
An Approximate Carry Disregard Multiplier with

Improved Mean Relative Error Distance and

Probability of Correctness

N. Amirafshar∗, A. S. Baroughi∗, H. S. Shahhoseini∗, and N. TaheriNejad†

∗ Iran University of Science and Technology, Tehran, Iran

E-mail: {nima amirafshar, sadighbaroughi a}@elec.iust.ac.ir, shahhoseini@iust.ac.ir
† TU Wien, Vienna, Austria

E-mail: nima.taherinejad@tuwien.ac.at

Abstract—Nowadays, a wide range of applications can tolerate
certain computational errors. Hence, approximate computing has
become one of the most attractive topics in computer architecture.
Reducing accuracy in computations in a premeditated and
appropriate manner reduces architectural complexities, and as a
result, performance, power consumption, and area can improve
significantly. This paper proposes a novel approximate multiplier
design. The proposed design has been implemented using 45 nm
CMOS technology and has been extensively evaluated. Compared
to existing approximate architectures, the proposed approximate
multiplier has higher accuracy. It also achieves better results in
critical path delay, power consumption, and area up to 47.54%,
75.24%, and 92.49%, respectively. Compared to the precise
multipliers, our evaluations show that the critical path delay,
power consumption, and area have been improved by 39%, 18%,
and 6%, respectively.

Index Terms—Approximate computing, multiplier, high per-
formance, power efficient, area efficient.

I. INTRODUCTION

Nowadays, there is a significant increase in the volume

of data and operations in various applications, leading to

reduced performance and increased energy consumption due

to hardware limitations. Therefore, it is necessary to improve

performance, power consumption, and energy efficiency using

novel paradigms. One of the efficient methods in this regard is

approximate computing. Approximate computing refers to cal-

culations that compromise exact (fully correct) results to gain

efficiency in speed, area, and power or energy consumption.

Many different applications are inherently error-tolerant. E.g.,

in many applications, due to human perceptual limitations, the

decline in the quality of results is not detectable. Hence, ap-

proximate computing can be used in image processing [1]–[3],

multimedia [4], [5], machine learning [6], [7], and scientific

computing applications [8], [9].

Multiplication is one of the most common arithmetic op-

erations frequently used in various applications. Due to the

critical path delay and significant power consumption of exact

conventional multipliers, approximate multipliers have gained

currency and have improved a sundry of approximable end-

applications. Nowadays, various applications such as IoT,

Neural Networks, Image Processing, and Deep Learning have

turned to low-power processors to improve performance and

reduce area, memory resources, and power consumption. One

of the key methods proposed is using 8-bit or even smaller

arithmetic units [10]–[13]. Given the crucial role that 8-bit

multipliers play in such schemes, we focus this study on the

design of 8-bit multipliers.

This paper proposes an approximate 8-bit multiplier based

on carry disregard, significantly reducing critical path delay

and power consumption compared to existing precise and

approximate multipliers. Applications have different error

tolerance levels, and non-compliance leads to unacceptable

results. Therefore, the error level is one of the essential criteria

we considered in our design, and the proposed multiplier has

the highest accuracy among previous approximate multipliers.

The main contributions of this paper are as follows:

• Design and develop an approximate multiplier based

on an array architecture that takes advantage of carry

disregard in calculating the sum of partial products.

• Evaluation of the proposed design compared to con-

ventional precise multipliers and existing approximate

multipliers in terms of accuracy, critical path delay,

power consumption, and area. As we show, the proposed

approximate multiplier strikes the highest accuracy.

The rest of this paper is organized as follows. Section II briefly

reviews related works and analyzes the conventional precise

multiplier structure and challenges. We propose our novel

approximate multiplier in Section III. Section IV describes

the experimental results and evaluations, and the article is

concluded in section V.

II. RELATED WORK

Approximate multipliers are suitable for energy-efficient

computing in applications with inherent tolerance to inaccu-

racy. Many applications perform extensive computation on an

enormous amount of approximable data. Approximation on

such applications would be considered efficient. Since adders

and multipliers are the fundamental computational units, ap-

proximate adders and multipliers have been explored lately

[14]–[16]. Approximate adders are mostly carry-disregard at

some stages or use carry-prediction scheme-based [16]–[18].

46

2022 25th Euromicro Conference on Digital System Design (DSD)

2771-2508/22/$31.00 ©2022 IEEE
DOI 10.1109/DSD57027.2022.00016

20
22

 2
5t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n

(D
SD

) |
 9

78
-1

-6
65

4-
74

04
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DS
D5

70
27

.2
02

2.
00

01
6

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

Recently, approximate circuits, e.g., adders and multipliers, are

often explored to assure area, latency, and energy efficiency

[19]–[21]. [15] describes the designs of approximate array

multipliers bypassing parts of an accurate array multiplier.

These bypasses are followed by different input and output

assignments within the multiplier, exploring ways of approxi-

mating an accurate array multiplier. [17] proposed an approach

to introduce errors into the truth table of an accurate adder

and design Approximate Adder (AA). Then a complex circuit,

namely an approximate Dadda multiplier (ADM), is designed

using AAs. Authors conclude that their AAs and ADMs have

a trade-off between area, power, delay, and accuracy. [22]

proposed approximate array multiplier designs in which partial

products of the 8×8 array multiplier are divided into Group

A and Group B, with four partial products. Partial product

groups are simultaneously generated and then accumulated

with approximate full adders. Dividing the partial products

into separate groups aims to shorten critical path delay.

The main three multiplier stages are partial product gener-

ation, partial product accumulation, and final addition. AND

gates usually generate partial products. On the other hand,

the carry-save adder (CSA) array, Wallace, and Dadda trees

are common structures for accumulating partial products.

Therefore, the general method for designing an approximate

multiplier is to use an approximation in its three main stages:

the approximations in the partial products generation, approxi-

mations in the partial products tree, and finally, approximations

in adders or adders compressors [23]. Approximate Wallace

and Dadda tree structures have a minor delay, which can

be further reduced by using compressors [24]. In contrast, a

conventional array multiplier has a smaller area and can be

reconfigured due to its modular and homogeneous structure.

The CSA array is the conventional structure used for a

precise multiplier in the form of partial products, which are

then summed together in a specific way. Eventually, the final

result is obtained. If an exact 8-bit multiplier is considered

whose operands are a and b, then a general structure of this

multiplier could be according to Figure 1. Except for the first

row, which contains only AND gates, the other rows of the

multiplier are arrays of Partial Product Units (PPU). Figure 2

shows that each PPU contains an AND gate and is used for

single-bit multiplication of ai and bi. It also has a Full Adder

that computes Sout and Cout outputs using the three inputs:

Sin, Cin, and AND gate output.

The main challenges that a multiplier faces are critical path

delays, power consumption, and area. Consider a precise n-bit

multiplier with an array architecture; In general, the multiplier

cells are divided into two groups of AND gates and PPUs, the

number of each of which is n and n2–n, respectively. Cells

located in the critical path of this multiplier include AND

gates and PPUs. For simplicity in calculating the critical path

delay, the AND gate and OR gate delays are assumed to be

equal to a 1 unit delay, and the XOR gate is considered to

have a 2 unit delay. Hence, the PPU delay is equal to 5 unit

delays. As a result, the critical path delay equals 15n − 19.

For example, in an 8-bit multiplier, the total numbers of AND

gates and PPUs are 8 and 56, respectively. So their numbers

in the critical path are 1 and 20. Figure 1 shows the critical

path in red. The critical path delay in this example is equal to

101 unit delays.

The main factor in the critical path delay is the significant

dependence among PPUs. On the other hand, since PPUs

are the majority of multiplier cells, they significantly impact

power consumption and area. As a result, if the number and

dependence between PPUs can be somehow reduced, better

results can be achieved in terms of critical path delay, power

consumption, and area. In this paper, we aim to achieve low

error because the degree of accuracy determines the quality of

output in various applications.

III. PROPOSED SCHEME

This section deals with the main idea of the proposed

scheme. Our proposed approximate 8-bit multiplier is pre-

sented, which significantly improves critical path delay, power

consumption, and area in contrast to the conventional multi-

plier.

A. Disregarding the Carry in the Computations

The main factor in the critical path delay is the dependence

among the PPUs and the overall number of PPUs in the critical

path. Therefore, reducing the overall number of PPUs and their

dependencies are necessary to improve the delay. Each partial

product is independent of the other and can be added in any

order. Thus, it is possible to divide the partial products into

two distinct groups; In such a case, they can work parallel.

In each group, the partial products are computed and added

together. Finally, the result of the two groups is added together

by a carry look-ahead adder, and the final result is obtained.

Despite the shortening of the critical path due to the parallel

performance of the groups, the dependence between PPUs in

each group continues to cause delays. The core and emphasis

of our proposed method are to reduce the number of PPUs

and shorten the critical path in each of the two groups. As a

result, the overall delay is reduced. Hence, to eliminate these

dependencies, approximate computing can be exploited. The

main factor of delay is the dependence of each PPU on the

carry entered into it, which another PPU calculates in the

previous column. Therefore, by disregarding the carry in the

computations, PPU columns can be independent.

B. Approximate 8-bit Multiplier

In different applications, the error tolerance degree is not

the same, and they are different from each other. One of the

essential criteria in approximate computations is the degree

of accuracy since it determines the quality of the output.

Consequently, the error in the proposed design should be as

small as possible so that it can be used in general in various

applications. Therefore, in this paper, the main goal is to

achieve low error and a more appropriate balance with critical

path delay, power consumption, and area.

Figure 3 shows the proposed approximate 8-bit multiplier

architecture. This multiplier has two groups, A and B, with

47

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

AND

PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU PPU

PPU PPU PPU

PPU

AND AND AND AND AND AND AND

PPUPPUPPUPPU

PPUPPUPPUPPUPPUPPU

b0

b2

a0a1a2a3a4a5a6a7

0

R3R4R5R6R7R8R9R10 R0R1R2

b1

b3

PPU PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU 0

0

0

PPU PPU PPU

PPU PPUPPUPPUPPU

PPUPPU

b5

b4

b6

PPU PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU 0

0

0

PPU
b7

PPU 0

R11R12R13R14R15

Fig. 1: Conventional 8-bit precise multiplier architecture

PPU

FA

Fig. 2: Logic circuit and symbol of PPU

four partial products. In Group B, all PPUs compute the

carry and transfer it to the PPU in the next column. I.e., no

carries are disregarded in this group, and computations are

performed accurately. In Group A, the carry is disregarded

in all partial product units located in columns two, three, and

four. In other words, these units do not have the carry input and

output and are used as the Carry Disregarding Partial Product

Unit (CDPPU). Carry disregarding makes columns two, three,

four, and five independent of each other. The most significant

advantage of this is their parallel and simultaneous operation,

which leads to a shorter critical path and reduced delay.

Figure 4 shows the circuit of the CDPPU, Partial Product

Unit with Half-adder (PPUH), and Partial Product Unit with

Full-adder (PPUF) units. The CDPPU consists of only one

AND gate for single-bit multiplication and one XOR gate

for calculating the sum of the Sin input with the AND gate

output. PPUH works like a conventional PPU, and it has no

carry input. It also uses a Half-Adder to calculate the sum.

PPUH, unlike CDPPU, calculates the carry output. PPUF is

a combination of two conventional PPUs. This unit has two

AND gates to perform two single-bit multiplications. It also

has a Full Adder that computes Sout and Cout outputs using

three Sin and two AND gate outputs. PPUF is used in column

five of Group A.

Using PPUF instead of two partial product units reduces

the carry output number to one output. As a result, the first

partial product unit in column six of Group A has no carry

input and is independent. In Group A, two PPUHs are used,

and the remaining partial product units are conventional PPUs.

Figure 3 shows the critical path in red; This path starts

from the fifth column of Group A and continues until the end

of its computations. Due to the parallel performance of the

two groups, with the completion of Group A computations,

Group B proceeds simultaneously to the end of its seventh

column. Therefore, the critical path continues from the eighth

column to the last column of Group B. Finally, the Carry

Look-ahead Adder (CLA) determines the multiplier output by

calculating the sum of the results of Groups A and B; The

critical path also ends with the end of the CLA calculations.

Thus, the proposed approximate multiplier critical path has an

AND gate, a PPUF, eleven PPUs, and a CLA. Considering

the AND gate and OR gate delays are equal to a 1 unit

delay, the XOR gate is considered to have a 2 unit delay.

Therefore the delay of the PPUF, PPU, and CLA will be

5-, 5- and 6-unit delay, respectively. Therefore, the critical

path delay in the proposed multiplier will be a 67 unit delay,

which is significantly reduced compared to the conventional

multiplier. On the other hand, disregarding the carry and using

CDPPU, PPUH, and PPUF units instead of the conventional

PPU has reduced power consumption and area due to their

simpler circuit. Dividing partial products into two groups also

removes a row of PPUs, another reason for improving power

consumption and area.

48

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

PPU PPU PPU

PPU

CD
PPU

CD
PPU

CD
PPU

CD
PPU

CD
PPU

CD
PPU

AND AND AND AND AND AND AND AND

PPUF

PPUH

PPUH

PPUPPUPPUPPU

PPUPPUPPUPPUPPUPPU

b0

b1

b2

b3

a0a1a2a3a4a5a6a7

0

SA3SA4SA5SA6SA7SA8SA9SA10SA11 SA0SA1SA2

PPU PPU PPU

PPU

AND AND AND AND AND AND AND AND

PPUPPUPPUPPU

PPUPPUPPUPPUPPUPPU

b4

b6

a0a1a2a3a4a5a6a7

0

SB3Sb4SB5SB6SB7SB8SB9SB10SB11 SB0SB1SB2

b5

b7

PPU PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU

PPU 0

0

0

Carry look-ahead Adder

0

4

R4R5R6R7R8R9R10R11R12R13R14R15 R3 R2 R1 R0

Fig. 3: Proposed approximate 8-bit multiplier architecture

CD
PPU

PPUH

HA

PPUF

FA

Fig. 4: Logic circuits and symbols of CDPPU, PPUH, and PPUF

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATIONS

A. Hardware Efficiency Criteria

Critical path delay, power consumption, and area are the

main criteria for evaluating hardware efficiency. We also

consider Power Delay Product (PDP) and Power Area Delay

Product (PADP) as additional criteria that combine the above

single criteria to provide a more holistic assessment of various

designs.

B. Accuracy Criteria

Accuracy criteria indicate the degree of accuracy and conse-

quently the quality of the output results, which are determined

based on the difference between the approximate and the

corresponding exact results. The two criteria used in this paper

are:

1) Probability of Correctness (PC): The PC refers to the

ratio of the number of correct outputs over the total number

of possible outputs. That is,

PC =
#OUTc

#OUTt

, (1)

where #OUTc is the number of correct outputs, and #OUTt

is the total number of possible outputs.

2) Mean Relative Error Distance (MRED): The MRED

refers to the average of the difference between the exact

multiplier output and the proposed approximate output divided

by the corresponding exact output for all possible input

combinations.

MRED =
1

22N

2
2N∑

k=1

|OUTexact,k −OUTapprox,k|

OUTexact,k

(2)

49

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

We used both of these accuracy criteria for the proposed

approximate 8-bit multiplier and calculated them for all pos-

sible input combinations (i.e., 22∗8 = 64K). The PC indicates

the number of correct results, whereas the MRED determines

the amount of error.

C. Experiment Setups

We described the proposed approximate multiplier using

Verilog HDL and verified it using the ISE Design Suite-Xilinx.

Then, using Genus Synthesis Solution, we synthesized the

proposed scheme with 45-nm NanGate technology and used

Cadence to analyze the critical path delay, power consumption,

and area. For error analyses, we used Python and determined

MRED and PC for all possible input combinations.

D. Experimental Results

Table I reports the area, power consumption, delay, PDP,

PADP, MRED, and PC of the proposed design and the base

(accurate) design. Table I reports these numbers for other

designs in the literature and how these numbers were obtained.

Given the similarity and relevance of Ax1 [22] and Ax2

[22], we repeated the simulations for these designs. The key

observations in the obtained results are the extremely low

MRED of 0.0018 and high PC of 67.58%.

In this paper, One of the main goals is to achieve low

error because the degree of accuracy determines the quality

of output in various applications and is one of the crucial

criteria in approximate calculations. Our understanding is that

the error rate depends on two main factors, the number of

carries that each column generates from the partial products,

and the other is where the carries are generated. If we disregard

carries of columns that have less probability of generating

carries and are located among less significant bits, the output

will have a smaller error. Hence, we propose to disregard the

carry produced in the first four columns of Group A.

As Table I shows, the PC of the proposed scheme is

67.58%, which means our design has the correct output in

most cases. The MRED of 0.0018 indicates that when the

output results are not correct and have errors, their error

is significantly small compared to the corresponding exact

results. Regarding hardware efficiency criteria, critical path

delay, power consumption, and area of the proposed design

are 0.64 ns, 81.20 µW , and 278.8 µm2, respectively. PDP is

the product of power consumption and delay, indicating energy

efficiency, which is 52.21 (µW ∗ns) for the proposed design.

PADP is the product of PDP and area, used to evaluate energy

efficiency and area together. The PADP of the proposed design

is 14556 (µW ∗ µm2 ∗ ns).

E. Comparison

Table I shows that the proposed approximate multiplier has

the best PC among the designs reported and the best MRED

compared to existing approximate architectures. PC of the

proposed design is increased by an average of 58.8%, whereas

MRED is improved by an average of 95.3%. Therefore, we

see that the probability of correct output is significantly higher

for the proposed approximate multiplier, and in cases where

an error occurs at the output, the error is significantly smaller

in value.

The proposed solution has a 38.5% improvement in critical

path delay, 18% in power consumption, and 6% in the area

compared to the exact multiplier with the same architecture.

The improvement trend is present in PDP and PADP changes

as well, decreasing by 49.4% and 52.4%, respectively. Com-

pared to the exact multiplier, this significant reduction is due

mainly to the proposed multiplier’s high performance and low

power consumption.

Regarding the critical path delay, power consumption, and

PDP, Akbari et al. [24] (their Design 2) obtained the best

result, followed by Edavoor et al. [25] and Momeni et al. [28]

(Design 2). Akbari et al. [24] (Design 2) is better in delay,

power consumption, and PDP 56.3%, 57.5%, and 81.4%,

respectively, than the proposed multiplier. On the other hand,

the proposed method is 99.4% and 66.63% better in MRED

and PC, respectively, and 60.9% in the area. Compared to

the proposed multiplier, Edavoor et al. [25] is better in delay,

power consumption, and PDP, 48.4%, 37.2%, and 67.7%,

respectively. However, the proposed design is 96.3% and

55.71% better in MRED and PC, respectively, and 88.7% in

the area. As for Momeni et al. [28] (Design 2), compared

to the proposed multiplier, their design is 42.1%, 26.5%, and

57.7% better in delay, power consumption, and PDP, whereas

the proposed method is 99.9% and 66.82% better in MRED

and PC, respectively, and 91% in the area. These three archi-

tectures achieved better results in delay, power consumption,

and PDP due to a significant reduction in the accuracy of the

multiplier. They are among the architectures with the highest

error. In addition, all three of these architectures have a much

larger area than the here proposed multiplier. Indeed, they are

among the architectures with the largest area.

On the other hand, DRUM (3) [29], DSM (3) [30], and

TOSAM (0,2) [21] architectures have the best area, in that

order. At the same time, they are among the architectures

with very low accuracy, and most of them, in terms of delay,

power consumption, and PDP, have a much worse result than

the proposed scheme. DRUM (3) [29], DSM (3) [30], and

TOSAM (0,2) [21] in area are 48.7%, 34.7%, and 32.2%

better than the proposed design, respectively. Nevertheless,

the proposed multiplier in MRED is 98.6%, 98.7%, and

98.2%, better, which is a significant advantage for our design.

Moreover, the proposed design is better in delay, power

consumption, and PDP compared to DRUM (3) [29] by 8.6%,

21.9%, and 28.3% and better than DSM (3) [30] by 20%,

36.5%, and 49%. Whereas TOSAM (0,2) [21] is 9.3% better

in delay, the proposed design is 32.3% and 25% better in

power consumption and PDP.

In addition, PADP, the product of PDP and area, can be used

to evaluate energy efficiency and area for all existing architec-

tures simultaneously. The proposed approximate multiplier is,

on average, 61.2% better than all other existing architectures

in terms of PADP. The only exceptions are Akbari et al.

[24] (Design 2), DRUM (3) [29], and TOSAM (0,2) [21],

50

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Area, power consumption, delay, PDP, PADP, MRED, and PC of different unsigned 8-bit multipliers

Method Designed by Simulated by
Hardware efficiency criteria Accuracy criteria

Area(µm2) Power(µW) Delay(ns) PDP PADP MRED PC(%)

Edavoor et al. [25] [25] 2468 51.01 0.33 16.83 41536 0.0487 11.87

Ax1 [22] Repeated by us 284.6 83.88 0.78 65.76 18715 0.0759 2.68

Ax2 [22] Repeated by us 266.5 77.30 0.77 59.91 15966 0.1981 0.28

TOSAM (0,2) [21] [21] 186 120 0.58 69.60 12945 0.1010 NR*

TOSAM (1,5) [21] [21] 291 231 0.88 203.3 59160 0.0410 NR*

Ha and Lee [26] [25] 3624 79.24 0.50 39.62 143583 0.0326 24.20

Akbari et al. (Design 2) [24] [25] 713 34.51 0.28 9.66 6887 0.3135 0.95

Akbari et al. (Design 4) [24] [25] 3070 61.47 0.42 25.82 79267 0.0854 16.86

DQ4:2C4 [24] [21] 281 186 0.57 106.02 29791 0.0810 NR*

Gorantla et al. [27] [25] 3715 80.19 0.49 39.29 145962 1.2000 13.06

Momeni et al. (Design 2) [28] [25] 3092 59.69 0.37 22.08 68271 4.2843 0.76

DRUM (3) [29] [21] 143 104 0.70 72.8 10410 0.1260 NR*

DRUM (4) [29] [21] 208 172 1 172 35776 0.0640 NR*

DSM (3) [30] [21] 182 128 0.80 102.4 18637 0.1440 NR*

DSM (5) [30] [21] 355 328 1.22 400.2 142071 0.0300 NR*

This work - Accurate 296.1 99.04 1.04 103.2 30557 0 100

This work - Proposed 278.8 81.20 0.64 52.21 14556 0.0018 67.58

* Not Reported.

all of which are among the architectures with the lowest

accuracy. Akbari et al. [24] (Design 2), DRUM (3) [29], and

TOSAM (0,2) [21] are 52.6%, 28.4%, and 11% better than the

proposed design in PADP, respectively. However, the proposed

multiplier is 99.4%, 98.5%, and 98.2%, better than those in

MRED.

The proposed scheme shows a significant improvement in

power consumption, critical path delay, and PDP compared

to DSM (3) [30], that is, 75.24%, 47.54%, and 86.95%,

respectively. It also has substantial advantages with regard

to area and PADP compared to Gorantla et al. [27], i.e.,

92.49% and 90.03%. On the other hand, PC has the largest

improvement (67.3%) compared to Ax1 [22], and MRED

has the most significant improvement (99.96%) compared to

Momeni et al. [28] (Design 2). In conclusion, the proposed

design has the best accuracy among all existing architectures.

V. CONCLUSION

This paper proposes a novel multiplier using approximate

computations based on carry disregard. Disregarding carries

shortens the critical path and reduces hardware complexity,

thereby improving the critical path delay, power consump-

tion, and area, which, compared to the accurate multiplier,

are improved by 39%, 18%, and 6%, respectively. Unlike

many approximate multipliers, this paper aims at reducing the

accuracy optimally (i.e., minimally) while achieving better or

acceptably good delay, power consumption, and area. Con-

sequently, the proposed multiplier achieves the highest PC

and the best MRED compared to the existing approximate

architectures in the literature and improves them by an average

of 58.8% and 95.3%, respectively. In addition, it has been

able to achieve acceptably good delay, power consumption,

and area.

The proposed design of this paper provides a basis and a

starting point for future research. We believe that this method

can be generalized to larger multipliers such as 16-, 32-, and

64-bit. Like the proposed 8-bit multiplier, we expect them to

achieve high accuracy and better hardware efficiency, which

is in our future works. Also, having many designs using

compressor-based multi-operand adders in the literature gives

us the idea of combining our proposed design with such

methods. Since the two methods are compatible, we expect

to achieve further improvement by doing so. This is an idea

that we plan to examine in the future.

We also intend to extend carry disregard in the proposed

scheme for the various existing scenarios and analyze the

results obtained for accuracy, delay, power consumption, and

area. Also, the ability to dynamically adjust the accuracy in

the proposed design and use it in different applications with

different error tolerances is another extension of this work,

which we intend to pursue in the future.

REFERENCES

[1] C. Ossimitz and N. TaheriNejad, “A fast line segment detector using
approximate computing,” in IEEE International Symposium on Circuits

and Systems (ISCAS), May 2021, pp. 1–5.

[2] S. E. Fatemieh, M. R. Reshadinezhad, and N. TaheriNejad, “Approx-
imate in-memory computing using memristive imply logic and its
application to image processing,” in 2022 IEEE International Symposium

on Circuits and Systems (ISCAS), 2022, pp. 1–5.

[3] U. Lotrič, R. Pilipović, and P. Bulić, “A hybrid radix-4 and approximate
logarithmic multiplier for energy efficient image processing,” Electron-

ics, vol. 10, no. 10, 2021.

[4] B. Garg and Y. Bisht, “A novel high performance reverse carry propagate
adder for energy efficient multimedia applications,” in 2019 IEEE

International Symposium on Smart Electronic Systems (iSES) (Formerly

iNiS), 2019, pp. 296–299.

[5] F. Tu, S. Yin, P. Ouyang, L. Liu, and S. Wei, “Reconfigurable ar-
chitecture for neural approximation in multimedia computing,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 29,
no. 3, pp. 892–906, 2019.

51

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

[6] P. Yin, C. Wang, H. Waris, W. Liu, Y. Han, and F. Lombardi, “Design
and analysis of energy-efficient dynamic range approximate logarithmic
multipliers for machine learning,” IEEE Transactions on Sustainable

Computing, vol. 6, no. 4, pp. 612–625, 2021.

[7] X. Hu, T. Chen, H. Huang, Z. Liu, X. Li, and X. Xiong, “Efficient
field-programmable gate array-based reconfigurable accelerator for deep
convolution neural network,” Electronics Letters, vol. 57, no. 6, pp. 238–
240, 2021.

[8] A. Pothen, S. M. Ferdous, and F. Manne, “Approximation algorithms in
combinatorial scientific computing,” Acta Numerica, vol. 28, p. 541–633,
2019.

[9] B. Grigorian and G. Reinman, “Accelerating divergent applications
on SIMD architectures using neural networks,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 12, no. 1, pp. 1–23,
2015.

[10] A. Garofalo, G. Tagliavini, F. Conti, L. Benini, and D. Rossi, “XpulpNN:
Enabling energy efficient and flexible inference of quantized neural
networks on RISC-V based IoT end nodes,” IEEE Transactions on

Emerging Topics in Computing, vol. 9, no. 3, pp. 1489–1505, 2021.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” Journal of Machine Learning

Research, vol. 18, no. 187, pp. 1–30, 2018. [Online]. Available:
http://jmlr.org/papers/v18/16-456.html

[12] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in 2018 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[13] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-
aware automated quantization with mixed precision,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 8604–8612.

[14] J. Lee, H. Seo, H. Seok, and Y. Kim, “A novel approximate adder
design using error reduced carry prediction and constant truncation,”
IEEE Access, vol. 9, pp. 119 939–119 953, 2021.

[15] P. Balasubramanian, R. Nayar, and D. Maskell, “Approximate Array
Multipliers,” Electronics, vol. 10, p. 630, 2021.

[16] W. Choi, M. Shim, H. Seok, and Y. Kim, “DCPA: Approximate adder
design exploiting dual carry prediction,” IEICE Electronics Express,
vol. 18, no. 23, pp. 20 210 431–20 210 431, 2021.

[17] G. Anusha and P. Deepa, “Design of approximate adders and multipliers
for error tolerant image processing,” Microprocessors and Microsystems,
vol. 72, p. 102940, 2020.

[18] H. Seok, H. Seo, J. Lee, and Y. Kim, “COREA: Delay- and energy-
efficient approximate adder using effective carry speculation,” Electron-

ics, vol. 10, no. 18, 2021.

[19] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, and A. Kumar, “Area-optimized low-latency approximate
multipliers for FPGA-based hardware accelerators,” in Proceedings of

the 55th Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: Association for Computing Machinery, 2018.

[20] R. Nayar, P. Balasubramanian, and D. L. Maskell, “Hardware optimized
approximate adder with normal error distribution,” in 2020 IEEE Com-

puter Society Annual Symposium on VLSI (ISVLSI). Los Alamitos, CA,
USA: IEEE Computer Society, jul 2020, pp. 84–89.

[21] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM:
An energy-efficient truncation- and rounding-based scalable approximate
multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 27, no. 5, pp. 1161–1173, 2019.

[22] H. Waris, C. Wang, W. Liu, and F. Lombardi, “AxSA: On the design
of high-performance and power-efficient approximate systolic arrays for
matrix multiplication,” Journal of Signal Processing Systems, vol. 93,
no. 6, pp. 605–615, 2021.

[23] H. Jiang, F. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proceedings of the IEEE, vol. PP, pp. 1–28, 08 2020.

[24] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Dual-quality
4:2 compressors for utilizing in dynamic accuracy configurable multipli-
ers,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 4, pp. 1352–1361, 2017.

[25] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, “Approximate
multiplier design using novel dual-stage 4:2 compressors,” IEEE Access,
vol. 8, pp. 48 337–48 351, 2020.

[26] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors and
error recovery modules,” IEEE Embedded Systems Letters, vol. 10, no. 1,
pp. 6–9, 2018.

[27] A. Gorantla and D. P, “Design of approximate compressors for multi-
plication,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, april 2017.

[28] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and anal-
ysis of approximate compressors for multiplication,” IEEE Transactions

on Computers, vol. 64, no. 4, pp. 984–994, 2015.
[29] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range

unbiased multiplier for approximate applications,” in 2015 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2015,
pp. 418–425.

[30] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S.
Kim, “Energy-efficient approximate multiplication for digital signal
processing and classification applications,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 23, no. 6, pp. 1180–1184,
2015.

52

Authorized licensed use limited to: Universitaet Heidelberg. Downloaded on October 19,2023 at 10:52:54 UTC from IEEE Xplore. Restrictions apply.

