin or attached to a
special part of a body), which makes it difficult to be used
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by the general public. The other type of sensors are non-
invasive and could be embedded into a wristband, headband,
or even a ring to be attached to human skin, which makes them
convenient [12], [13]. PPG, as a sensor that could be used in
a wearable device, is an optical and non-invasive sensor that
quantifies alterations in skin hue linked to changes in blood
volume within the subcutaneous blood vessels throughout the
cardiac cycle. PPG sensors employ optical pulses produced
by a light source and capture the reflected light using a
photodetector [14]. Fig. 1 displays a segment of a Blood
Volume Pulse (BVP) signal, which is the phasic change in
blood volume that corresponds to each heartbeat interval and
obtained by wearing a PPG sensor.

This paper aims to improve the performance of detecting
stress using PPG sensor data. To this end, we propose applying
denoising methods and extracting a novel combination of
only seven features. We demonstrate that these techniques
enhance performance when compared to previous studies that
utilized a larger set of features. We also investigate different
machine learning algorithms to classify the stress in subjects.
To evaluate our proposed algorithm, we use WESAD [15]
which is a publicly available dataset collected in a laboratory.

We provide an overview of the existing literature related
to stress detection in Section II, and an overview of our
proposed methods and techniques for each step of processing
PPG signal to detect stress in Section III. Section IV provides
findings based on our algorithm and compares them with
previous studies. In the end, Section V concludes the paper
and discusses future works.

II. BACKGROUND

In recent years, there has been a growing interest in utilizing
sensors to investigate the human body using various process-

Fig. 1. BVP signal (PPI: Peak to Peak Interval, PWSP: Pulse Wave Systolic
Peak, PWDP: Pulse Wave Diastolic Peak )



ing techniques [16]–[22]. Different sensor data can provide
valuable vision into individuals’ mental states, including their
emotions and overall well-being [7], [23]–[25] or their phys-
ical states, particularly in the case of vulnerable individuals
[26], [27]. Among these sensors, PPG is an attractive option
for researchers aiming to detect mental states, specifically
stress. This can be done either in combination with other
physiological sensors or as a standalone tool. To detect stress,
researchers have used traditional and modern feature extraction
and machine learning algorithms. Das et al. [28] used different
sensors, including PPG, Electroencephalogram (EEG), and
Galvanic Skin Response (GSR), to detect stress in their work.
They preprocessed signals with a Band-Pass (BP) filter and
extracted 18 features from GSR, 62 features from PPG, and
1476 features from EEG. Unfortunately, they did not report the
window length they used for the PPG data. Using a clustering
method, they achieved 69% F1-Score for detecting stress on a
ten-subject dataset. Despite using an extensive set of features,
the results were not satisfactory.

Hasanpoor et al. [29] utilized a deep learning model to
detect stress without employing any denoising techniques.
Instead, they relied on the CNN-MLP algorithm, which
demonstrated the capability to identify motion artifact noises.
Additionally, their approach did not involve a segmentation
step, and the raw signal data served as the input for the CNN-
MLP model. As a result, they achieved an accuracy of 82%
in detecting stress instances from non-stress instances. The
employment of complex models like Convolutional Neural
Network (CNN) led to significant computational overheads
that proved unnecessary, given that better results can be
achieved through traditional algorithms. Benchekroun et al.
[30] Compared the performance of Electrocardiograms (ECG)
and PPG sensor data to detect stress. They used BP and Notch
filtering and a 5-minute window for segmentation. Random
Forest (RF) is used for stress classification in their study on
samples with 22 features that involved frequency and time
domain features. They divided their dataset with 80% for
training and 20% for the test, which means there were data of a
same subject in both train and test sets. Ultimately, they could
detect stress with 83% accuracy by using PPG sensor data.
Including data from the same subject in both the train and test
sets can limit the model’s generalization ability, potentially
reducing its accuracy when encountering data that was not
present in the training set.

III. PROPOSED METHODS

A. Algorithm Overview

Fig. 2 shows the proposed method that we use in this
work for stress detection. First, to remove artifacts and noises,
we start with filtering noise from the PPG signal. To extract
the features of interest, we divide the signal into 360-second
windows with 30-second sliding windows. As opposed to com-
monly used rectangular windowing, we use Hanning windows.

Features that we extract from each window are Time-
Domain, Frequency-Domain, and Non-Linear-Domain. From a
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Fig. 2. Overall process of the proposed method

comprehensive list of features commonly employed in state-of-
the-art [15], [30], [31], we have carefully selected a smaller,
but vital set of features across various domains. This selection
aims to reduce computational complexity while achieving
superior results. In the end, binary classifications are done
using some basic binary classifiers to detect stress samples
and compare results with other research.

B. Noise Filtering

One of the most challenging parts in processing BVP is
noise. Noise in this type of signal could have different reasons,
and one of them is body movement and activities, which
are unavoidable, especially in real-life data collection. In this
paper, to reduce the effects of the motion artifacts and filter
the noise, we use BP with a low-pass cutoff frequency of 0.5
and a high-pass cutoff frequency of 10 and Kalman filtering
[32]. As the final step of denoising and smoothing the signal,
a 3-point Moving Average (MA) is applied to the signal.

C. Segmentation

In order to detect stress, it is necessary to understand
the characteristics of BVP signal. We compute Heart Rate
Variability (HRV) as the primary parameter for detecting
stress. In order to compute HRV parameters, the signal should
be segmented to some windows with the appropriate sizes.

To assess how the window length influences the accuracy
of stress detection, we isolated the continuous data segments
labeled as stress for each subject in the dataset. We then
examined the segmentation using various window sizes. In
this research, a 360-second window is chosen because of its
better performance than windows with shorter lengths. Fig.
3 shows how much window size could change the accuracy
of detecting stress in the dataset. Exploring window lengths
longer than 360 seconds is not feasible due to the length of
signals within the dataset.

To avoid losing peaks and other important data between
each two windows, a 30-second sliding window is considered
in computing windows. In contrast to the state of the art, where
rectangular windows are used, in this paper, we use Hanning
windows [33] to achieve enhanced outcomes, in particular for
frequency-domain features. Hanning windowing is considered
better than rectangular windowing because it helps reduce
spectral leakage, which is the leakage of power from one
frequency to another in the frequency domain. By smoothing
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Fig. 3. Window length impact on stress detection accuracy for different
algorithms

the edges of the window, it reduces the abrupt changes that can
introduce unwanted artifacts and distortion in the frequency
analysis. This smoother transition helps to provide more
accurate and reliable frequency domain representations of the
signal. To detect peaks and utilize them for extracting features,
we use Local Maxima Method (LMM) [34] to retrieve all the
local maximum points within the signal. After obtaining these
points, we remove those with a value lower than the average
amplitude of the entire signal.

D. Feature Extraction

One commonly utilized feature for stress detection is HRV.
HRV refers to the variation in the time between heartbeats
(NN) or the peaks mentioned above. Stress typically leads
to decreased HRV, indicating the dominance of sympathetic
nervous system activity. In [31] authors present 29 common
HRV features that are important to find information from BVP
signals. HRV features such as mean time between heartbeats
(MNN), the ratio of adjacent NN intervals differing by more
than 50ms (pNN50), or total power, are computed to quantify
the variability of the heart rate [31]. In this study, one of our
objectives is to enhance results while employing a reduced
set of features. Consequently, we explore commonly used
HRV features and empirically identify the seven essential
features, including HRV time-domain, frequency-domain, and
nonlinear-domain components, to achieve high accuracy in
stress detection. These features are described in Table I.

E. Classification Algorithms

The seven features described earlier are utilized as in-
put for the classification process. We applied and compared
six machine learning algorithms to detect stress samples.

TABLE I
HRV FEATURES USED FOR STRESS DETECTION

Domain Feature Name Feature Description

Time

HRM Mean of the heart rates
HRSD Standard deviation of the HRs
MNN NN intervals mean

pNN50 % of absolute differences
in successive NN values >50 ms

Frequency Total Power Sum of the energy in the ULF,
VLF, LF, and HF bands

Non-linear Approximate Entropy Segment regularity and complexity
D2 Correlation dimension

k-Nearest Neighbours (kNN), Linear Discriminant Analysis
(LDA), SVM, Decision Tree (DT), RF, and AdaBoost (AB)
are binary classifiers that we used in this paper. To implement
the entire data processing and make it comparable with other
works, we utilized the scikit-learn implementation [35] of
these classifiers. For kNN classifier, based on our experience
on this dataset, we found nine as a number of neighbors
to achieve the highest accuracy in classifying stress data.
In the case of the AB ensemble learner, the decision tree
function was utilized as the base estimator. Within each of
the decision-tree-based classification algorithms, information
gain was employed to evaluate the effectiveness of splitting
decision nodes and a minimum sample threshold of 20 was
applied for node splitting. We configured RF and AB to utilize
100 base estimators.

IV. RESULTS AND COMPARISONS

A. Setup
In this research, we utilize the PPG sensor dataset from the

publicly available WESAD dataset [15]. The dataset provides
multi-sensor data collected from 15 subjects using Empat-
ica E4 and RespiBAN Professional devices during a lab study.

For the purpose of this paper, which is to achieve optimal
results with minimal computation, we focus exclusively on the
PPG sensor data, which captures BVP data and is particularly
important for stress detection. The data recorded by the Em-
patica E4 wrist-worn device were collected at 64Hz sampling
rate.

To create a division between the training and testing sets, we
allocate 14 subjects’ generated samples for training machine
learning algorithms, while the remaining subjects’ data is
reserved as the test set. In each step, we use 207 samples
as train samples and 15 samples as test samples. We repeat
this process for each subject, and the results presented in the
tables are the average evaluation of all 15 subjects’ data. This
cross-validation approach ensures that the algorithms are never
tested on the same data they were trained on.

B. Evaluation Metrics
To evaluate the performance of our predictions, we consider

a measure of all the correctly identified samples alongside the
measure of the incorrectly classified samples. Consequently,
we use Accuracy (ACC) metric, which is calculated using
True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) to assess performance based on stress
and non-stress samples that our algorithms classified correctly.
We measure F1-Score (F1) metric, which is calculated using
precision and recall [36] to show the performance of the pro-
posed method as a better measure of the incorrectly classified
samples. Also, Area Under the Curve (AUC) [37] was used to
measure the proposed method’s performance. The evaluation
metrics described in this section are expressed as follows:

ACC =
TP + TN

TP + TN + FP + FN
(1)

F1 =
2 × Precision×Recall

Precision+Recall
(2)



C. Results

In Table II, we present the effectiveness of each filtering
method in segmentation with a 360-second Hanning window
and a 30-second sliding window. We obtained 222 windows
and computed proposed features to generate 222 samples,
including 161 non-stress samples and 61 stress samples as
inputs for the classifiers. To identify the optimal features,
we began with a set of 24 features from F. Shaffer et al.
[31]. Through a 6-step process, we selected features with
minimal correlation. At each step, we used a set of features that
includes all three categories of time and frequency domain and
nonlinear features. Fig. 4 demonstrates that for this dataset,
reducing the number of features until identifying the essential
features not only maintains accuracy but can also enhance
it for most of the algorithms. In this part we empirically
found seven important that provide the highest accuracy. A
simplified model with fewer features is often more robust and
less sensitive to variations and changes in the data, leading to
improved accuracy across different datasets.

The reported results in Table II show that adding each
step improved the accuracy of most classification algorithms.
Confirming the effectiveness of the proposed method. Among
the six classifiers that we used to evaluate the performance
of the proposed method, the highest accuracy, F1-Score and
AUC is achieved by SVM, which detects stress with 95.55%
accuracy and has a 91.42% F1-Score. SVM aims to find
an optimal hyperplane that separates data points of different
classes, which can lead to better stress detection results by
effectively classifying stress-related data. This shows our pro-
posed method’s good performance in both evaluation aspects:
detecting stress correctly and ignoring non-stress samples.

D. Comparison Results

To ensure a fair comparison of our proposed method with
others, it is important to evaluate it against studies that use a
similar setup, i.e., the same dataset, sensors, and algorithms.
We compared our results with the work of P. Schmit et al. [15],
which had similar conditions but used different preprocessing
methods. The results of their study are presented in Table III.

TABLE II
PERFORMANCE COMPARISON FOR USING DIFFERENT DENOISING AND

SEGMENTATION METHODS ON DIFFERENT BINARY (STRESS,
NON-STRESS) CLASSIFIERS. EVALUATION METRICS ARE

ACCURACY(ACC), F1-SCORE(F1) AND AUC (ABBREVIATIONS: RW=
RECTANGULAR WINDOW, BP= BANDPASS FILTER, MA= MOVING

AVERAGE FILTER, KM= KALMAN FILTER, HW= HANNING WINDOW)

Proposed Preprocessing Metric Algorithm
AB kNN LDA RF DT SVM

Without ACC (%) 87.80 85.90 86.86 83.33 78.49 92.69
Denoising+ RW F1 (%) 68.91 85.90 79.82 66.88 63.60 90.12

AUC (%) 82.21 89.80 86.16 78.66 76.78 91.37

BP+MA ACC (%) 89.99 88.51 92.57 84.57 90.64 92.89
F1 (%) 80.23 88.51 86.07 78.92 81.60 90.42
AUC (%) 88.06 93.04 89.06 83.56 87.92 91.56

BP+MA+KM ACC (%) 91.64 76.08 95.01 85.82 90.90 95.07
F1 (%) 86.99 76.08 88.46 86.99 80.29 89.68
AUC (%) 92.01 83.22 91.86 84.96 84.89 92.89

BP+MA+KM ACC (%) 89.52 81.35 95.04 91.83 93.41 95.55
+HW F1 (%) 85.08 81.35 89.60 82.84 88.27 91.42

AUC (%) 87.92 86.89 92.42 89.71 92.77 93.25
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Fig. 4. Features impact on stress detection accuracy for different algorithms

This table summarizes the performance metrics achieved by
each algorithm on the stress detection task. In this table we
only represent the results of same algorithm in both of our
work and P. Schmit et al. [15] work, and we did not represent
results of SVM in the table. The results of the LDA show that
the classifier used is not the only factor for achieving such a
good performance. LDA achieved a high accuracy of 95.05%
and F1-Score of 89.60%, which is 9.19 % improvement in
accuracy and 6.52% improvement in F1-Score in comparison
with P. Schmit et al. work as the highest results among other
papers in Table III. Given that they are both using the same
classifier and we use a subset of features that are used in
Schmit et al. work, this improvement in results is attributed to
the improvements thanks to the proposed denoising filters and
window segmentation, alongside selecting the best feature set
than their work.

V. CONCLUSION

Using biological signals to detect stress is an important
step in research on the management of stress and prevention
of issues caused by unhealthy stress. We introduced a novel
method that utilizes the readily available and non-intrusive
PPG sensor embedded in smartwatches. Using advanced de-
noising techniques, segmentation methods, and extraction of
key features, our proposed approach achieves an impressive
95.55% accuracy and 91.42% F1-Score in stress detection
using the SVM algorithm, which is the highest in the liter-
ature. Avoiding complexity in the process and high accuracy
renders this method a suitable candidate for implementation in
smartphones, enabling real-time stress detection for a broader
applications. In future studies, we plan to explore the selection
of the most suitable machine learning algorithms by imple-
menting model selections that optimize hyperparameters and
features, thereby enhancing all evaluation metrics.

TABLE III
COMPARING OUR PROPOSED METHOD AGAINST SCHMIT et al. [15]

Method Metric Algorithm
AB kNN LDA RF DT

Schmit et al. [15] ACC (%) 84.10 82.06 85.83 84.18 81.39
F1 (%) 81.23 78.90 83.08 81.35 78.27

Proposed Method ACC (%) 89.52 81.35 95.04 91.83 82.84
F1 (%) 85.08 81.35 89.60 78.92 88.27
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