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Abstract— Given the emergence of the Internet of Things (IoT) Cyber-Physical Systems (CPSs) and their omnipresence,
reducing their power consumption is among the major design priorities. To reduce the power consumption of such
systems, we propose the use of a signal-dependent sampling method in a bottom-up fashion, which can lead to up to
a 94% reduction in the overall system power with negligible or no loss in performance. Moreover, the proposed technique
provides further flexibility for self-aware CPSs to dynamically adjust the number of data samples that are needed
for processing (and consequently reduce the power consumption) based on the application at hand and the desired
trade-off between accuracy and power consumption. To show the merits of the proposed approach, we also present
case studies in the context of an Electrocardiography (ECG) monitoring system as well as a greenhouse (temperature
and relative humidity) monitoring system. We also discuss the trade-offs among the system configuration parameters,
power consumption, and performance (accuracy). We show that the proposed method has a negligible overhead, which
facilitates the real-time operation of the IoT CPS while achieving significant power savings (up to 94%). Even though we
study the effects of using this method for two representative applications, the technique is general and can offer similar
improvements for a wide range of CPSs and resource-constrained IoT systems.

Index Terms— Signal-dependent sampling, Non-uniform sampling, Internet of Things, Cyber-physical systems, Embedded
systems, Wearable healthcare systems, Electrocardiography (ECG) monitoring, Green-house monitoring.

I. INTRODUCTION

THE number of devices that are connected to the In-
ternet, in general, and the wearable healthcare devices,

in particular, are continuously growing. In recent years, the
number of such connected devices have already exceeded the
world’s population [1]. This number is expected to further
grow, and by the end of 2023 it is estimated that Internet of
Things (IoT) technology connects more than 25 billion devices
[2]. Many of these devices enable important applications
such as Wearable Health-care Systems (WHS) which facilitate
improved healthcare and well-being for the general public
(including athletes, patients, and elderly people) at the com-
fort of their personal and/or professional work environments.
Another example application is environmental monitoring, for
instance, temperature and humidity monitoring of houses and
green houses, which would result in energy savings, improved
quality of life and/or cost-efficient crops production [3]–[5].
While the number of sensors and processing elements keeps
growing on many IoT and wearable devices, the power budget
available to them (in particular in WHS) is usually limited
and does not grow at the same rate [6]–[8]. This leads to
an increasing gap between the available power and required
power for such devices to properly function. Therefore, power
management and reducing power consumption is one of the
top priorities.

In wearable devices and Cyber-Physical System (CPS) at
the edge of IoT, the power required for sampling the outputs

of sensors, storing the sampled data, and processing it is
typically a sizable portion of the overall power consumption.
Having more sensors not only results in increased power
consumption for more data collection, but also causes further
increase in power consumption of other blocks of the system.
For example, when in addition to data storage some data
processing and analysis is performed on the Embedded System
(ES) itself, or power is consumed to communicate data when
the data needs to be transmitted to an external unit in the
fog or cloud layer [9]–[12]. Therefore, techniques that can
reduce the number of samples that are required to represent
the original sensory data with no to minimum compromise on
the quality of the signal are highly desirable [13], [14]. Many
such techniques such as compressed sensing [15]–[17], Digital
Compression (DC) [18]–[20], and nonuniform sampling meth-
ods [21] including event-based sampling techniques [22] and
signal-dependent sampling [23] have been used to alleviate the
cost of conventional Nyquist-rate (uniform) sampling.

Previously, we have shown how an analog signal-dependent
sampling circuit can be implemented and integrated into sam-
pling circuit (before Analog-to-Digital Converter (ADC)) [23].
However, changing the internal Application Specific Integrated
Circuit (ASIC) design of an ES is not always a cost-effective
solution. Furthermore, in many applications, to improve the
time-to-market, it is desired to implement IoT devices using
off-the-shelf components. Therefore, in this work, we propose
and show how we can use the concept of signal-dependent
sampling at the system-level to save power. Furthermore,
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we show that by changing only the underlying software
in an existing ESs one can achieve performance improve-
ments (especially, regarding power-consumption) in resource-
constrained systems. As proof-of-concepts, we evaluate this
technique in the context of an ECG-based WHS and IoT-
edge device for monitoring and controlling the temperature
and relative humidity of green houses in a self-aware fashion.
Since different applications require different levels of accuracy,
it is important to be able to tune/control the number of required
samples to reproduce the signal with the desired quality. Such
tunability is offered by the proposed approach, which allows
the system to reduce its power consumption while still meeting
the accuracy requirements. We investigate various parameter
settings and present their effects on the performance (accuracy
of detection) and power savings of the system for different
applications.

The organization of the rest of the paper is as follows:
Section II overviews the concepts of top-down and bottom-up
design in self-aware systems. Section III analyzes the power
consumption in IoT ES and CPS, and provides insights in
identifying changes in the system that are most effective in
reducing power. Section IV presents the signal-dependent sam-
pling technique in the context of the proposed CPSs. Section V
shows the hardware setup and test bench of our proof-of-
concept ECG system. Section V-C presents the performance
of the proposed method in a variety of end-applications based
on ECG. Section VI showcases using the proposed method
in an IoT system for monitoring the temperature and relative
humidity of a green-house. In Section VII, we summarize the
performance improvements as well as the overhead due to the
use of the proposed method. In Section VIII, we compare
the proposed method with other state-of-the-art works in the
literature. Section IX provides concluding remarks.

II. A BRIEF OVERVIEW OF COMPUTATIONAL
SELF-AWARENESS

One of the techniques, which has been proven to be helpful
in reducing the amount of data and data processing is computa-
tional self-awareness, see e.g., [13], [24]–[27]. Computational
self-awareness has been studied and applied in a wide range
of cyber-physical applications [28], such as machine learn-
ing [29]–[32], industrial applications [33], [34], and healthcare
systems [13], [30], [35]. In such a self-aware system, the
system monitors itself and its performance, and adjusts its
operation based on the internal and external conditions to meet
the desired requirements [36]. Such decisions (e.g., adjusting
the number of data samples) could be taken in a top-down or
a bottom-up fashion [37].

In the top-down decision making, at the high-level and based
on the overall system goals and conditions, the decisions to
adjust the operation of the sensory unit are made [38]. For
example, in [13], based on the health conditions of the subject
and its current activities, the system adjusts the sampling rate
and communication settings of the sensors and the wearable
gadget to save up to 50% in power consumption. Although the
power saving is significant, such top-down approaches can be
conservative [24], [39] and thus there may be further room for
performance improvements.
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Fig. 1: Block diagram of a typical wireless-connected IoT
gadget.

Another approach is the bottom-up decision making, where
some decisions are initiated and made at the lower levels of
the system. For example, the sensory module itself can change
its sampling rate based on the changes that it observes in
the incoming signal [14], [26]. In such approaches, a critical
concept is the definition of “events” or “changes” which
heavily depends on the application. An optimal setting for one
application could be either too conservative or too inaccurate
for another application which could lead to unnecessarily
large power consumption or loss of information. To avoid
such undesired conditions, the designer during the design
process (design-time) or the (self-aware) system during the
run-time should be able to tune/adjust the parameters of the
system to ensure an optimal operation. This property is one
of the key features of the proposed method and we will
show how the proposed approach improves on the properties
of the IoT systems, especially power consumption, without
compromising the functionality of the system.

III. POWER CONSUMPTION IN IOT SYSTEMS

To find a solution for reducing the power consumption of
IoT devices, it is important to understand the contribution of
various building blocks of the system to the overall power
consumption. Generally, as shown in Figure 1, an IoT system
consists of the following subsystems; an analog block (sensors
and their associated interface circuits), a mixed-signal/digital
block (ADC and digital signal processing and storage blocks
such as a micro-controller and a memory unit), and the
(wireless) communication block. Contribution of each block
to the power consumption depends on many factors including
the technology used, the application, and the communication
protocol. Here, as a representative example, we further analyze
the power consumption of different building blocks of a typical
ECG patch with Bluetooth Low Energy (BLE) connection.

A. The Analog Block

For an ECG patch, the analog block includes an Instrumen-
tation Amplifier (IA) to amplify the signal to a reasonable
level, analog filters to reject the out-of-band noise, and a
Variable Gain Amplifier (VGA) to control the overall gain
of the analog front-end. Without loss of generality and for the
simplicity, we assume that off-the-shelf components are used
for implementation of all of these blocks. In the example of the
prototype system that we have implemented, the total power
consumption of the analog block is PAFE = 8µA × 3V =
24µW . Considering that in a real-time monitoring system,
the analog block must be continuously operating, the overall
power consumption of the system is more than PAFE .

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 09,2021 at 09:00:33 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3133405, IEEE Sensors
Journal

HADIZADEH et al.: SELF-AWARE DATA PROCESSING FOR POWER SAVING IN RESOURCE-CONSTRAINED IOT CYBER-PHYSICAL SYSTEMS 3

B. Mixed-Signal and Digital Blocks
These blocks of the system typically consist of three main

sub-blocks: the data conversion unit such as an ADC, the
processing unit such as a processor, and the data storage unit,
such as a memory. For example, in one of our prototype
implementations (ECG monitoring system), the processor is
an ARM Cortex-M3 and all the three sub-blocks, namely, the
ADC, the processor and the memory unit are included in a
TI-CC2650 System-on-Chip (SoC). The current draw of the
overall mixed-signal and digital blocks is around 2.3 mA when
the system is operating in its active mode and less than 1 µA
when it is in its standby mode [40]. In this applications, since
the data transfer rate of the wireless block of the system,
which is based on the (BLE) protocol, is 1 Mb/s [41], and
is much higher than the standard sampling rate of ECG (i.e.,
< 1 kS/s), the microcontroller can collect the ECG samples
for specific time intervals and then transmit the collected data
at the end of each such interval. This approach could help the
microcontroller and Radio Frequency (RF) front-end circuits
to be in standby mode (sleep mode) during the most of the
time interval that the data is being collected. As a result,
the power consumption can be lowered. For the process of
sampling, the microcontroller is in standby mode for most of
the time and only at each sampling clock edge wakes up and
samples and stores the taken sample. The power consumption
of the microcontroller (which includes the ADC, processor,
and memory units) can be written as follows:

PMCU = (fs × tMCU × IMCU )× VDD (1)

where fs is the sampling frequency required for the application
(for example, for ECG), and tMCU is the time that the
microcontroller needs to be active in order to take and save
a sample from the input signal. VDD and IMCU are the
supply voltage of the microcontroller and the current drawn
from the supply when microcontroller is in its active mode.
Based on the measurements, the overall energy consumption
for “one” sample to be taken and stored is 224 µs.mA ×VDD.
Considering VDD = 3 V, (1) can be written as:

PMCU = (fs × 0.224× 3)µW. (2)

Due to using BLE, when the number of collected samples
reaches a predefined value, the microcontroller will turn on
the RF front-end circuits to send out the collected samples to
the external receiver device.

In this paper, using a bottom-up approach in the form
of signal-dependent sampling, we substantially reduce the
number of samples to be transmitted and thus reduce the
number of times that RF front-end needs to be turned on.
Thus, we significantly reduce the overall power consumption
of the system, without changing underlying hardware of the
system. We will show that the processing overhead for such a
power saving is negligible.

C. Wireless Communication Block
The wireless communication block or RF block of the sys-

tem is based on a BLE system, which is a Bluetooth protocol
that is designed for low-power systems [42]. This protocol is

designed to facilitate the possibility of the peripheral device
(here the ECG patch) to go into the sleep mode [43].

The used TI-CC2650 SoC includes an RF core which
supports BLE protocol. The current draw of this RF core in
its transmit mode (receive mode) is 9.1 mA (6.5 mA). Note
that each time that the RF block is turned on (coming out
of sleep mode), there is a setup time needed and the energy
consumption of the circuit during these setup times needs to
be taken into account [44] [45]. We can model the energy
consumption with

EC = Esetup + ETx + ERx + ETx/Rx (3)

where EC is the total energy per connection, Esetup is the
energy consumption during RF front-end setup, ETx and ERx

are energy consumption of transmitting data and receiving
acknowledgments needed for the BLE protocol, and ETx−Rx

is the energy needed to change from transmit mode to receive
mode and vice versa. The two plots in Figure 2 show the
details of different actions and energy consumption of a
Connection Event (CE). Figure 2a depicts current drawn from
the supply and the duration of different actions of a CE, in
which 100 bytes of data are sent. For sending 100 bytes, the
transmitter has to send 5 sequential packets in a CE. Figure 2b
shows the measured energy consumption (current × time ×
VDD) of each part during a connection event in which 100
bytes of data are sent from ECG patch to the external device
(in this case, a smartphone). If we split the data into 100-byte
packets, and given that each data sample is one byte, using
Equation (3) we can calculate the total power consumption of
the RF core as:

PRF =
fs
100

× EC

=
fs
100

× (7.4 + 23.5 + 6.5 + 6.9)ms.mA × VDD

= (fs × 0.443× 3)µW (4)

Thus, the total power consumption of the patch can be
calculated as follows:

Ptot = PAFE + PMCU + PRF

= (8 + 224 + 443) µA× 3 V

= 2025 µW (5)

D. Power Consumption and Sampling Rate
Figure 3 shows the contribution of each block to the total

power consumption. As it can be seen in Equation (2) and
Section III-C, the power consumption of the system is directly
proportional to the sampling rate of the input signal. Therefore,
considering Figure 3, we observe that more than 98% of the
power consumption is proportional to the sampling rate. This
motivates the work of this paper, where we use a Signal
Dependent Sampling (SDS) technique to reduce the number
of samples to be transmitted which results in power saving.

IV. PROPOSED APPROACH

As shown in Section III, the sampling frequency plays a
crucial role in the overall power consumption of an IoT device.
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Reducing the frequency of sampling in a top-down fashion
may lead to loss of valuable information, therefore, in the top-
down approach the chosen sampling rate may be conservative.
On the other hand, most bottom-up approaches [46], [47], [48],
and [23], are implemented at the circuit level. Changing the
circuit level structure of an IoT device may not be the most
cost-effective solution and/or would require a longer time-to-
market. Hence, in contrast to [23], here, we propose using a
software-based approach to reduce the power consumption in
a bottom-up fashion using a SDS technique. In this section, we
briefly explain the principles of the SDS technique used here
that decreases the overall number of samples to be processed.
As it will be shown, the proposed method can lower the
average power consumption (for example, by up to 90% in
an ECG patch, and by up to 94% in a green-house monitoring
system), without requiring any hardware changes. In addition,
the approach is compatible with self-aware computing, in
that it allows the system to dynamically adjust the accuracy
(and consequently the power consumption) of the system
based on the requirements and available resources. The signal-
dependent sampling technique used here approximates the
signal with its piece-wise linear representation (i.e., with a

1300µs 129µs 149µs 376µs

7.4mA

10.7mA

8.7mA

12.5mA

Setup Rx Tx-
Rx Tx

20 bytes x 5 times

VDD=3V

(a) Current draw and the duration of different actions of a
connection event, in which 100 bytes of data are sent.

(b) Energy consumption of different actions of a connection
event, in which 100 bytes of data are sent.

Fig. 2: Energy consumption of a connection event.

Fig. 3: Contribution of system blocks to the total power
consumption

sequence of connected linear segments). The decision on
which samples (end points of each line segment) to keep is
made in a bottom-up fashion at the lower level of the system by
the sensory module. The sensory module makes this decision
based on the approximation of the second derivative of the
signal waveform, which is an indication of the rate of change
of the signal. In other words, because we want to approximate
the signal with pieces of lines, as long as a group of samples
can be fitted to a line, we can keep the start-point and the end-
point samples and the time difference between those points.
To check that the new sample is approximately along the same
line as the others, we can compare the slope of the current line
with the slope of the line that the new sample makes with the
current end-point. If these to slopes are close, it means the
the new sample is approximately on the same line. Thus, we
can put the new sample as the new end-point of the line and
eliminate the previous end-point. To implement this algorithm
and decide whether a sample should be retained (making a new
line segment) and later sent to the external gateway device via
RF front-end, the following equation is used:

∣∣∣x[n− 1]− x[n−m− 1]

(m+ 1)× Ts
− x[n]− x[n− 1]

Ts

∣∣∣ ≤ ε, (6)

where x[i] is the i-th sample, n is the index of the current
sample, m is the number of discarded samples, Ts is the
sampling period, and ε is a variable that determines the
acceptable error between the slope of the original line segment
and the estimated slope. Figure 4 shows the block diagram for
implementing this process.

Fig. 4: Block diagram of the proposed method of using SDS
for maintaining or discarding samples.

The first term on the left-hand side of the inequality repre-
sents the relative slope of the line segment between x[n− 1]
and x[n − m − 1] and the second term indicates the slope
between x[n] and x[n − 1]. If the two slopes are close (their
difference is ≤ ε), x[n − 1] can be discarded. Otherwise,
the sample is retained. The example in Figure 5, shows the
dependence of the number of retained samples (yellow dots)
to the shape of the signal and the reconstructed signal for the
traditional Nyquist sampling (red dots, gray line) compared to
the SDS (yellow dots, blue line).

It can be shown that the worst-case error due to SDS
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sampling is:∣∣∣e[i]∣∣∣ = ∣∣∣x[i]− x̂[i]
∣∣∣ = ( N∑

j=i+1

(
1

j
)
)
× ε× i× Ts (7)

where x[i] represents the signal sample at time index i, x̂[i] is
the reconstructed output of the SDS, N is the maximum num-
ber of discarded samples, and e[i] is the difference between
the original samples and the reconstructed samples, which can
be modeled as an added error to the reconstructed signal. In
this method, the error can be either controlled by ε or N . By
setting lower values for ε, the error can be reduced at the cost
of higher number of retained samples. The second approach is
to control the error by N . By limiting the maximum number
of discarded samples one can also control the error. Thus, by
proper selection of ε and N , one can trade-off between the
added error and the number of discarded samples.

To demonstrate the advantages of the proposed method, we
have applied it to two IoT wireless sensor systems, namely
an ECG patch and a green-house monitoring system and the
results are presented in the following sections.

V. ECG PATCH

A. Evaluation Test-Bench

To evaluate the performance of the system, we need a test-
bench, which could provide ECG signal to the input of the
ECG patch, measure the power consumption of the patch, and
retrieve the output of the patch via BLE to analyze the output
data. For this purpose, we have designed a test-bench whose
block diagram is shown in Figure 6a and its implementation on
a Printed Circuit Board (PCB) is shown in Section V-A. The
test-bench consists of the following blocks: A STM32F407
ARM microcontroller [49], which is connected to a Personal
Computer (PC) to send and receive commands and data. The
microcontroller also emulates and provides the appropriate
ECG signal to the ECG monitoring system using a 12-bit
Digital to Analog Converters (DACs). The prepared emulated
ECG signal is filtered and attenuated to mimic a real ECG
signal level (< 1mVpp) and is fed to the ECG patch. Note that
to have a realistic set of input data, these ECG signals are cho-
sen from the database of the “Laboratory for Computational
Physiology” of Massachusetts Institute of Technology (MIT),
“Physiobank” [50]. The microcontroller also measures the

Conventional Sampling

Proposed Algorithm

Conventional Sample Points

Proposed Sample Points

Fig. 5: Example signals to visualize the SDS method. Red dots
show the traditional sampling points and the yellow dots show
the samples retained by this method. The gray signal is the
reconstructed signal based on the traditional sampling while
the blue one is reconstructed based on the SDS approach.

current draw of the ECG patch using a current measurement
circuit to enable us to calculate the power consumption of the
patch. The current measurement circuit includes a low-pass
filter and a current-to-voltage converter circuit. The settling
time of the low-pass filter is designed to be very large (> 1
s) to also take into account the average supply current during
the current spikes when turning on and off the ECG patch to
have a fairly accurate measurement of the average power. The
current-to-voltage converter circuit [51], with a proper gain,
converts the average current to a voltage which can be sampled
using the ADC of the microcontroller. The next sub-block of
the test-bench is a BLE SoC (TI-CC2650), which plays the
role of the “gateway” device (in a typical field operation a
smartphone could be used instead) to receive sampled ECG
data from the patch and send the received data to the PC for
software analysis. Note that as mentioned earlier, the ECG
patch includes its own microcontroller unit (CC2650 from TI
which provides ADC as well as processing and storage units,
and the BLE RF unit).

(a) Schematic block diagram

LPF & 
Att

STM32F407
Connectors 

For 
ECG Patch

CC2650 
Gateway
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(b) Implemented PCB
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S2. Example application of the proposed SDS block in a wearable monitoring system. (c) Sensor and Mobile App.

Fig. 6: Evaluation test bench.
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B. Fidelity of the Sampled ECG Signal
To study the effect of the presented sampling technique

we inject various ECG signals from “Physiobank” database
[50] to the test bench and evaluate the performance of the
implemented system. For each imported ECG record, we use
different values of N and ε for sampling the signal using
the described SDS. The power consumption of the patch
and the sampled data for each record are analyzed using
MathWorks®MATLAB to study the effect of the presented
technique on the average number of samples as well as the
accuracy of reconstructed ECG signal. Figure 7 shows an ECG
signal, which is sampled using both the conventional Nyquist-
rate sampler and the presented SDS. The blue lines show the
reconstructed Nyquist-rate sampled signal and the red lines
show the reconstructed signal using SDS with four different
configurations.

In these tests, (ε,N ) is set to (60mV, 20), (60mV, 40),
(70mV, 75), and (55mV, 256). The results in Figure 7 show
that as N increases, the Compression Factor (CF) –the ra-
tio of Nyquist rate sampling rate to SDS average sampling
rate– increases, at the cost of some deteriorations in the
details of the signal. In the case of N=256, even though the
Post-Reconstruction Signal-to-Noise plus Distortion Ratio (PR
SNDR) is very low (4.9 dB), many meaningful information can
still be extracted from the signal. However, to better detect
health disorders for which the details are important, lower
values of N and ε can be used. On the other hand, to detect
health issues for which only heart beats and a coarse estimate
of ECG are required, we can use a higher value for N and
ε, which results in a higher CF and offers a higher saving in
power. We discuss this in further details in Section V-C.

C. ECG Patch Case Study
In general, the amounts of data compression and power

savings are in trade-off with the acceptable error in the
reconstructed signal. The amount of the acceptable error in
the reconstructed data is dependent on the end-use application.
Here, we will study the effect of the presented SDS on the
detection of some common ventricular problems. To this end,
we first take a closer look at the ECG signal and its features.

D. ECG Signal Basics
The ECG signal is described by its different waves, seg-

ments, and intervals. Each wave represents a specific activity
of the heart. These waves and the intervals between them
provide many useful information including atrial and ventricu-
lar depolarisation and repolarisation, heart rate, rhythm, blood
flow to the heart muscle, effect of abnormal blood pressure,
previous heart attacks, to name a few [52]. Figure 7 shows
some of the important waves in the ECG signal. The waves
are labeled using the letters P, R, and T. P-wave corresponds
to the depolarisation of the atrial myocardium (muscles of the
upper chambers of the heart), and indicates the start of the
atrial contraction that pumps blood to the ventricles [52]. The
R-wave (or R-peak) reflects the depolarization of ventricular
myocardium, and indicates the start of the ventricular con-
traction that pumps blood to the lungs and the rest of the
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Fig. 7: Sampled ECG signal using Nyquist rate (reference) and
SDS for three configurations and their effect on the quality of
the signal.

body. The T-wave corresponds to the repolarisation of the
ventricular myocardium, which is a necessary recovery process
for the myocardium to depolarise and contract again [52]. The
waves and intervals between them provide useful information
to physicians.

E. Cardiovascular Application Analysis
We have developed a custom C# software based on the

algorithms in [53] for analysis of ECG signal and here we
study the effects of the proposed sampling technique using
the developed software. As mentioned earlier, to provide ECG
data that includes disease and arrhythmia, we have used
the “Physiobank” database [50]. This database provides an
extensive amount of recorded ECG data from healthy subjects
and patients who have various cardiovascular diseases. We fed
several ECG signals to the sensor, which we sampled using
the presented SDS and provided the reconstructed signal to
a disease detection software to further study the effects of
various values of N and ε on the accuracy of the disease
detection and also compare the perfomance of the proposed
system with that of the traditional Nyquist-based system. In
these tests, ε× TS is swept from 1 to 7 with a step-size of 1,
and N is swept from 10 to 200 with a step-size of 10.

F. Accuracy of End-Application Analyses
Here, we briefly overview some parameters and cardiovas-

cular disorders and then discuss the results of their analysis
using the software. Based on the required accuracy for each ap-
plication, one can select proper values for sampling parameters
to achieve the optimum power saving in the ECG monitoring
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Fig. 8: Accuracy of heart rate calculation and bradycardia
arrhythmia detection vs power consumption of the patch for
various sampling parameter configurations.

system. In the rest of this paper, percentage of power saving
(PS(%)) is defined as

PS(%) = (1− PSDS

PNyq
)× 100, (8)

where PSDS is the power consumption of the system that uses
the proposed method, and PNyq is the power consumption
of the system that uses the conventional Nyquist sampling
method.

1) Heart Rate: The heart rate (i.e., number of heart beats in
a minute) can be calculated using the ECG signal by counting
the number of the R-Peaks in a given period of time. The
accuracy of the heart rate calculation for various sampling
parameters is shown in Figure 8. As it can be seen from
the figure, the accuracy is more than 99.9% for all cases.
Figure 8 also shows the power consumption of the ECG
patch in each case as a percentage of power consumption of
reference operation mode (conventional patch with Nyquist-
rate sampling). The resulted normalized power consumption is
between 8% and 55% and for most configurations it is closer
to 8%. This means that using SDS we can achieve a power
saving up to more than 90% with a little to no compromise
on the accuracy of heart rate calculation.

2) Bradycardia: This is a condition where the normal heart
rate is below a threshold (usually 60 Beat Per Minute (BPM)
for an adult) [54]. Since this problem is related to the number
of heart beats, it can be identified with a high level of accuracy
in all sampling configurations. Figure 8 confirms this statement
by depicting an accuracy of more than 99.9% for detection for
all cases with the power saving of more than 90%.

3) Sinus Arrhythmia: In Sinus arrhythmia, the variation in
the R-R intervals (interval between two consecutive R-peaks)
is greater than 160 milliseconds. For each ten successive
beats, we calculate the difference between the maximum and
minimum of each consecutive R to R interval. If the result is
more than 160 ms a sinus arrhythmia is detected. As Figure 9
shows using the presented SDS technique, the accuracy of

Fig. 9: Accuracy of detection of Sinus arrhythmia and power
consumption of the patch for various sampling parameters

detection of the sinus arrhythmia is also high (more than 90%),
however, it is lower than that of heart rate or bradycardia.
Due to the fact that the sinus arrhythmia is detected from
the (relative) position of R-peaks, for higher values of N and
ε, inaccuracy in the position of R-peaks can cause an error
in detection of this type of arrhythmia. As Figure 9 shows,
the performance is more sensitive to N as compared to the
ε × TS , therefore, it seems reasonable to select an N in the
lower range (e.g., around 40), and a medium to large ε× TS
to ensure a high accuracy, while significantly improving the
power consumption (by about 90%).

4) T-wave: In addition to R-peaks, there are other important
waves in the ECG signal. One of these waves is the T-
wave. The T-waves are essential to diagnose health issues
such as Paroxysmal Atrial Tachycardia (PAT), atrial flutter,
and ventricular premature beats (VPBs) [55]–[57]. Thus, here,
we study the accuracy of the T-wave detection using the
presented approach. Figure 10 shows the accuracy of T-wave
detection, which is the ratio of the number of detected T-waves
in the presented SDS-based system to that of the reference
system (using the conventional Nyquist sampling with no
SDS). It shows that for higher values of N and ε the T-waves
can be missed, which can also be seen in Figure 7 where
for high compression ratios the quality of reconstructed T-
waves is deteriorated. Therefore, for applications that require
observation of T-waves, conservative values (low N or ε×TS)
should be selected. Note that with low N and high ε×TS we
can achieve lower power consumption as compared to cases
with low ε× TS and high N . In this case, for an accuracy of
more than 97%, up to 78% of power saving for the overall
system can be achieved (Figure 10).

VI. GREEN-HOUSE MONITORING SYSTEM

In this section, we will present another example of IoT CPSs
that benefits from the proposed approach. In this implemen-
tation, the SDS technique is added to the software of a mon-
itoring system, which tracks and controls the environmental
parameters (in this example, temperature and humidity) of a
green-house. As shown in Figure 11 the sensor node includes
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Fig. 10: Accuracy of detection of T-Wave and power con-
sumption of the patch for various sampling parameters

Fig. 11: PCB of the wireless sensor node designed for
environmental data collection

sensors, a microcontroller, and an RF transceiver. In the normal
operation mode, all blocks are in their sleep mode. Every 10 s
the microcontroller wakes up and gets a new sample from
each of the sensors and send them to the external (e.g., edge)
gateway using the RF transceiver. In the proposed system, the
procedure is the same. That is, all blocks are in the sleep mode
and every 10 s the microcontroller wakes up and gets a new
sample from each sensor. However, it does not automatically
transmit the samples and rather uses the SDS method to see if
the data should be retained or discarded. If the sample should
be retained, the microcontroller will turn the RF transceiver
on and sends the data to the edge gateway. The gateway
processes this data and use it to control the temperature and
humidity of the green-house. The gateway system uses the
slope and the value of the previous sample that are measured
in the SDS approach, to reconstruct the intermediate samples
between the previous sample and the new sample. Figure 12
and Figure 13 show the collected temperature and relative
humidity (RH) using the proposed approach and the reference
approach (Nyquist sampling), respectively. As it can be seen
from the figures, the reconstructed signal using the presented
approach is fairly close to that of the reference approach. With
lower Ns and εs, as expected, the reconstruction error would
be lower. From the lower sub-graphs of these figures, we can
see that by increasing the value of N and ε, which in turn

Fig. 12: The Result of various N and ε setting for temperature
measurement and control system

results in a higher CF, the deviation of reconstructed signal
based on SDS from the reference signal becomes more visible.

We further studied this effect by sweeping the N and ε
values and measuring the difference between the temperature
and the relative humidity when the systems uses the proposed
SDS technique as compared to the reference Nyquist approach.
The power consumption of the SDS-based system relative to
that of the reference Nyquist-based system is also calculated.
Figure 14 and Figure 15 show the results of these experiments
for temperature and humidity. As can be seen from these
figures, the 3σ of temperature difference (and percentage
humidity difference) between the two methods is less than
3◦ (and 6%), whereas the saving in the power consumption
is at least 45% and can go up to 94%. In these figures, σ is
standard deviation of the difference between the corresponding
parameter (temperature or relative humidity) in Nyquist mode
and SDS mode. From Figure 14 and Figure 15, we observe that
lower to mid values of N are more suitable, i.e., they result in
higher power savings with very little to no loss in the accuracy.
Regarding the ε, or more importantly, ε × TS , however, the
suitable range for temperature and humidity differ from each
other. For the temperature, as also summarized in Table II, the
lower values of ε × TS (that is, 2 ≤ ε × TS ≤ 8) are more
suitable. For the humidity, on the other hand, middle to lower-
mid values (that is, 10 ≤ ε × TS ≤ 40) are more beneficial.
The suitable range for ε × TS depends on the slope of the
variations of the signal, and the larger the slope of variations
the larger the value should be. Thus, given that the slope of
variations in humidity is higher than that of the temperature,
higher values of ε× TS are more suitable for humidity.

VII. SELF-AWARE MONITORING USING SDS
Table II presents a performance summary of the proposed

method for various applications of ECG and environmental
monitoring. While the proposed SDS method decides which
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TABLE I: Performance summary of SDS in an ECG patch and green-house monitoring system.

End-application Accuracy range Power improvement Recommended N Recommended ε× TS
Heart rate 100 down to 99.9% 45 to 90% 80 ≤ N ≤ 160 3 ≤ ε× TS ≤ 7

Bradycardia 100 down to 99.9% 45 to 90% 80 ≤ N ≤ 160 3 ≤ ε× TS ≤ 7
Sinus 100 down to 90% 45 to 90% 40 ≤ N ≤ 120 3 ≤ ε× TS ≤ 7

T-Wave 100 down to 97% 45 to 78% 20 ≤ N ≤ 80 2 ≤ ε× TS ≤ 4
Temperature 0.1 to 3 ◦C(3σ) 45 to 94% 40 ≤ N ≤ 150 2 ≤ ε× TS ≤ 8

Relative Humidity 0.3 to 6 %(3σ) 45 to 94% 40 ≤ N ≤ 150 10 ≤ ε× TS ≤ 40

Fig. 13: The Result of various N and ε setting for relative
humidity measurement and control system

Fig. 14: 3σ of temperature difference between SDS and
reference Nyquist approach and the power consumption of the
wireless sensor using the proposed SDS technique relative to
that of the reference Nyquist approach for various sampling
parameters

data points should be sent for processing, the results sum-
marized in this table (or similar ones for other applications)
can be used in a self-aware resource-constrained IoT ES to
set the abstraction and accuracy level at run-time and in a
top-down fashion. To do so, the self-aware system can tune
N and ε × TS based on the application and the monitored
parameters (for example, based on the type of disease or the

Fig. 15: 3σ of the difference between relative humidity of the
proposed SDS and reference Nyquist approach and the power
consumption of the wireless sensor using the proposed SDS
technique relative to that of the reference Nyquist approach
for various sampling parameters.

environmental parameter for the applications presented in this
paper) and available resources. In our example, the memory
overhead of using the proposed method is less than 1 kB of
flash memory, and less that 20 B of RAM (for systems with 16
bits or lower-resolution ADCs). The processing time overhead
is less than 2 µs, which is negligible for this and many other
applications, allowing the system to remain real-time. For
instance, the standard (Nyquist) sampling rate of ECG is < 1
kS/s, leading to 1 ms time gap between each two samples.
Hence, the less than 2 µs processing overhead is more than
two orders of magnitude smaller than the allowed range for
remaining real-time. For the green-house monitoring system
the desired sampling rate is much lower (0.1 S/s), making
the processing overhead time further insignificant. Given the
compactness and simplicity of the proposed approach, it can be
implemented at the edge layer. At the same time, the bottom-
up reduction in the number of required samples enabled by
SDS leads to considerable power savings.

Furthermore, a Machine Learning (ML) algorithm such as
reinforcement learning, Naı̈ve Bayesian, or Support Vector
Machine (SVM) can be added to the system to learn the behav-
ior of the system and reach at the optimal configuration at the
runtime. Although, such ML-based approaches require more
computational resources, they are likely within the capacity
of the resources currently available on many edge devices and
on almost all edge gateways. Thus, the added level of self-
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TABLE II: Performance summary and comparison with the state-of-the-art works.

Signal Type ECG Other IoT Signals
Reference [58] [59] [20] [19] [46] This Work [20] [60] This Work

Technique/Architecture LLDC CS DC DC Adaptive Rate SDS DC ADCS SDS
Programmable Accuracy Yes Yes Yes No Yes Yes Yes Yes Yes

Connectivity NA NA BLE BTv1.1 2.4GHz TRx BLE BLE WiFi BLE
CF 1 to 7.94 8 to 17 2.1 to 7.8 2.38 1 to 7.3 1 to 29 NA 1-2.8 1 to 25

System Power Saving 50 to 87% NA 43 to 82% 43% 0 to 80% 45 to 90% 47 to 82% 0 to 50% 45 to 94%

awareness and autonomy of the system substantially increases
and the system will become -to some extent- personalized too.
The ML-based approach could also offload the designer from
benchmarking applications at the design time, which in turn
reduces the time-to-market.

VIII. COMPARISON

Table II presents a performance summary of the proposed
system and compares it with other state-of-the-art designs. The
first part of the table focuses on comparting the proposed
approach with the state-of-the art designs in the context of
ECG monitoring applications. In the second part of the table,
we have compared the proposed approach with other IoT
applications. We have also analyzed and compared our own
method when used in the above-mentioned two contexts.

In the context of ECG applications, we have compared
our work with the following methods: lossless and lossy
direct compression (LLDC), compressed sensing (CS), digital
compression (DC), adaptive sampling rate, and Adaptive Data
Compression Scheme (ADCS). As can be seen from Table II,
SDS provides the highest power saving for the overall system.
It also offers the largest range of CF. That is, up to 1.7×
larger CF compared to the best work listed in the table,
namely [59], and approximately 3.7× compared to others (
[58], [20], and [46] ). A larger CF means more flexibility for
any system, especially self-aware systems, that is, by using the
proposed SDS systems can adjust their sampling configuration
and consequently their performance. Such a high flexibility is
particularly valuable when the proposed method is used in new
contexts and applications, where optimum performance should
be learned online. In the context of other IoT applications,
we can see that the proposed method outperforms [20] and
[60]. In comparison to [60], the proposed method provides
approximately 2× better power saving and and 9× better
CF. [20] does not report any value for the CF for non-ECG
applications. Hence, we cannot compare our work with them
in terms of CF, however, we can see that our proposed method
can lead to ∼1.15× or more power saving.

Comparison of the performance of the proposed method
in the context of the ECG application and other IoT signals
also leads to another interesting observation. Namely, we
can see that even though the proposed approach achieves
a higher CF in ECG applications (compared to the general
IoT applications), the maximum power saving in achieved
in ECG applications is slightly lower. This can be attributed
to the fact that the ECG signal is typically more complex,
with more frequent and sharper changes, as compared to
typical IoT applications, for example, monitoring of the green-
house environmental parameters. Thus, one would expect a
lower CF. However, we need to bear in mind that due to the

slower changes in the typical IoT signals (e.g., environmetal
temperature or humidity), the achievable CF most of the time
is limited by N , whereas in the context of faster changing
signals, such as ECG, ε×TS appears to be a more determining
factor for the maximum achievable CF. This can be explained
by the fact that the Nyquist rate of signals with occasional
changes is determined by those occasional changes, even
though they may happen very rarely. Hence, Nyquist rate is
a significantly more conservative estimate for those signals
than it is for signals with frequent and rapid changes, such as
ECG. Nonetheless, the proposed approach can lead to a better
overall power saving in the IoT applications (e.g., green-house
monitoring), since despite a lower CF, the overall number of
data transmissions (connection events) that are avoided thanks
to the proposed method is higher. Note that as mentioned
earlier, reducing the number of connection events, will save
energy in both data transmission and Digital/RF setup process.

IX. CONCLUSION

In this paper, we proposed using the SDS technique for
processing data in a self-aware fashion on resource-constrained
IoT cyber-physical and embedded systems. We have shown
that this approach requires no hardware changes in the system.
We have showcased the advantages of the proposed system
for a wearable ECG patch used for bio-signal monitoring and
disease detection, and a green-house monitoring system used
to regulate the environmental conditions, namely, temperature
and humidity, of a green-house. The advantages of using the
SDS approach in improving the power consumption of the
overall system are presented. We have also discussed the
dependency of the power consumption to the sampling rate
and system configurations. We have shown that using suitable
configuration, significant power savings can be achieved at
negligible to no cost to the performance of the system.
We have discussed how the user can take advantage of the
programmability of the sampling technique based on the ap-
plication and have the reconstructed signal quality at the level
that is needed to satisfy the requirements of the application at
hand, while saving on the overall power consumption of the
IoT system. We have also shown that such a self-aware system
comes at -virtually- no costs to the system regarding the
overheads of memory and processing time. Examples provided
show that by using the signal-dependent sampling in ECG
systems one can save up to 78% in power without causing any
considerable adverse effects on the quality of the reconstructed
signal. This saving was up to 94% in the case of temperature
and humidity monitoring of a green-house. We advocate that
signal-dependent sampling can produce similar advantages in
many other CPSs and ESs, especially in those used for IoT
applications.
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compressed sensing acquisition system for wireless and implantable
sensors,” in IEEE Custom Integrated Circuits Conference 2010, Sep.
2010, pp. 1–4.

[48] C. Weltin-Wu and Y. Tsividis, “An event-driven clockless level-crossing
adc with signal-dependent adaptive resolution,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 9, pp. 2180–2190, Sep. 2013.

[49] ST, “ARM Cortex-M4 32b MCU+FPU,” ST Microelectronics (ST),
Data Sheet, September 2016. [Online]. Available: https://www.st.com/
resource/en/datasheet/dm00037051.pdf

[50] e. a. Goldberger AL, “Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic
signals. circulation 101(23):e215-e220 [circulation electronic pages;
http://circ.ahajournals.org/content/101/23/e215.full]; 2000 (june 13),”
MIT, Tech. Rep., June 2000. [Online]. Available: http://circ.ahajournals.
org/content/101/23/e215.full

[51] T. Regan et al., “Current sense circuit collection,” Analog
Devices (AD), Application Note, December 2005. [Online].
Available: https://www.analog.com/media/en/technical-documentation/
application-notes/an105fa.pdf

[52] U. R. Acharya, Advances in Cardiac Signal Processing. Springer
Science & Business Media, 2007.

[53] E. Ataman, V. Aatre, and K. Wong, “A fast method for real-time
median filtering,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 28, no. 4, pp. 415–421, August 1980.

[54] J. H. O’Keefe et al., The Complete Guide to ECGs: A Comprehensive
Study Guide to Improve ECG Interpretation Skills, 5th ed. Jones and
Bartlett Learning, 2010.

[55] R. P. Jaakko Malmivuo, Bioelectromagnetism: Principles and Applica-
tions of Bioelectric and Biomagnetic Fields. OXFORD UNIVERSITY
PRESS, 1995.

[56] B. Surawicz and T. Knilans, Chou’s Electrocardiography in Clinical
Practice, 6th ed. Saunders, 2008.

[57] A. L. Goldberger, Clinical Electrocardiography: A Simplified Approach.
The Mosby Company, 1977.

[58] S. Lin, H. Lin, and Y. Lin, “Lossless and lossy direct compression de-
sign with multi-signal symptom detection for low-temperature wearable
devices,” IEEE Sensors Journal, vol. 19, no. 2, pp. 715–725, 2019.

[59] Y. Wang, X. Li, K. Xu, F. Ren, and H. Yu, “Data-driven sampling matrix
boolean optimization for energy-efficient biomedical signal acquisition
by compressive sensing,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 11, no. 2, pp. 255–266, 2017.

[60] H. M. Al-Kadhim and H. S. Al-Raweshidy, “Energy efficient data
compression in cloud based iot,” IEEE Sensors Journal, vol. 21, no. 10,
pp. 12 212–12 219, 2021.

Ehsan Hadizadeh received a B.S. degree in
Electrical Engineering from Shahrekord Univer-
sity in 2010 and a M.S. degree from Sharif Uni-
versity of Technology in 2013. He is currently a
Ph.D. student at Sharif University of Technology
and a visiting research scholar at the Electrical
and Computer Engineering department of the
University of British Columbia. His research in-
terests include RF/Analog IC design and ultra-
low power systems.

Nima TaheriNejad (S’08-M’15) received his
Ph.D. degree in electrical and computer engi-
neering from The University of British Columbia
(UBC), Vancouver, Canada, in 2015. He is
currently an assistant professor at the TU
Wien (formerly known as Vienna University of
Technology as well), Vienna, Austria, where
his areas of work include self-awareness in
resource-constrained cyber-physical (embed-
ded) systems, systems on chip, health-care,
computer architecture, in-memory computing,

and memristor-based circuit and systems.

Rozhan Rabbani received a B.S. degree in
Electrical Engineering from Sharif University of
Technology, Tehran, Iran, in 2018. Her B.S. re-
search was focused on Analog/Mixed signal IC
design, RF circuits and biomedical systems. She
is currently a Ph.D. student at the Electrical En-
gineering and Computer Science department at
University of California, Berkeley. Her research
interests are biomedical circuits and sensor de-
sign and low-power implants.

Zohreh Azizi received a B.S. degree in Electri-
cal Engineering from Sharif University of Tech-
nology, Tehran, Iran, in 2018. Her B.S. back-
ground is in circuit design, MEMS, and biomed-
ical electronics. She is currently a Ph.D. student
at the Electrical and Computer Engineering de-
partment of the University of Southern Califor-
nia, Los Angeles, CA, USA. Currently, her re-
search is focused on image processing, machine
learning, and computer vision.

Shahabeddin Mohin received the B.Sc. and
M.Sc. degrees in electrical engineering from
Sharif University of Technology, Tehran, Iran,
in 2018 and 2020, respectively. He is currently
working toward the Ph.D. degree with the
Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology (MIT), Cambridge, MA. His current
research interests include RF and mm-Wave
integrated circuits for wireless applications. He
was a recipient of the Gold Medal winner of the

National Astronomy Olympiad in Iran, in 2013, the Gold Medal winner
of the International Olympiad on Astronomy and Astrophysics (IOAA) in
Romania, in 2014, and the best data analysis Award in IOAA 2014.

Ali Fotowat-Ahmady (M’80) was born in
Tehran, Iran, in 1958. He received the B.S.
degree from California Institute of Technology,
Pasadena, CA, USA, in 1980, and the M.S.
and Ph.D. degrees in electrical engineering from
Stanford University, Stanford, CA, USA, in 1982
and 1991, respectively. He started his career at
Philips Semiconductor in Sunnyvale, CA, USA,
in 1987 where he developed several integrated
circuits for mobile phones. Since 1992, he has
been with the Department of Electrical Engineer-

ing at Sharif University of Technology, Iran, where he is an Associate
Professor.

Shahriar Mirabbasi (S’95-M’02) received the
B.Sc. degree in electrical engineering from
Sharif University of Technology, Tehran, Iran, in
1990, and the M.A.Sc. and Ph.D. degrees in
electrical and computer engineering from the
University of Toronto, Toronto, ON, Canada, in
1997 and 2002, respectively. Since August 2002,
he has been with the Department of Electrical
and Computer Engineering, University of British
Columbia, Vancouver, BC, Canada where he
is currently a Professor. His current research

interests include analog, mixed-signal, RF, and mm-wave integrated
circuit and system design with an emphasis on communication, sensor
interface, and biomedical applications.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 09,2021 at 09:00:33 UTC from IEEE Xplore.  Restrictions apply. 

https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
http://circ.ahajournals.org/content/101/23/e215.full
http://circ.ahajournals.org/content/101/23/e215.full
https://www.analog.com/media/en/technical-documentation/application-notes/an105fa.pdf
https://www.analog.com/media/en/technical-documentation/application-notes/an105fa.pdf

