
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8225  | https://doi.org/10.1038/s41598-023-34801-9

www.nature.com/scientificreports

DELMEP: a deep learning algorithm 
for automated annotation of motor 
evoked potential latencies
Diego Milardovich  1,2,3,13*, Victor H. Souza  2,3,4,13, Ivan Zubarev  2, Sergei Tugin  2,3,5,6,  
Jaakko O. Nieminen  2,3, Claudia Bigoni  7,8, Friedhelm C. Hummel  7,8,9, 
Juuso T. Korhonen  2, Dogu B. Aydogan  2,10, Pantelis Lioumis  2,3, Nima Taherinejad  11,12, 
Tibor Grasser  1 & Risto J. Ilmoniemi  2,3

The analysis of motor evoked potentials (MEPs) generated by transcranial magnetic stimulation 
(TMS) is crucial in research and clinical medical practice. MEPs are characterized by their latency 
and the treatment of a single patient may require the characterization of thousands of MEPs. 
Given the difficulty of developing reliable and accurate algorithms, currently the assessment of 
MEPs is performed with visual inspection and manual annotation by a medical expert; making it a 
time-consuming, inaccurate, and error-prone process. In this study, we developed DELMEP, a deep 
learning-based algorithm to automate the estimation of MEP latency. Our algorithm resulted in a 
mean absolute error of about 0.5 ms and an accuracy that was practically independent of the MEP 
amplitude. The low computational cost of the DELMEP algorithm allows employing it in on-the-fly 
characterization of MEPs for brain-state-dependent and closed-loop brain stimulation protocols. 
Moreover, its learning ability makes it a particularly promising option for artificial-intelligence-based 
personalized clinical applications.

The motor evoked potential (MEP) generated by transcranial magnetic stimulation (TMS) is a crucial neuro-
physiological signal in research and clinical practice. MEP amplitude and latency allow us to assess quantitatively 
the corticospinal excitability. This is necessary to evaluate patients undergoing surgery and to monitor neuro-
motor diseases, such as the progression of multiple sclerosis1, the recovery of stroke patients2 and idiopathic 
generalized epilepsy patients3, among a wide range of medical applications. MEPs are commonly characterized 
by their latency, which is defined as the time elapsed between the stimulation and the onset of the MEP (Fig. 1). 
The MEP latency is usually annotated manually after visual inspection of the electromyography (EMG) recording, 
making the process time-consuming, operator-dependent, and prone to errors4,5. An algorithm to automate the 
characterization of MEPs would not only save time and reduce human errors, but would also boost the devel-
opment of brain-state-dependent and closed-loop brain stimulation protocols by allowing accurate real-time 
MEP assessment6.

Several attempts have been made to develop algorithms to automate the MEP latency annotation. These algo-
rithms are based either on absolute hard threshold estimation (AHTE)7 or on statistical measures8,9. A review and 
comparison of previous methods is presented by Šoda et al.10, together with their own algorithm named Squared 
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Hard Threshold Estimator (SHTE). In general, the previously presented algorithms require the user to specify a 
set of so-called magic numbers. These are hyperparameters with a large impact on the algorithm performance, 
which are empirically derived and depend on the user’s knowledge and experience10. On the other hand, Bigoni’s 
method11, which is a derivative-based algorithm, does not require the user to specify magic numbers.

Developing an algorithm to automate the annotation of MEPs is not trivial. Even in ideal conditions of high 
signal-to-noise ratio (SNR), MEPs are highly variable, presenting significant inter- and within-subject amplitude 
variability12–14. Similarly, the MEP latency variability is well known and has been previously documented for 
neurosurgical patients12,15. Under similar circumstances, the amplitude of two MEPs can differ up to an order 
of magnitude and present totally different shapes, as shown in Fig. 1. Furthermore, low-amplitude MEPs, com-
monly recorded in inhibitory stimulation paradigms with paired-pulse TMS have inherently lower SNR than 
high-amplitude MEPs, thus adding a new layer of complexity. Overall, these factors make it demanding to assess 
the MEP latency automatically and reliably.

In this context, machine-learning-based algorithms, particularly those employing deep learning techniques, 
offer a promising approach to provide an accurate and reliable solution. The MEP latency annotation is a pattern 
recognition problem, where deep learning methods have already demonstrated their potential16. In this work, 
we present our DELMEP algorithm, which relies on deep learning for automated MEP latency annotation. We 
contend that DELMEP will speed up data analysis procedures and facilitate the development of closed-loop 
brain stimulation protocols, as well as the development of personalized medical solutions. To the best of our 
knowledge, this is the first deep learning solution to the problem of automating the MEP latency estimation.

Material and methods
MEP dataset.  We utilized a dataset collected from 9 healthy volunteers (3 women and 6 men, mean age: 
30 years, range 24–41) for two studies17,18, which describe the detailed experimental protocol and stimulation 
paradigms. Experiments were performed in accordance with the Declaration of Helsinki and approved by the 
Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa. All participants gave written 
informed consent before their participation.

TMS was applied with a monophasic trapezoidal waveform by our custom-made multi-channel TMS (mTMS) 
power electronics19 connected to a 2-coil transducer capable of electronically rotating the peak induced electric 
field17. EMG signals were digitized using an eXimia EMG 3.2 system (Nexstim Plc, Finland; sampling frequency 
3 kHz; 10–500 Hz band-pass filter). MEPs were collected with single-pulse and paired-pulse paradigms. The 
paired-pulse stimuli were delivered with interstimulus intervals of 0.5 and 1.5 ms (short-interval intracortical 
inhibition, low-amplitude MEPs) and 6.0 and 8.0 ms (intracortical facilitation, high-amplitude MEPs). The con-
ditioning stimulus intensity was 80% of resting motor threshold and the test stimulus and single pulse intensity 
were both 110% of resting motor threshold. MEPs were recorded from the abductor pollicis brevis, abductor 
digiti minimi and first dorsal interosseous muscles. EMG recordings showing muscle pre-activation or move-
ment artifacts greater than ± 15 µV within 1 s before the TMS pulse were removed from the analysis. The raw 
MEPs were visually inspected, and the latency was manually annotated by a single expert (doctoral candidate; 
7 years of experience) and quality-checked by a second expert (postdoctoral researcher; 10 years of experience) 
who confirmed the latency annotations. We note that the aforementioned experts are co-authors of this study. 
However, the dataset was collected and the latencies were annotated for two prior studies17,18 conducted before 
the conceptualization and development of DELMEP. Therefore, the annotations were performed independently of 
the development of the DELMEP algorithm. We performed an additional validation on an external MEP dataset 
annotated by three experts. From the three experts, one is a co-author of the present study. Data preprocessing 
and annotation was performed with custom-made scripts written in MATLAB R2017a (MathWorks Inc, USA). 
A total of 33,060 MEPs were recorded, i.e., 11,020 from each muscle group (abductor pollicis brevis, abductor 
digiti minimi, and first dorsal interosseous). From all MEPs, 232 (0.7%) were discarded because of pre-activation 
and 11,548 (34.9%) were discarded because of noise or no-response. Out of the remaining 21,244 MEPs, the 

Figure 1.   Two different MEP waveforms (red and blue curves) with similar latencies (black vertical line), 
defined as the time elapsed between the TMS and the beginning of the MEP trace. The epoch starts at the time 
the TMS pulse is delivered.
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validator discarded 4569 (21.5%) and approved 16,675 (78.5%). Therefore, in total, the dataset is composed of 
16,675 MEPs and their peak-to-peak amplitudes and latencies.

Latency estimation algorithm.  To automate the MEP latency assessment, we developed an algo-
rithm named DELMEP, written in Python 3.8 and available at https://​github.​com/​conne​ct2br​ain/​delmep. The 
DELMEP pipeline is composed of the following steps (Fig. 2): (1) pre-processing and (2) latency estimation with 
a neural network. We present the details of each step below.

Pre-processing (step 1): The pre-processing simplifies the training and use of our neural network. Without 
the pre-processing, the high variability and noise of the MEPs would require that the neural network “learns” 
different inputs (MEP traces) corresponding to similar outputs (latencies). Here, the MEPs are represented by a 
mathematical vector of the raw voltage measurements, significantly reducing the complexity and increasing the 
speed of deep learning algorithms necessary to process the data. Hence, in this step, the data are (1) trimmed, 
(2) smoothed, (3) centered, and (4) amplitude normalized. The MEPs are trimmed from 10 to 50 ms after the 
TMS (120 samples). This is done to reduce and standardize their length, because in the resting condition, the 
measurements shortly after the TMS and much later than the end of the MEP do not carry relevant information. 
On the contrary, their inherent noise could pose a problem to the training and use of the neural network, since 
it would unnecessarily increase the dimensions of the input vectors.

After trimming, the MEPs are smoothed with a moving average filter with a window length of 3 samples, 
to reduce the high-frequency noise of the recordings20. Next, the MEPs are centered by computing their mean 
value in the first 15 samples (5 ms) and then subtracting it from every sample. This step reduces the impact of 
low-frequency noise in the measurements, by counteracting the shifting it produces in the mean MEP value. 
The window length in the smoothing step and the time window in the centering step were tuned employing a 
grid search algorithm. Lastly, we normalize the MEPs so that their minimum and maximum values correspond 
to 0 and 1, respectively, to mitigate the effects of the large variations in amplitude. A detailed representation of 
this preprocessing is illustrated in Fig. 3, where the changes on the two MEPs presented in Fig. 1 are shown.

Deep learning algorithm (step 2): The pre-processed MEPs are used as inputs to the neural network, which 
produces a latency prediction as its output. This neural network is built as a multi-layer fully connected percep-
tron layout with two hidden layers of 30 artificial neurons each, and an output layer. We used the rectified linear 
unit activation function and trained the network with the Adam optimizer21 (early stopping criteria: 200 epochs; 
batch size: 32), as implemented in the software package Keras 2.4.322.

Data analysis and method validation.  From all MEPs, 2113 (13%) are low amplitude (peak-to-peak 
amplitude (VPP) ≤ 100 µV), 2995 (18%) are medium amplitude (100 µV < VPP ≤ 200 µV) and 11,565 (69%) are 
high amplitude (VPP > 200 µV). The MEPs were first divided randomly into a training (13,340 MEPs) and test-

Figure 2.   Workflow for automated assessment of MEP latencies in a possible closed-loop TMS set-up. MEPs 
are measured with electrodes placed on the target muscle and stored in a 120-dimension vector. The pre-
processing is done by trimming, smoothing, centering, and normalizing the MEP. The resulting vector is used as 
an input to the neural network for the latency estimation. The dashed arrows show how our DELMEP algorithm 
could be applied to a closed-loop protocol (dashed box), in which the brain stimulation parameters are modified 
depending on the MEP responses.

https://github.com/connect2brain/delmep
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ing (3335 MEPs) dataset, with a training/testing ratio of 80/20. We verified the accuracy and repeatability of 
our method by using it to evaluate the latency of the 13,340 and 3335 MEPs in the training and testing datasets, 
respectively, and comparing these results with the manual assessment of the expert. The comparison was made 
by computing the mean absolute error (MAE) between the latencies provided by our method and those pro-
vided by the expert. We analyzed the latency prediction error by computing the correlation of the automated 
latency estimate with the two main MEP features: VPP and the manually annotated latency. We also estimated the 
computational times for the DELMEP algorithm using a standard desktop computer (CPU Intel Core i7-5650U 
2.2 GHz and 8 GB of RAM).

For comparison, we used the following algorithms: Signal Hunter9, AHTE10, SHTE10 and Bigoni’s method11 
to estimate the latency of the MEPs in the testing dataset. These estimations were then compared to the manual 
annotations of the expert and the MAE was computed for every method. Signal Hunter is an open source soft-
ware for MEP analysis having a latency estimation algorithm based on statistical measures, it performs a moving 
average filtering on the MEP, differentiates the smoothed signal, calculates the standard deviation (SD), and finds 
the index value for which the difference between the absolute differentiated MEP value and the SD is the largest; 
thereafter, it estimates the MEP latency by subtracting a user-selected magic number from that index value. We 
implemented Signal Hunter with a magic number equal to 5, following the author’s original implementation9. The 
AHTE algorithm performs an absolute value operation on the MEP, finds its maximum amplitude and determines 
the threshold value (Vthr), marks ± 10% around the mean value of the MEP, and finds the index value where the 
marked line is crossed by the MEP for the first time. The latency estimation is obtained by subtracting a user-
selected magic number from that index value. The SHTE algorithm is based on the same principle as the AHTE 
algorithm, but it works by squaring the MEP coefficients, instead of performing an absolute value operation. We 
implemented the AHTE and SHTE algorithms (Vthr = 10% and magic number = 5) as done in10. Bigoni’s method 
is a derivative-based method, it reduces the MEP to a window of 10–50 ms after the stimulation, finds the peak 
and trough of the MEP, performs an absolute value operation, computes the approximate first derivative of the 
MEP until the peak, finds the longest vector of consecutive samples having a positive derivative, and estimates 
the latency as the first sample of this vector. All algorithms were implemented in Python 3.8.

To evaluate the generalizability of our DELMEP algorithm, we performed a cross-validation both within and 
across subjects. In a within-subject test, the data of each subject was split in 5 folds; 80% of the MEPs were used 
as training dataset and the remaining 20% as the validation set, interchangeably. Final results were obtained by 
computing the average MAE and SD of MAE across folds for each subject separately. The inter-subject variability 
of our DELMEP algorithm was tested using a leave-one-subject-out approach. In this test, the data from all but 
one subject was used to train the model and the MAE was estimated using the data from the left-out subject. 
This was repeated for all subjects and the MAE was computed in every iteration.

An additional validation was performed in which our DELMEP algorithm and Bigoni’s method were used 
to estimate the latency of the MEPs in an independent dataset, which is composed of 1561 MEPs and described 
in detail in the study by Bigoni et al.11. This dataset was collected from 16 healthy volunteers (eight women and 
eight men; age: 26.7 ± 2.6 years). The latencies were manually annotated by three different experts (with 0.5, 5 
and 14 years of experience) who did not take part in the development of DELMEP. For validating DELMEP, we 
computed the ground truth (GT) latency as the mean value from the three annotations. About 99% of the MEPs 
in this dataset have a high amplitude (VPP > 100 µV), as these MEPs were collected using a single-pulse paradigm, 
with a test-intensity chosen to produce MEP amplitude of 0.50 mV.

Figure 3.   (a) Pre-processing of the two MEPs shown in Fig. 1, divided into: trimming (1), smoothing (2), 
centering (3) and normalizing (4). Panels (b) and (c) show the MEPs before and after the pre-processing, 
respectively. When comparing (b) and (c), note that the different MEPs look similar after the pre-processing, 
thus facilitating the training and later use of the neural network.
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Results
Training the neural network on a dataset of 13,340 MEPs required about 2 min and pre-processing an MEP trace 
required 1.2 ms. On average, annotating a pre-processed MEP required 65 µs. The estimated MEP latencies by 
the DELMEP algorithm and corresponding MAE, for the testing and training datasets are illustrated in Fig. 4. 
The similarity between the automated DELMEP and the manual expert annotation suggests a successful training 
process, since the MEPs in the testing dataset were not used to train the neural network.

To provide a practical example of the DELMEP performance, Fig. 5 shows eight MEPs and their correspond-
ing automated and manually annotated latencies. Although such a small sample can only be considered as an 
illustrative example, it provides a notion of how the proposed algorithm performs when used to replace a human 
expert in MEP annotations.

Figure 6 illustrates the error associated with the DELMEP algorithm for the corresponding MEP VPP and 
manually annotated latency. The sub-panel shows the correlation between the DELMEP latency estimation error 
and the MEP VPP, for MEPs with an estimation error equal or higher than 1 ms. From the 3,335 MEPs assessed 
by DELMEP in the testing dataset, 1,895 (57%) had an error lower than 0.5 ms and 2924 (88%) had an error 
lower than 1 ms, making it useful not just in research but also in clinical medical practice.

The results from the validation comparison between DELMEP and Signal Hunter, AHTE, SHTE, and Bigoni’s 
method can be found in Table 1, where the MAE is reported for the entire testing dataset and also divided 
between high- and low-amplitude MEPs. It is important to notice that Bigoni’s method discards MEPs when it 
is not able to find a long enough vector of samples with positive derivatives. The minimum number of samples 
with positive derivatives in our implementation was set to five, following the original author’s implementation11. 
This resulted in 483 out of 3335 MEPs in the testing dataset (15%), most of which corresponded to low-amplitude 
MEPs, being discarded by Bigoni’s method. To make a direct comparison, only the remaining MEPs were con-
sidered to compute the MAE of every method. However, we note that for the cross-validation, in Table 2, the 
entire dataset was used.

The resulting MAE from the five-fold cross-validation when using each batch for testing is reported in Table 2, 
together with the average MAE for all tests and its SD.

The intra-subject variability was analyzed by computing a five-fold cross-validation using data from one sub-
ject at a time, and repeating the process for all subjects. The MAE for each data batch of each subject is reported 
in Table 3, together with the average and SD for all tests. Furthermore, the correlation between error and dataset 
size for every subject is shown in Fig. 7, together with a fitted curve.

The inter-subject variability was analyzed by using the data of one of the subjects for testing and the data from 
the remaining eight subjects for training; this process was repeated for each subject. The MAE for each subject 
together with the average and SD for all tests are reported in Table 4.

Figure 8 shows the results for the additional validation using the dataset from Bigoni et al.11. The MAE from 
DELMEP was 0.7 ms, while that of Bigoni’s method was 0.4 ms. In the case of DELMEP, the highest errors cor-
respond to high-latency MEPs (above 28 ms).

Discussion
Our DELMEP algorithm performed better than traditional hard-threshold based algorithms across different 
MEP amplitude ranges. This improved performance is especially valuable for low-amplitude MEPs, commonly 
recorded at low stimulation intensities, when computing the motor threshold and in inhibitory paired-pulse 
paradigms18,23,24. For example, with the same low-amplitude MEPs (VPP ≤ 100 µV) in the testing dataset, DELMEP, 
Bigoni’s method, SHTE, AHTE and Signal Hunter yielded an MAE of 0.6, 1.0, 7.3, 16.5 and 22.9 ms, respectively; 
with DELMEP being about one order of magnitude more accurate than these algorithms. On the other hand, 
with the same high-amplitude MEPs (VPP > 100 µV) in the testing dataset, DELMEP, Bigoni’s method, SHTE, 
AHTE and Signal Hunter yielded an MAE of 0.5, 0.8, 1.3, 2.8 and 6.3 ms, respectively. This is possibly due to the 

Figure 4.   Automated MEP latency annotations with the proposed DELMEP algorithm in the training dataset 
(green) and testing dataset (orange). The results are compared to the manually assessed values. The MAE is 
presented for both datasets.
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Figure 5.   Illustrative MEPs from the testing dataset and their corresponding automated (dashed violet vertical 
line) and manually assessed (purple vertical line) latencies. These MEPs were not used to train the neural 
network. The similarity between both latencies indicates the successful performance of our DELMEP algorithm.

Figure 6.   Map of the DELMEP algorithm errors in estimating MEP latencies, as a function of the MEP VPP 
amplitude and manually annotated latency. The upper-right panel shows the DELMEP estimation error versus 
the MEP VPP amplitude, for MEPs with latency estimation error higher than 1 ms.
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consistent accuracy of our DELMEP algorithm regardless of the MEP amplitude. Such higher prediction errors 
correlated with lower MEP amplitudes can be explained by the inherently lower SNR, which has a stronger effect 
on methods relying on hard-threshold estimators10.

When tested in our larger dataset (Table 1), the automated annotation by DELMEP was on average 0.3 ms 
more accurate than the state-of-the-art derivative-based Bigoni’s method. Both DELMEP and Bigoni’s method 
retain their accuracy on low-amplitude MEPs, an important feature which is out of reach for all previously tested 
algorithms. When applied to Bigoni’s dataset (Fig. 8), DELMEP shows a slightly larger error than Bigoni’s method 
(0.7 ms and 0.4 ms, respectively). We should note that Bigoni’s method discarded 61 out of the 1561 MEPs in the 
dataset (approximately 4%), of which it was not able to estimate the corresponding latencies. Interestingly, the 
highest MAE of DELMEP corresponded to MEPs with latencies above 28 ms. This can probably be explained 
by the fact that the MEP dataset used to train DELMEP had latencies mostly below 28 ms (see Fig. 4), which 
could potentially affect the performance of the method. Nevertheless, DELMEP and Bigoni’s method show a 
similar accuracy for general applications and are about an order of magnitude more accurate than traditional 
hard-threshold algorithms.

From the user point of view, both DELMEP and Bigoni’s algorithms work by providing the MEP trace as 
an input and obtaining the estimated latency as an output. The machine learning nature of DELMEP makes it 
a more complex algorithm than Bigoni’s method. However, this does not translate into a disadvantage for the 
user, since the code made available with this publication is ready-to-use and no experience in machine learning 

Table 1.   Comparison of mean absolute errors (MAE) obtained with DELMEP, Signal Hunter, AHTE, SHTE, 
and Bigoni’s method for the MEPs in the testing dataset. The MAE is reported for the entire dataset and for 
low/high amplitude MEPs. MEPs discarded by Bigoni’s method were also discarded on the other methods for a 
direct comparison.

Method MAE—low amplitude MEPs (VPP ≤ 100 µV) [ms] MAE—high amplitude MEPs (VPP > 100 µV) [ms] MAE—all MEPs [ms]

Signal hunter 22.9 6.3 7.7

AHTE 16.5 2.8 4.0

SHTE 7.3 1.3 1.8

Bigoni’s method 1.0 0.8 0.8

DELMEP 0.6 0.5 0.5

Table 2.   Cross-validation of DELMEP across the entire dataset. The available data was divided into five 
different batches. In each test, one of the batches was used to test the algorithm and the remaining batches 
to train it. The mean absolute error (MAE) is reported for every batch, as well as its average and standard 
deviation (SD) for all batches.

Cross-validation
MAE [ms]

Average MAE [ms] SD [ms]1 2 3 4 5

0.5 0.5 0.5 0.5 0.6 0.5 0.03

Table 3.   Intra-subject variability of DELMEP. A five-fold cross-validation was performed using data from one 
subject at a time, the process was repeated for all subjects. The table contains the mean absolute error (MAE) 
for every data batch of each subject, together with the average and standard deviation (SD) for every subject.

Subject Nº

Cross-validation
mean absolute error (MAE) 
[ms]

Average MAE [ms] SD [ms]1 2 3 4 5

1 0.6 0.7 0.6 0.8 0.6 0.7 0.08

2 0.5 0.5 0.5 0.5 0.5 0.5 0.01

3 0.6 0.6 0.6 0.6 0.6 0.6 0.02

4 0.7 0.7 1.0 0.9 1.0 0.9 0.14

5 0.5 0.6 0.6 0.6 0.5 0.5 0.03

6 0.5 0.6 0.5 0.6 0.6 0.6 0.03

7 0.5 0.5 0.5 0.5 0.6 0.5 0.03

8 0.6 0.6 0.6 0.6 0.7 0.6 0.05

9 0.4 0.5 0.5 0.4 0.5 0.5 0.04
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is required for using it in research and/or clinical applications. Re-training DELMEP on a new training dataset 
requires just minor changes to the source code and a few seconds of running time in a regular desktop computer. 
Both algorithms require minimal human labor time and, unless modifications to the code are intended, minimal 
interventions and technical knowledge as well.

From a technical point of view, the main difference between DELMEP and Bigoni’s method is that the former 
is a machine learning algorithm, which “learns” how to annotate MEPs through a dataset of examples; while the 
latter is a rule-based algorithm, which finds the latency of MEPs by following a static set of steps. This makes 
Bigoni’s method simpler and a more explicable algorithm than DELMEP. However, an important advantage of 
our deep learning approach is the possibility to pre-train and apply the neural networks on application-specific 
datasets. For instance, separate models can be created for MEPs from the leg, forearm, and hand muscles, which 
naturally have distinct latencies25,26. Therefore, this approach may provide more accurate automated annota-
tions for a wider set of applications. Deep learning algorithms can also be used in active-learning processes to 
constantly and automatically improve the accuracy of their annotations27–29, by periodically retraining them on 
data generated during their utilization. This is of special importance for applications on personalized medicine. 
As depicted in Fig. 7, when training and testing on data from a single subject, the latency estimation errors were 
noticeably reduced as the size of the available dataset was increased. Thus, the proposed DELMEP algorithm 
could be trained on already-available annotated MEPs of one particular subject, and thereafter used to automate 
the annotation of MEPs of this subject, in order to ensure the best possible accuracy. This is a feature that non-
machine learning algorithms do not have, due to their static set of rules.

We should note that a deep learning-based algorithm requires a large dataset for training. However, for a 
research lab already performing experiments using MEPs, there might be a suitable dataset available, since just 
a few sessions can produce thousands of MEPs. Data from previous studies are useful even if they were recorded 
on different muscles and using a different setup (e.g., with a different sampling frequency or stimulation para-
digm). Moreover, if more MEPs are required, there is no need for the same expert to annotate them. However, 
DELMEP would benefit from different experts annotating different sections of the dataset, as that would reduce 
the chance of the algorithm overfitting to biases that could be present in a single expert (e.g., a tendency to 
under- or over-estimate MEPs latencies). In this regard, we note that DELMEP was trained on MEPs annotated 
by a single expert. There was a 0.20 ms increase in the MAE (0.50–0.70 ms) when comparing the results from 
testing against the same expert used for the training, and a committee of three independent experts on a differ-
ent dataset. This increase could be partially caused by having used a single expert to annotate the MEPs in the 
training dataset. However, this is still a state-of-the art accuracy. Moreover, using a single expert to annotate 
the latencies facilitates and drastically speeds up the process. On the other hand, the MAE of Bigoni’s method 

Figure 7.   Relation between the average MAE obtained during the intra-subject cross-validation tests and the 
dataset size of every subject (number of MEPs). Each data point represents a different subject in the dataset.

Table 4.   Inter-subject variability of DELMEP. The data from one subject was used for testing and the data 
from the remaining subjects for training. This process was repeated for every subject. The mean absolute error 
(MAE) for every subject, together with its average and standard deviation (SD) are reported.

Inter-subject mean absolute error (MAE) [ms]

Average MAE [ms] SD [ms]1 2 3 4 5 6 7 8 9

0.7 0.6 0.7 0.5 0.6 0.6 0.5 0.7 0.5 0.6 0.1
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when tested on their own dataset versus on our dataset increased 0.40 ms (from 0.40 to 0.80 ms), indicating that 
a variation in accuracy of this magnitude is possible even if the algorithm is not based on machine learning. As 
a reference, Bigoni et al.11 found a difference of about 0.40 ms when comparing the estimation of two experts.

We should also emphasize that the low computational cost associated with our DELMEP algorithm allows 
it to be efficiently used in real-time closed-loop brain stimulation protocols30,31 and combined with multi-coil 
TMS electronic targeting for fast and automated cortical mappings32–34, as it requires roughly 1 ms to process 
an MEP in a regular desktop computer.

Conclusions
We developed a deep learning-based algorithm to annotate MEP latencies automatically without the need for 
a human expert intervention. The main difference between our algorithm and previously reported solutions is 
that the deep learning nature of DELMEP allows it to learn and improve based on the available data, making it 
an ideal candidate for personalized clinical applications. The accuracy of our DELMEP algorithm was practi-
cally independent of the amplitude of the MEP, a feature only found in Bigoni’s method, as all threshold-based 
algorithms considered in this study failed this test. We demonstrated that DELMEP has a high accuracy on two 
independent datasets. The millisecond-level automated annotation in our proposed DELMEP algorithm opens 
a possibility for real-time assessment of MEP latencies in closed-loop brain stimulation protocols.

Data availability
The data will be provided upon a reasonable request (including but not limited to reproducibility and further 
related analysis). Requests should be sent to the corresponding author and the data confidentiality requirements 
should be strictly followed according to our ethical permission statement. The Python implementation of the 
DELMEP algorithm used in this study is available at https://​doi.​org/​10.​5281/​zenodo.​79204​67 and the repository 
for development can be accessed at https://​github.​com/​conne​ct2br​ain/​delmep.
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