
AxE: An Approximate–Exact Multi-Processor
System-on-Chip Platform

A. S. Baroughi∗, S. Huemer†, H. S. Shahhoseini∗, and N. TaheriNejad†
∗ Iran University of Science and Technology, Tehran, Iran
sadighbaroughi a@elec.iust.ac.ir, shahhoseini@iust.ac.ir

† Technische Universitat Wien, Vienna, Austria
nima.taherinejad@tuwien.ac.at, e1027799@student.tuwien.ac.at

Abstract—Due to the ever-increasing complexity of computing
tasks, emerging computing paradigms that increase efficiency,
such as approximate computing, are gaining momentum. How-
ever, so far, the majority of proposed solutions for hardware-
based approximation have been application-specific and/or lim-
ited to smaller units of the computing system and require
engineering effort for integration into the rest of the system. In
this paper, we present Approximate and Exact Multi-Processor
system-on-chip (AxE) platform. AxE is the first general-purpose
approximate Multi-Processor System-on-Chip (MPSoC). AxE is
a heterogeneous RISC-V platform with exact and approximate
cores that allows exploring hardware approximation for any
application and using software instructions. Using the full ca-
pacity of an entire MPSoC, especially a heterogeneous one
such as AxE, is an increasingly challenging problem. Therefore,
we also propose a task mapping method for running exact
and approximable applications on AxE. That is a mixed task
mapping, in which applications are viewed as a set of tasks that
can be run independently on different processors with different
capabilities (exact or approximate). We evaluated our proposed
method on AxE and reached a 32% average execution speed-up
and 21% energy consumption saving with an average of 99.3%
accuracy on three mixed workloads. We also ran a sample image
processing application, namely gray-scale filter, on AxE and will
present its results.

Index Terms—Approximation Computing, Multi-Processor
System-on-Chip (MPSoC), Approximate and Exact MPSoC, Task
Mapping, RISC-V

I. INTRODUCTION

Over the last decade, approximate computing as an emerg-
ing design paradigm has enhanced the efficiency of many
applications such as image processing, multimedia, machine
learning, and scientific computing, which can tolerate the oc-
currence of some errors. Exploiting approximate computing on
RISC-V framework has been investigated lately, since RISC-V
is a free and open Instruction Set Architecture (ISA), enabling
a new era of processor innovation through an open standard.
The energy efficiency of the present RISC-V cores shows
that they are suitable for resource-constrained applications [1].
We advance the RISC-V based approximate computing field
by creating an approximate and exact MPSoC together as a
whole system. Due to the ever-increasing complexity of the
computing tasks and systems, using the full capacity of the
entire MPSoC, especially a heterogeneous one, becomes an
increasingly challenging problem [2], [3]. However, having
heterogeneous hardware and task-specific cores and accelera-

tors (such as approximate accelerators) is necessary to perform
efficiently.

In this paper, we present a heterogeneous MPSoC that
benefits from both approximate and exact cores. We also
propose -to the best of our knowledge, for the first time-
a task mapping mechanism for it. In particular, we propose
a task mapping for a system with approximate and exact
computing cores. In our proposed method, applications are
viewed as a set of tasks that can be run independently on
different processors. Some can be approximated, and some
cannot be (e.g., encryption tasks), and the mapper must find
an optimum solution for assigning a heterogeneous task set to
heterogeneous hardware. Our contributions are as following:

• Design and development of Approximate and Ex-
act Multi-Processor system-on-chip (AxE): a Mixed-
Approximate-Exact MPSoC framework based on RISC-V
ISA, which benefits from approximate and exact cores,

• A mixed task mapping for exact and approximate tasks
or programs on AxE, and

• Evaluating the impact of the proposed hardware and task
mapping solution on various workloads and applications.

The remaining of this paper is organized as follows. In
Section II, we first briefly review the respective literature and
most related works. We describe the hardware and operation
principles of our proposed AxE in Section III. We propose our
method for mixed task mapper in Section IV. Experimental
results and evaluations are described in Section V including
an image processing showcase study. We present performance
evaluation and comparison in Section VI, and finally, in
Section VII, we conclude our paper.

II. RELATED WORKS

Exploiting approximate computing has been investigated
lately. Respective efforts can be divided mainly into soft-
ware and hardware-based approximation techniques. There
are three commonly used software-based approximate com-
puting techniques: loop perforation,input memorization, and
output memorization [4]–[8]. The Loop perforation technique
portrays skipping iterations, which may have a few types
of perforation [5]. Input memorization techniques store the
outcome of function calls to return the same results should
the same inputs occur again. Some approaches relax the strict
quality of inputs and devise approximate memorization [6].

Some may define the value similarity of the close-in-time
inputs and forward the most comparable result [7]. Output
memorization techniques assume that functions exhibit tem-
poral output locality; thus, successive requests of the same
function manage to deliver similar results [8]. Hardware-based
approximations are mostly based on circuits that introduce
errors in the outputs and are mostly used for error-tolerant
applications such as machine learning and image processing.
Since adders and multipliers are the basic computational
units, approximate adders and multipliers have been investi-
gated lately [9]–[11]. Furthermore, many applications perform
extensive addition or multiplications on large amounts of
approximable data. Approximation on such applications would
be significantly more efficient. Approximate adders are mostly
carry-disregarding at some stages or carry-prediction scheme
based [12], [13]. Recently, approximate circuits, e.g., adders
and multipliers, are more often used to assure area, latency, and
energy efficiency [14]–[16]. Other circuits that benefit from
approximation are storage circuits, e.g., Static RAM (SRAM).
Such circuits and approaches are suitable for applications that
require the processing of large volumes of data to achieve
energy efficiency and can tolerate some accuracy loss [17],
[18].

Very recently, exploiting approximate computing on the
RISC-V framework has been investigated. Software adaptation
has been investigated, and an ISA extension has been proposed
alongside a control mechanism for multi-level accuracy [19].
[20] introduced a non-intrusive approach, which does not need
source code modification, for approximation at the low-level
in assembly, which allows approximating virtually all kinds of
executable binaries. On the one hand, software approximation
methods are attainable in target scenarios. On the other hand,
approximate hardware methods are regularly demonstrated and
considered in isolation, employed on specific application-level
configurations. In [21], the authors demonstrated an extension
for a RISC-V architecture that coordinates various hardware-
level approximation techniques. The authors aim to lower
the gap between software and hardware approximation tech-
niques. As briefly reviewed above, in the previous research,
capabilities and benefits of an MPSoC with both exact and
approximate cores have not been explored. Such an MP-
SoC can benefit from approximate computing alongside exact
computation capabilities. Hence, in this paper, we explore
approximation on AxE, a multi-core system with exact and
approximate cores. We also propose a task mapping method
for AxE. To the best of our knowledge, the AxE and the task
mapping method that we propose for running mixed workloads
on AxE are the first of their kind.

III. APPROXIMATE AND EXACT MULTI-PROCESSOR
SYSTEM-ON-CHIP (AXE)

A. High-Level Hardware Architecture

The overall number of cores and the type of cores in
AxE is configurable. In this paper, we generally consider an
MPSoC system with a total of T node, in which M cores are
enhanced with an approximate computing accelerator and N

Fig. 1: Overview of the current instant of the proposed AxE
framework.

cores are typical processors with exact computing capabilities
only. Mapping different tasks to these cores based on the
characteristics of the task, run-time requirements, capabilities,
and availability of the cores is one of our main research
questions.

For this paper, we have instantiated a specific version of this
generic system, shown in Figure 1. Although both T and the
ratio of M and N are configurable, for this paper, we chose
T = 4, M = 1, and N = 2. One of the two typical cores
is the host/controller processor and one node is the memory
controller. This leaves one exact and one approximate core
for the computation. The base cores are PicoRV32, which
supports five RISC-V ISA extensions i.e., RV32E, RV32I,
RV32IC, RV32IM, and RV32IMC. For our current instance,
we chose RV32I and RV32IM subsets to keep the system
as small as possible [22]. The approximate core is enhanced
with an approximate multiplier called “EvoApprox8b”, which
we have obtained from [23]. In the rest of this paper, we
refer to the PicoRV32 cores with approximate multipliers,
as PiXoRV32. For the Network-on-Chip (NoC), we used a
flexible RTL generator for fast, FPGA-friendly Networks-on-
Chip (CONNECT) [24].

B. Approximate Multiplier Integration

The approximate core (PiXo) in AxE is based on the Pico
core, utilizing an approximate multiplier. The Pico cores we
have used implement the RISC-V RV32IMC Instruction Set.
It can be configured as RV32E, RV32I, RV32IC, RV32IM,
or RV32IMC core and optionally contain a built-in interrupt
controller. The Pico core also utilizes a co-processor interface,
which we use to add an approximate multiplier to Pico
and obtain PiXo. The Pico Co-Processor Interface (PCPI)
can implement non-branching instructions in external cores.
When an unsupported instruction is encountered, and the PCPI
feature is activated, then a validation signal is asserted, the
instruction word itself is output on the instruction bus, the two
sources fields are decoded, and the values in those registers
are output on the respective PCPI outputs. An external PCPI
core can then decode the instruction, execute it, and assert a
ready signal when the execution of the instruction is finished.
The PicoRV32 core will then decode the destination field of
the instruction and write the value from PCPI output to the

Fig. 2: AxE control scheme overview: a) system overview, b) control steps

respective register. When no external PCPI core acknowledges
the instruction within 16 clock cycles, an illegal instruction
exception is raised, and the respective interrupt handler is
called.

C. System Operation

Since, in this work, applications are considered as a set
of tasks that can be executed independently on different
processors, the host node serves as a task mapper that points
the processors to specified programs’ address in memory and
thus assigns them the respective task. The host turns on the
processors whenever they have to run a task and turns them off
when they have executed every task specified by the mapping
program running on the host. This method is used under a
clock gating scheme to ensure minimal power consumption
and avoid system crashes due to “TRAP” signals.

D. Control Scheme

Our current instant of AxE consists of a host/controller
node, two computational nodes, a memory controller, and an
NoC. The control is done over the NoC and uses a control
module to record what programs the nodes should execute.
The control scheme can be described in 5 steps as follows
(for a better understanding, we refer the reader to Figure 2 for
visualization of the system and control scheme):

• Node reading a program: Once the system starts, the
supervisor modules of the nodes initiate communication
with the host to see if there are any program their
respective Central Processing Unit (CPU) should execute.
This is done via an Advanced eXtensible Interface Bus
(AXI) read request. The programs are represented by
their starting address in the memory and returned to
the supervisor module in the rdata field of instruction.
If rdata is 0, there is no program set for the node.
Address 0 is reserved and is the start of the host/controller
program, so no other program can start at this address.
The read request from the supervisor module is special
because of the address that is used. Every read and

write request, where the Most Significant Bit (MSB) of
the address is set, is considered a control signal. In the
memory controller, the detector identifies these requests
by checking the address and forwards these requests to
the control by setting the AXI demultiplexer output (see
Figure 2). Every other request is sent to the memory.

• Host/Controller setting a program: Via the software
running on the host/controller CPU, a program can be set
for a node, e.g., NODE 1 = PROG MUL; The controller
software uses #defines. For the previous assignment, the
following is necessary:

1 #define PROG_MUL (0x1f0e8)
2 #define NODE_1_ADDR (0x80000098)
3 #define NODE_1 *((volatile int*)

NODE_1_ADDR)↪→

Here, 0x1f0e8 is a hex value that is the starting address
of the corresponding program in the memory. So if a
CPU started to read from this address, it would start to
execute the program, for example, “PROG MUL.” The
address used to identify the node in the control module
is 0x80000098. This is the address that is used in the AXI
requests. Generally, MSB=1 is specified for the control
unit and not for the memory. When the address has an
MSB=0, then it can access the memory. On the hardware
side, the code for the control module can be summarized
as follows:

1 pico_sel = latched_awaddr[
PICO_MSB:PICO_LSB];↪→

2 if (latched_awaddr[INDEX_PROG]==1'b1)
3 begin
4 axi_offsets[pico_sel] = latched_wdata;
5 if (latched_wdata == 0)
6 active[pico_sel] = 1'b0;
7 else
8 active[pico_sel] = 1'b1;
9 end

• Node reading a program: Once the supervisor module
reads an address that is not 0, it turns on the CPU and sets
the AXI to offset the read address. This offset is needed

TABLE I: Three studied workloads

Programs Workload 1 Workload 2 Workload 3
AES * *

blowfish * *
dhrystone *

msort *
SHA256 *
SpMVM * *** ****

as every CPU starts reading from address 0 and each
program is compiled the same way. The offset added to
the address essentially moves all the reads and writes to
the right memory space. So instead of reading from 0, the
CPU reads from 0+0x1f0e8 in the case of the previous
example. The same signal is used to turn on the CPU
is also connected to the AXI multiplexer and switches
the AXI communication from the supervisor module to
the CPU. The supervisor module stops reading from the
control and waits for the CPU to finish. In the hardware,
such a read operation can be processed in the control
module using:

1 pico_sel = latched_araddr[
PICO_MSB:PICO_LSB];↪→

2 if (latched_araddr[INDEX_PROG]==1'b1)
3 latched_rdata = axi_offsets[pico_sel];

• Node’s CPU executing the program: The node’s CPU
is now executing the program, reading from the memory
as the MSB of the addresses is not set to 1, instead of
reading from the control. Although the CPU of a node
could read from the control unit, it is not intended to
do so. While the CPU is executing the program, the
host/controller can read from the control unit to get the
state of the nodes. This operation returns the busy flag
register. There is no way for the controller to interfere
with the execution or terminate it. The busy flag register
can be obtained by:

1 int busy = GET_BUSY;

• Node’s CPU signaling completion: Once the execution
on the node’s CPU concludes, it writes a certain value to
a certain address. This is detected by the detector who
signals the completion to the supervisor module. The
supervisor modules turn the CPU off and writes a 0 to
the control, representing that there is now no program
set for this node. As soon as this information has been
received, the control also changes the flag in the busy
register. After this step the clock gating module stops
the clock on the node’s CPU. Node’s CPU remains off
until the node’s supervisor module finds new programs
assigned to its respective CPU (Step 1).

IV. TASK MAPPING ON AXE

A. Mixed Task mapping

Since the PiXoRV32 has an exact multiplication execution
unit alongside the approximate multiplication unit, it can
execute both approximable and non-approximable tasks. On
the other hand, PicoRV32 can execute only exact tasks, i.e.,

assigning approximable tasks to this core leads to exact
calculations for those tasks. Therefore, to ensure the highest
possible time savings, the task mapper has to ensure that
approximable programs are assigned to the PiXoRV32 pro-
cessor as far as possible and non-approximable ones are not
unnecessarily assigned to it (especially, if PicoRV32 is free
and available to run non-approximable tasks). Hence, we first
consider assigning approximable tasks to the PiXoRV32 core
and non-approximable tasks to the PicoRV32 queue. In some
cases, this leads to an imbalance in the length of the two
queues in terms of the necessary time to finish processing
all tasks in the queue. Therefore, we move tasks from the
lengthy queue to the slighter queue until they become equally
protracted or switch place in the duration rank. If they switch
places, we reconsider the assignment of the very last task that
we replaced from one queue to another. Since the queues will
not be equally long, we assign the reconsidered task to the
PicoRV32 to ensure that if any of the two queues must be
additionally succinct, it is the PiXoRV32 core that finalizes the
execution of all assigned tasks earlier. This way, if any new
approximable task has to be assigned, it has a shorter waiting
time and, more importantly, does not have to be assigned to
the PicoRV32 for exact computation, even though it could be
approximated.

B. Workload Description

For our evaluations, we designed three workloads, shown
in Table I, out of five non-approximable programs and one
approximable program called Sparse-Matrix Vector Multipli-
cation (SpMVM). The combinations of programs have been
chosen to fairly create different load balances among non-
approximable and approximable programs. The AES, blow-
fish, and SHA256 programs are related to encryption and
cryptography; hence any approximation would conclude an
undesirable result. The others do not have any calculations that
PiXoRV32 can accelerate via approximation, i.e., they have no
approximable multiplications. Each star in Table I shows the
execution of one instant of that program; hence, more stars in
a column show the repetition of that program in that workload.
We note that these workloads serve as a proof-of-concept, and
we are aware that for more thorough evaluations, we need a
more extensive and diverse set of applications, which is among
our plans.

V. EXPERIMENTAL RESULTS

A. Speed

We ran the three workloads on the described hardware and
compared it with the execution of the same workload using
only exact cores. In other words, the tasks were mapped either
on two exact computation cores, or on one exact and one
approximate core (AxE). Table II presents the number clock
cycles for execution of each studied program on fully exact
and on our AxE systems at 50MHz clock frequency.

TABLE II: Execution cycles and energy consumption of
studied programs

Programs
Execution Clock Cycles

(millions)
Energy Consumption

(pJ)
Exact AxE Exact AxE

AES 82.58 82.58 8.38 8.67
blowfish 19.82 19.87 2.01 2.09

dhrystone 1.33 1.33 0.14 0.15
msort 1.07 1.07 0.11 0.12

SHA256 2.53 2.53 0.26 0.27
SpMVM 22.01 9.71 2.23 1.02

TABLE III: Power consumption details of the exact and
approximate cores

PicoRV32 PiXoRV32
Cells 6659 7258
Leakage Power (mW) 0.747 0.809
Dynamic Power (mW) 4.32 4.44
Avg. Power Consumption (mW) 5.07 5.25

B. Energy

To demonstrate energy consumption in our proposed
method, we analyzed both PicoRV32 and PiXoRV32 cores in
Cadence® Genus™ Synthesis Solution using 45nm NanGate
technology. The power consumption and the area (number
of cells) of each core are detailed in Table III. Based on
these numbers, the energy consumption of each workload has
been analyzed. The PiXoRV32 core is a bit larger than the
PicoRV32 (it has both exact and approximate multipliers);
hence, it has a slightly higher power consumption. Based
on our evaluations, shown in Table III, the difference in the
leakage power of the cores is negligible in comparison to the
total power consumption (1%), which can be alleviated by
using a clock gating scheme, as we mentioned in Section III-C.
We explained in Section III-D how we integrated the clock
gating scheme into the control scheme of AxE. Table II
presents the energy consumption of each studied program
on fully exact and on our AxE systems. The total energy
consumption of a workload execution, Et is calculated using:

Et =
∑

TpPp +
∑

TxPx (1)

where Ti, and Pi are the total (program) execution time,
and average power consumption of the i core, respectively.
i ⊂ {p, x}, where p represents the exact (PicoRV32) core and
x represents the approximate (PiXoRV32) core. In our eval-
uations, the clock frequency for both exact and approximate
cores is 50MHz and Pis are listed in Table III.

C. Accuracy

Since we have an approximable program, we evaluate the
accuracy of the approximate program, which is present in all
three studied workloads. For better illustration we report ac-
curacy in percentages and as a complement of Mean Absolute
Percentage Error (MAPE):

Accuracy (%) = 100 ∗ (1− MAPE). (2)

TABLE IV: Improvements in the image processing application

Input Image Speed-up gain Energy Improvement Accuracy1

peppers 32% 27% 94.63%
fruits 32% 27% 93.55%

baboon 32% 27% 93.27%
lenna 32% 27% 95.30%

1 Calculated by the definition in Section V-C and Equation (2).

TABLE V: Signal to Noise Ratio (SNR) and Peak Signal to
Noise Ratio (PSNR) of the the Exact (Ex) and approximate
(Ax) grayscale filters.

Input

SNR(dB) PSNR(dB)

Ax Ex Integer to floating-point Ax to ExAx Ex
peppers 7.77 7.90 21.90 22.40 30.99
fruits 9.80 9.90 20.27 20.39 28.99

baboon 9.83 9.95 18.74 20.01 30.25
lenna 9.27 9.40 19.47 20.65 30.04

where MAPE has been investigated for regression models, and
Machine Learning (ML) applications [25], we calculate MAPE
with respect to the definition as:

MAPE =
1

n

n∑
i=1

|Rp,i −Rx,i|
Rp,i

(3)

where Rp,i and Rx,i are the ith exact and approximate
outputs (results), respectively, and n is the total number of all
possible outputs.Therefore, the accuracy metric in this paper
is calculated in percentages.

D. Application to Image Processing

In order to show the capacity of AxE for real-world appli-
cations, we used it for a sample image processing application,
namely gray-scale filter that we applied to four standard 8-bit
images, each has 128 pixels by 128 pixels. The output of a
grayscale filter on AxE is illustrated in Figure 3. We present
the speed-up and energy consumption gain in Table IV, and
the SNR of the images in Table V.

As previously mentioned, the PicoRV32 and PiXoRV32
are using RV32IM subset of RISC-V ISA, in other words,
these cores are integer-based (do not have floating-point units).
Using integer-based cores for grayscale filter introduces some
noise to the calculations compared to the floating-point filter-
ing. The grayscaled images using exact and approximate cores
share these noises in the minority of their pixels, but as we
see on Figure 3, none of them are distorted aggressively. As
expected, the grayscaled images filtered using the approximate
core seem visually acceptable and intact. The PSNRs of
the approximate filter to the exact filters shown in Table V
are in all cases except one above 30dB, which speaks to
the acceptable quality of the conversion using the proposed
approximate core. The only case with lower PSNR is the fruits
image, which has a PSNR very close to 30dB (28.99dB). Even
though minor noises can be found upon a close look at the
image, they are not significant, especially compared to the
significant energy and speed-up gains achieved. Therefore, we

Fig. 3: Grayscale filter on AxE and other platforms.

contend that the proposed system is an acceptable solution for
the application at hand.

VI. PERFORMANCE EVALUATION AND COMPARISON

A. Speed

We executed the three workloads on the described hardware
and compared it with executing the same workload using only
exact cores. In other words, the tasks were mapped either on
two exact computation cores or one exact and one approximate
core (AxE). In Figure 4, we show the speed-up gain in each
application. That is, the number of clock cycles to finish the
workload using the proposed mixed-approximate-exact (AxE)
system normalized to that of the fully exact system. Our
evaluation of three workloads shows that on average, our
approximate and exact (AxE) system has 1.32x speed of the
fully exact system (i.e., on average 32% faster).

B. Energy

The power consumption and the area (number of cells) of
each core are detailed in Table III. Based on these numbers,
the energy consumption of each workload has been analyzed
by Equation (1). The energy consumption saving using our
proposed solution compared with an exact MPSoC shown in
Figure 4. We consider the difference in energy consumption
is mainly in cores, which is much more than the energy
difference in other parts of our system. In addition, their energy
consumption would be the same in both cases of fully exact
and mixed-approximate-exact (AxE) MPSoCs. As visualized
in Figure 4, the energy-saving in comparison to an exact
MPSoC is at least 21% (for the second workload) and on
average 25%.

C. Accuracy

Since we have an approximable program, we evaluate the
accuracy of the approximate program, which is present in
all three studied workloads. The SpMVM program contains
2500 multiplication and results in a vector with 500 indices.

Fig. 4: Energy improvement and execution speed-up of three
workloads

Fig. 5: Accuracy of approximate program for each output entry

By integrating the approximate multiplier on PiXoRV32, run-
ning the approximable program in each workload on our
mixed-approximate-exact MPSoC introduces some errors in
the multiplications. We obtained 99.3% average accuracy
(MAPE equals 0.7%) on the approximable program driven
from Equation (2) and Equation (3). The actual accuracy of
each output indices and the distribution of the approximate
output vector is shown in Figure 5.

VII. CONCLUSION

In this paper, we presented a Mixed-Approximate-Exact
MPSoC framework called AxE and a preliminary solution
for the challenge of task mapping for such a system. Our
evaluations showed that the studied instance of AxE and
the proposed task mapper executed on our framework led
to a considerable (32%) execution speed-up compared to an
exact-only MPSoC. The energy-saving is 21% while achieving
99.3% average accuracy on approximate program among three
studied workloads. Our image processing showcase study
showed that the proposed system has an acceptable quality
while maintaining a 32% speed-up gain and 27% energy-
saving on average. This framework provides a basis for further

works in this field. Studying instances with a more significant
number of nodes and heterogeneity is a natural extension of
this work. Besides a more extensive system, we plan to verify
our preliminary results with a more extensive set of workloads
with more variations. Adding other approximate computing
units and studying their effect is another extension of this
work, which we plan to pursue in the future.

REFERENCES

[1] I. Elsadek and E. Y. Tawfik, “RISC-V resource-constrained cores: A
survey and energy comparison,” in 2021 19th IEEE International New
Circuits and Systems Conference (NEWCAS), 2021, pp. 1–5.

[2] E. Shamsa, A. Kanduri, N. TaheriNejad, A. Proebstl, Chakraborty,
A. M. Rahmani, and P. Liljeberg, “User-centric resource management for
embedded multi-core processors,” in The 33rd International Conference
on VLSI Design and The 19th International Conference on Embedded
Design, 2020, pp. 1–6.

[3] E. Shamsa, A. Proebstl, N. TaheriNejad, A. Kanduri, A. M. Rahmani,
P. Liljeberg, and Chakraborty, “Ubar: User and battery aware resource
management for smartphones,” ACM Transactions on Embedded Com-
puting Systems (TECS), pp. 1–23, 2021.

[4] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, 2011, pp.
124–134.

[5] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality of
service profiling,” in 2010 ACM/IEEE 32nd International Conference on
Software Engineering, vol. 1, 2010, pp. 25–34.

[6] A. K. Mishra, R. Barik, and S. Paul, “iACT: A software-hardware
framework for understanding the scope of approximate computing,”
2014.

[7] Y. Kim, S. Venkataramani, S. Sen, and A. Raghunathan, “Value simi-
larity extensions for approximate computing in general-purpose proces-
sors,” in 2021 Design, Automation Test in Europe Conference Exhibition
(DATE), 2021, pp. 481–486.

[8] G. Tziantzioulis, N. Hardavellas, and S. Campanoni, “Temporal approx-
imate function memorization,” IEEE Micro, vol. 38, no. 4, pp. 60–70,
2018.

[9] J. Lee, H. Seo, H. Seok, and Y. Kim, “A novel approximate adder
design using error reduced carry prediction and constant truncation,”
IEEE Access, vol. 9, pp. 119 939–119 953, 2021.

[10] S. E. Fatemieh, M. R. Reshadinezhad, and N. TaheriNejad, “Approx-
imate in-memory computing using memristive imply logic and its
application to image processing,” in 2022 IEEE International Symposium
on Circuits and Systems (ISCAS), 2022, pp. 1–5.

[11] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, “Approximate
multiplier design using novel dual-stage 4:2 compressors,” IEEE Access,
vol. 8, pp. 48 337–48 351, 2020.

[12] G. Anusha and P. Deepa, “Design of approximate adders and multipliers
for error tolerant image processing,” Microprocessors and Microsystems,
vol. 72, p. 102940, 2020.

[13] H. Seok, H. Seo, J. Lee, and Y. Kim, “COREA: Delay- and energy-
efficient approximate adder using effective carry speculation,” Electron-
ics, vol. 10, no. 18, 2021.

[14] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif,
M. Shafique, and A. Kumar, “Area-optimized low-latency approximate
multipliers for FPGA-based hardware accelerators,” in Proceedings of
the 55th Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: Association for Computing Machinery, 2018.

[15] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “TOSAM:
An energy-efficient truncation- and rounding-based scalable approximate
multiplier,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 5, pp. 1161–1173, 2019.

[16] R. Nayar, P. Balasubramanian, and D. L. Maskell, “Hardware optimized
approximate adder with normal error distribution,” in 2020 IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI). Los Alamitos, CA,
USA: IEEE Computer Society, July 2020, pp. 84–89.

[17] Y. Chen, X. Yang, F. Qiao, J. Han, Q. Wei, and H. Yang, “A multi-
accuracy-level approximate memory architecture based on data signifi-
cance analysis,” in 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 385–390.

[18] M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “Deep in-memory
architectures in SRAM: An analog approach to approximate computing,”
Proceedings of the IEEE, vol. 108, no. 12, pp. 2251–2275, 2020.

[19] T. Trevisan J et al., “Approxrisc: An approximate computing infrastruc-
ture for RISC-V,” RISC-V Workshop in Barcelona, May 2018, poster.

[20] N. A. Said et al., “FPU bit-width optimization for approximate com-
puting: A non-intrusive approach,” in 2020 15th Design Technology of
Integrated Systems in Nanoscale Era (DTIS), 2020, pp. 1–6.

[21] I. Felzmann, J. F. Filho, and L. Wanner, “Risk-5: Controlled approxi-
mations for RISC-V,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 11, pp. 4052–4063, 2020.

[22] C. Wolf, “PicoRV32 - A Size-Optimized RISC-V CPU.” [Online].
Available: https://github.com/cliffordwolf/picorv32

[23] V. Mrazek et al., “Evoapprox8b: Library of approximate adders and mul-
tipliers for circuit design and benchmarking of approximation methods,”
in DATE, 2017, 2017, pp. 258–261.

[24] M. K. Papamichael and J. C. Hoe, “Connect: Re-examining conventional
wisdom for designing NOCs in the context of FPGAs.” Association
for Computing Machinery, 2012.

[25] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean
absolute percentage error for regression models,” Neurocomputing, vol.
192, pp. 38–48, 2016.

