
36 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

Editor’s notes:
This article focuses on memristive nano-devices and their use for stochastic
computing (SC). It demonstrates how to convert numbers between binary
and stochastic domains and how to perform multiplications using in-
memory computations by the memristive logic family “MAGIC.” In contrast
to earlier works on memristive SC, the authors do not harness the intrinsic
stochasticity of memristive devices but rather create deterministic SNs
using well-defined operations.

—Weikang Qian, Shanghai Jiao Tong University

 Transferring data between memory and
processing units in conventional computing systems
is expensive in terms of energy and latency. It also
constitutes the performance bottleneck, also known
as Von-Neumann’s bottleneck. Memristors offer a
promising solution by tackling this challenge via
in-memory computation (IMC), i.e., the ability to
both store and process data within memory cells.
One promising in-memory logic for IMC is memris-
tor-aided logic (MAGIC) [2]. In MAGIC, nor and not
logical operations can be natively executed within
memory and with a high degree of parallelism [3].
Thus, applications such as stochastic computing
(SC) that execute the same instruction on multiple
data in parallel can benefit greatly from MAGIC.

Multiplication is a common but complex opera-
tion used in many data-intensive applications such as

Exact Stochastic
Computing Multiplication
in Memristive Memory
Mohsen Riahi Alam and M. Hassan Najafi
University of Louisiana at Lafayette, Lafayette, LA 70504 USA

Nima TaheriNejad
Technische Universität Wien (TU Wien), Vienna, Austria

digital signal processing
and convolutional neu-
ral networks. In-memory
methods for fixed-point
binary  multiplication
using MAGIC have been
previously  investigated
[3],  [4].  These  methods
are faster and more energy
efficient  than  conven-
tional off-memory binary

multipliers. However, memristive technology is not a
fully mature technology yet, in particular, compared to
complementary metal–oxide–semiconductor (CMOS)
technology [5]. It suffers from considerable process
variations and nonidealities that affect its performance.
These nonidealities can lead to the introduction of faults
and noise into the memristive memory and in-memory
calculations. The inherent vulnerability of fixed-point
binary methods to fault and noise (e.g., to bit flips)
poses a challenge to the reliability of the system.

SC [6] is a reemerging computing paradigm that
offers simple execution of complex arithmetic func-
tions. The paradigm is more robust against fault and
noise compared to conventional binary computing.
Multiplication, as a complex operation in conven-
tional binary designs, can be implemented using
simple standard and gates in SC [6]. Input data are con-
verted from binary to independent (uncorrelated) bit
streams and connected to the inputs of the and gate.
Logical 1’s are produced at the output of the gate with
a probability equal to the product of the input data.

Digital Object Identifier 10.1109/MDAT.2021.3051296
Date of publication: 13 January 2021; date of current version:
6 December 2021.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

37November/December 2021

An important overhead of performing computation in
the stochastic domain is the cost of converting data
between binary and stochastic representation. Prior
works have exploited the intrinsic nondeterministic
properties of memristors to generate random stochas-
tic bit streams in memory [7], [8]. The bit-stream gen-
eration and the computation performed, however, are
both probabilistic and approximate. Often very long
bit streams must be processed to produce acceptable
results. These make the previous SC-based in-memory
multipliers inefficient compared to their fixed-point
binary counterparts. In this work, to the best of our
knowledge, we develop the first exact SC-based
in-memory multiplier. The proposed multiplier can
perform fully accurate multiplication, replacing the
conventional binary multiplier, when needed. To
this end, we exploit the recent progress in SC: deter-
ministic and accurate computation with stochastic
bit streams [9]. The proposed multiplication method
benefits from the complementary advantages of both
SC and memristive IMC to enable energy-efficient and
low-latency multiplication of data. In summary, the
main contributions of this work are as follows:

•	 Performing deterministic and accurate bit-stream-
based multiplication in memory. To this end,
we propose using memristive crossbar memory
arrays and MAGIC logic.

•	 Proposing an efficient in-memory method for
generating deterministic bit streams from binary
data, which takes advantage of the inherent
properties of memristive memories.

•	 Improving the speed and reducing the memory
usage as compared to the state-of-the-art (SoA)
limited-precision in-memory binary multipliers.

•	 Reducing latency and energy consumption com-
pared to the SoA accurate off-memory SC multi-
plication techniques.

Background

Deterministic computation with stochastic
bit streams

In SC, data are represented by streams of 0’s and
1’s. Independent of the length and distribution of 1’s,
the ratio of the number of 1’s to the length of the
bit stream determines the data value. For example,
bit streams 0100 and 11000000 both represent 0.25
in the stochastic domain. Compared to conventional

binary radix, this form of representation is more
noise-tolerant as all bits have equal weight. A single
bit-flip, regardless of its position in the bit stream,
introduces a least significant bit error.

Deterministic approaches of SC [9] were proposed
recently to perform accurate computation with SC
circuits. By properly structuring bit streams, these
methods are able to produce exact (fully accurate)
output. Clock-dividing bit streams, using bit streams
with relatively prime lengths, rotation of bit streams,
and using low-discrepancy (LD) bit streams are the
primary deterministic methods. Compared to conven-
tional SC, with these methods, the bit-stream length is
reduced by a factor of approximately (1/2N ) where
N is the equivalent number of bits precision. The out-
put bit stream produced by all these methods has the
same length of 2i × N bits, when multiplying i N-bit pre-
cision data [9]. Due to the fast converging property of
LD bit streams, we use the LD deterministic approach
to process bit streams in memory. However, the pro-
posed idea is applicable to all deterministic methods.

Figure 1 shows an example of multiplying two
input values, 1/4 and 3/4, using the LD deterministic
method. With the LD method, the inputs are con-
verted to independent bit streams by using different
LD distributions [9]. Here, we use the algorithm pro-
posed in [10] to determine the bit selection order
for converting each binary input to the bit-stream for-
mat. The bit selection orders of [10] are determined
based on the distribution of numbers in different
Sobol sequences. The output bit stream of the exam-
ple in Figure 1 is a 16-bit bit stream representing 3/16,
the exact result expected for multiplication of the
two inputs. In general, when multiplying two N-bit
precision data, the full-precision output bit stream
has a total length of 22N bits. This corresponds to a

Figure 1. Example of accurate 2-bit precision
multiplication using the LD deterministic method
[9]. The inputs are converted to independent LD bit
streams based on the bit-stream generation method
proposed in [10].

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

38 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

total processing time of 22N clock cycles when pro-
ducing one bit of the output bit stream at any cycle.

Comparator-based [6], [9], and multiplexer
(MUX)-based [10] bit-stream generators are proposed
in prior work to convert the data from binary to bit
stream representation. The overhead cost of conver-
sion and the latency of generating and processing bit
streams make the conventional SC multiplier ener-
gy-inefficient compared to its binary counterpart. The
large overhead of reading/storing data from/to mem-
ory further makes the conventional off-memory sto-
chastic and binary multipliers inefficient compared
to the emerging in-memory multipliers.

SC and memristors
Knag et al. [7] exploit the intrinsic non-determin-

istic properties of memristors to generate random
stochastic bit streams in memory. They develop a
hybrid system that consists of memristors integrated
with CMOS-based stochastic circuits. Analog input
data are converted to random bit streams by a sto-
chastic group writing into the memristive memory.
The computation is performed on the bit streams
off-memory using CMOS logic and the output bit
stream is written back to the memristive memory. In
every write to the memristive memory, a new ran-
dom bit stream is produced. The design in [7] elim-
inates the large overhead of off-memory stochastic

bit-stream generation. Their bit-stream generation
process, however, can be affected by variation and
noise, and the computation is approximate.

A flow-based in-memory SC architecture is pro-
posed in [8]. Their design exploits the flow of cur-
rent through probabilistically switching memristive
nanoswitches in high-density crossbars to perform
stochastic computations. The data are represented
using bit-vector stochastic streams of varying bit
widths instead of traditional stochastic streams com-
posed of individual bits. The crossbar computation
performed in [8] is again approximate and proba-
bilistic. The design cannot produce accurate results
and must generate and process very long bit streams.

In this work, we propose a crossbar-compatible
SC-based multiplier to perform deterministic and
accurate multiplication in memory. We propose a
new method to convert input binary data into deter-
ministic bit streams and employ SC to multiply the
data by anding the generated bit streams. Both the bit
stream generation and the logical operation on the
generated bit streams will be performed in memory.

Memristive IMC
Memristors are two-terminal electronic devices

with variable resistance. This resistance depends
on the amount and direction of the charge passed
through the device in the past. For stateful IMC, we
treat this resistance as the logical state, where the
high and low resistances are considered, respec-
tively, as logical zero and one. MAGIC [2] is a well-
known stateful logic family proposed for IMC. It
is fully compatible with the usual crossbar design
and supports nor, which can be used to imple-
ment any Boolean logic. Figure 2 shows how nor
logic operation can be executed within the mem-
ory in MAGIC by applying specific voltages [2]
to the input(s) and output memristors. As shown
in Figure 2 and the embedded truth tables, per-
forming logical nor on a negated version of two
inputs (i.e., A B+) is equivalent to performing
logical and on the original inputs (i.e., A . B). We
will exploit this logical property to implement and
operation in memory. Imani et al. [4] proposed a
fixed-point MAGIC-based multiplication algorithm
by serializing the addition of partial products in
memory. An N-bit fixed-point multiplication with
their method takes 15N 2 – 11N – 1 cycles and 15N 2

– 9N – 1 memristors. An improved method to per-
form fixed-point multiplication within memristive

Figure 2. (a) Performing a MAGIC nor operation
within a memristive memory. For further detail on
the execution of the nor operation, the readers are
referred to [2]. (b) nor truth table. (c) Performing
and operation using MAGIC nor within crossbar
memristive memory array.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

39November/December 2021

memory using MAGIC gates is proposed in [3]. To
multiply two numbers they use the partial product
multiplication algorithm and reuse the memristor
cells during execution. A two-input full-precision
multiplication (the output has twice the preci-
sion/length of the inputs) using this method needs
13N 2 – 14N + 6 cycles and 20N – 5 memristors.
They also propose a limited-precision multiplica-
tion (the output has the same precision/length as
the inputs) by generating and accumulating only
the necessary partial products to produce the
lower half (less significant bits) of the full-preci-
sion product. This improves latency by approxi-
mately 2×. The latency is reduced to 6.5N 2 – 7.5N
– 2 cycles while 19N – 19 memristors are required.
The limited-precision multiplication is especially
useful for digital signal processing and fixed-point
design of neural networks. More recently, Rada-
kovits et al. [11] introduced a fast and low-cost
full-precision in-memory multiplier, which per-
forms two-input multiplication using 2N 2 + N + 2
memristors in log2 N



 (10N + 2) + 4N + 2 cycles.

Proposed method
In this section, we discuss our proposed method

of exact SC-based multiplication in memristive mem-
ory. We assume that the input data are already in
memory in binary-radix format. We convert the data
from binary to bit-stream representation in memory,
process using stateful logic, and then convert the
result back to binary format.

Binary to bit stream
Prior works exploited the probabilistic properties of

memristors to generate random bit streams in memory
[7], [8]. The bit streams generated by these methods
suffer from random fluctuations and cannot produce
accurate results. For accurate i-input multiplication,
the input binary data must be converted to i 2i × N -bit
independent bit streams [9]. With the LD determinis-
tic method, the independence between bit streams is
guaranteed by converting each input data based on a
different LD sequence. We convert the data to LD bit
streams by using the LD distributions proposed in [10].

Figure 3a shows the sub-computations of a 3-input
2-bit precision multiplication using the LD method. As
can be seen, out of 64 operations only 27 operations
can produce a non-zero output and contribute to the
final result. This stems from the fact that the maximum
value representable by a 2-bit precision data and the

maximum result of multiplying three 2-bit data is 3/4
and 27/64, respectively. In the general case, in an
i-input N-bit precision multiplication, (2N – 1)i bitwise
and operations contribute to the output value. Our
proposed in-memory multiplier only performs these
operations. To achieve high-performance multipli-
cation within memristive memory, we perform these
bitwise operations in a parallel manner.

For multiplication, presented in the “Stochastic
multiplication using MAGIC” section, we need the
generated bit stream to be stored in a column (as
opposed to a row). To this end, we use external
CMOS switches to connect binary input memristors
(e.g., Aj, Bj, Cj ) to respective bit-stream memristors
in different rows. A CMOS control circuitry controls
the connection of switches. Since memristors are
CMOS compatible and can be produced as back end
of line (BEOL) [5], [11], these external switches can
be placed below the memristor crossbar to avoid
area overhead. Moreover, our synthesis results show
that the overhead power and energy consumption
of the control circuitry is negligible compared to the
IMC operations of the multipliers themselves.

Figure 3. Example of multiplying three 2-bit precision
data using the proposed method: (a) symbolic
operations and (b) effective operations in memory.
Inputs are A = 2/4, B = 3/4, and C = 2/4 in binary
format, and the output is bit stream S representing
12/64. Only 27 out of 64 operations are performed in
memory. The inputs are converted from binary to LD
bit streams based on the LD distributions of [10].

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

40 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

To convert each input data, we first initialize
(2N – 1)i memristors in a column (e.g., the fourth col-
umn in Figure 3b), to a low resistance state (LRS) or
logical value of one. For conversion, we apply V0 to the
negative terminal of the input binary memristors (e.g.,
Aj), which is connected to respective memristors in the
bit-stream column. If Aj is storing a logical zero, i.e.,
it is in a high resistance state (HRS), it is virtually an
open circuit. Thus, the connected memristors see no
voltage and will not change their state. If Aj stores one,
it is in LRS and acts as a virtual short circuit. Thus, all
memristors connected to it see a V0 across themselves.
By selecting V0 large enough, all respective memristors
experience a state change from LRS to HRS. In other
words, from logical one (their initial value) to logical
zero. Therefore, at the end of the conversion operation,
the bit-stream memristors corresponding to a binary
input bit of one will have a logical value of zero, and
vice versa (i.e., zero → one). We note that this rep-
resentation is complementary to (i.e., it is the inverted
version of) conventional bit-stream representation.
However, this inversion—as we show later in this arti-
cle—is to our advantage as it reduces the number of
steps necessary to perform a multiplication.

Stochastic multiplication using MAGIC
We convert each N-bit binary data to a (2N – 1)2 bit

bit stream for two-input exact (full precision) and to a
(2N – 1) bit bit stream for limited-precision multiplica-
tion. The multiplication consists of a bitwise and oper-
ation between the two operands. However, in MAGIC,

which we have chosen for this work, the only opera-
tion compatible with crossbar memory is nor. There-
fore, we need to use an equivalency, namely

A ∧ B = A B∨ .� (1)

As we see in (1), to perform and in MAGIC, the input
operands need to be inverted, followed by a nor oper-
ation. Therefore, our proposed method has the advan-
tage that by generating the bit streams already in their
inverted form, as explained in the “Binary to bit stream”
section, we save two steps (one for inversion of each
operand). Hence, the proposed multiplication here
consists of only one MAGIC nor operation between
the two bit-stream operands. To perform the multiplica-
tion, i.e., MAGIC nor, the two operands need to be con-
nected in a row as shown in Figure 2c. That is, for this
operation, each corresponding bit of the two operands
need to be in the same row, which is one of the reasons
why bit streams are generated in columns (as opposed
to rows). The proposed design can be extended to i-in-
put multiplication by performing i-input MAGIC nor on
i bit-stream operands. Converting each operand needs
one initialization and one execution cycle. The nor
operation also takes one initialization and one execu-
tion cycle. To decrease sneak paths, we perform these
initializations in different cycles. This makes the total
latency of i-input multiplication 2 × (i + 1) cycles. Figure
3 shows an example of a 3-input 2-bit precision multipli-
cation using the proposed method. We will show that
this 3-input multiplication is executed in eight cycles.

Bit Stream to Binary
After performing multiplication using MAGIC, the

output is in memory in the bit-stream format. The
output bit stream can be preserved in memory in the
current format for future bit-stream-based process-
ing. However, if an output in binary format is desired,
a final bit-stream-to-binary step is also needed. This
can be done by counting the number of 1’s in the bit
stream by adding all the bits of the bit stream. We
suggest two methods to convert the output bit stream
to binary representation.

In-memory conversion
We propose a new algorithm for counting all the

1’s of a bit stream in memory. Figure 4b depicts the
proposed method for converting an 8-bit bit stream
to a 3-bit binary data. The proposed algorithm con-
sists of and and xor operations. As shown in Figure 4a,
every pair of and and xor operations is implemented

Figure 4. (a) xor and and operations using nor
gates. (b) Proposed algorithm for 8-bit bit stream
(S7-S0) to 3-bit binary (Q2Q1Q0) conversion. Each
square represents an and operation and each circle
represents an xor operation.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

41November/December 2021

with three nor and two not MAGIC operations. We
re-use memristors to minimize the number of required
memristors in implementing this in-memory conver-
sion. This algorithm can be easily extended to con-
vert longer bit streams. It takes 4 × (log2 L)2 cycles to
count the number of 1’s in a bit stream of length L.
The two-input full-precision and the limited-precision
multiplication require 0.5 × (2N – 1)2 + N and 0.5 ×

(2N – 1) + N additional memristors, respectively, for
in-memory conversion using this method.

Off-memory conversion
The output bit stream (e.g., bit stream S in

Figure 3b) is read from the memory and its bits are
summed using an off-memory combinational CMOS
circuit. We described a sum function for adding L
bits using Verilog HDL and let the synthesis tool find
the best hardware design for summing those bits.
The latency and hardware costs for conversion of
output bit streams with this method are extracted
from synthesis reports and used in the “Results and
comparison” section for evaluation.

Results and comparison

Circuit-level simulations
For circuit-level evaluation of the proposed

design, we implemented a 32 × 32 crossbar and nec-
essary control signals in Cadence Virtuoso. For mem-
ristors, we used the Voltage-controlled ThrEshold
Adaptive Memristor (VTEAM)1 model. The values
used for the parameters are {Ron, Roff, VTon, VToff,
xon, xoff, kon, koff, αon, αoff} = {1 kΩ, 300 kΩ, −1.5 V,
300 mV, 0 nm, 3 nm, −216.2 m/s, 0.091 m/s, 4, 4}.

Figure 5 shows the states of the memristors in the
first two rows of the example shown in Figure 3b.
At first, all memristors (except the binary memristors
holding the input data) are in HRS. To convert each
input we initialize the bit-stream memristors in the
respective column to LRS using VSET = 2.08V (cycles
1, 3, and 5 for initializing bit streams of input A, B,
and C, respectively). After initialization, we apply
V0 = 1.48V to binary memristors and gnd to bit-stream
memristors to generate the bit streams (cycles 2,
4, and 6). The output memristors are initialized in
the next cycle and V0 = 1.08V is applied to execute
the nor operations (cycles 7 and 8). Based on the
LRS to HRS switching time of a memristor, 1ns was

1 https://asic2.group/tools/memristor-models/

considered for time-length of each and every opera-
tion (i.e., voltage pulse-width is 1 ns).

Comparison with in-memory binary multiplication
Table 1 compares the latency (number of process-

ing cycles) and the area (number of memristors) of
the proposed bit-stream-based multiplier with the prior
in-memory fixed-point multiplication methods. As
shown, the proposed multiplier is significantly faster
than the prior in-memory binary methods by produc-
ing the output bit stream in only six cycles. In terms of
the area too, the proposed method is more efficient
(requires a smaller number of memristors) for N < 5
for the limited-precision case. Compared to the limit-
ed-precision design of [3] that produces the lower half
(least significant bits), our method is more precise as it
produces the higher half of the full-precision result. For
larger N s, other design considerations regarding the
trade-off between memory and area should be taken
into account. In general, for an i-input full-precision
multiplication, 3 × (2N – 1)i memristors are needed. If a
binary output is desired, the additional latency and area
of the bit-stream-to-binary step must also be considered.

The inherent fault tolerance of the proposed design
can still be a winning proposition for larger N s as the
nonidealities of memristive technology can lead to
the introduction of faults and noise into the memris-
tive memory and in-memory calculations. The current
accurate in-memory multiplication methods are all
based on the conventional binary representation of
data which makes them inherently more vulnerable
to faults compared to the SC-based methods.

Figure 5. Simulation output of the first two rows
of the crossbar in the example of Figure 3b.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

42 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

We note that the power consumption of various
IMC units heavily depends on the memristive tech-
nology used for the implementation (or the model
representing it) and its respective necessary setup.
Therefore, to have a fair comparison with prior work,
they need to be implemented using the same technol-
ogy or simulated using the same model and model
parameters. Moreover, most related works in the liter-
ature do not report any power or energy consumption
numbers at all. Due to these reasons, we could not
compare our work with others in that regard.

Comparison with off-memory stochastic
multiplication

For an off-memory SC-based multiplication of N-bit
binary data, the data must be first read from the memory
and be converted from binary to bit-stream representa-
tion. The clock division method [9] has the lowest
hardware cost among the SoA deterministic methods of
SC. We implemented the clock division circuit of [9] to
convert the data and generate bit streams. Multiplication
is performed by anding the generated bit streams. The
output is converted back to binary format using a binary
counter and is stored in memory. We described this
off-memory design using Verilog HDL and synthesized
it using the Synopsys Design Compiler v2018.06-SP2 with
the 45-nm NCSU-FreePDK2 gate library.

2https://www.eda.ncsu.edu/wiki/FreePDK

Table 2 compares the energy consumption of the
proposed in-memory multiplier with that of the imple-
mented off-memory SC multiplier for data precision of
two to eight bits. For the cases that include off-memory
processing, we assume the data is read from or writ-
ten to a memristive memory. We use the per-bit energy
consumption reported in [12] to calculate the total
energy of the read and write operations. As shown in
Table 2, for all different N s, the proposed in-memory
design with in-memory bit-stream-to-binary conversion
provides significantly lower energy consumption than
the off-memory exact SC-based multiplier. For off-mem-
ory bit-stream-to-binary conversion, the size of the data
read from the memory plays a crucial role. Our work is
more energy efficient for small N s. However, for larger
N s the traditional CMOS off-memory SC consumes less
energy. The reason is the size of the data read from
the memory, which grows exponentially in the case
of in-memory multiplication off-memory conversion
(bit streams are read), compared to the traditional
off-memory SC computation (where binary data are
read), giving the latter an edge.

This work proposes the first in-memory architec-
ture to execute exact multiplication based on SC. The
multiplication results are as accurate as the results
from fixed-point binary multiplication. The proposed
method significantly reduces the energy consump-
tion compared to the SoA off-memory exact SC-based

 
Table 1. Latency and area of the two-input stateful N-bit precision in-memory multiplication.

 
Table 2. Energy consumption results (in pJ): comparison of the proposed method and off-memory exact
SC-based multiplication.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

43November/December 2021

multiplier. Compared to prior in-memory fixed-point
multiplication methods, the proposed design pro-
vides faster results. For smaller N s, the area is com-
parable too. For larger N s, the area is the price for the
gained speed. The proposed limited-precision mul-
tiplication is particularly interesting for applications
such as neural networks and certain signal processing
algorithms since it is not only faster but also more pre-
cise and for the usually targeted N s, area efficient. If
outputs are desired in binary format, a bit-stream-to-bi-
nary conversion overhead should be considered too.
We propose an efficient crossbar compatible method
for this conversion. The inherent noise-tolerance of
bit-stream processing makes the proposed design fur-
ther advantageous for memristive-based computation
compared to its binary counterparts. We leave the
study of this aspect for future works.� 

Acknowledgments
This work was supported in part by the Louisi-

ana Board of Regents Support Fund under Grant
LEQSF(2020-23)-RD-A-26 and in part by the National
Science Foundation under Grant 2019511. A prelimi-
nary version of this article appeared in [1].

 References
	 [1]	 M. R. Alam, M. H. Najafi, and N. TaheriNejad, “Exact

in-memory multiplication based on deterministic

stochastic computing,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS), Oct. 2020, pp. 1–5.

	 [2]	 S. Kvatinsky et al., “MAGIC—Memristor-aided logic,”

IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 11,

pp. 895–899, Nov. 2014.

	 [3]	 A. Haj-Ali et al., “Efficient algorithms for in-memory

fixed point multiplication using MAGIC,” in Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS), May 2018, pp. 1–5.

	 [4]	 M. Imani, S. Gupta, and T. Rosing, “Ultra-efficient

processing in-memory for data intensive applications,” in

Proc. 54th Annu. Design Autom. Conf., Jun. 2017, pp. 1–6.

	 [5]	 N. TaheriNejad and D. Radakovits, “From behavioral

design of memristive circuits and systems to physical

implementations,” IEEE Circuits Syst. Mag., vol.

19, no. 4, pp. 6–18, 2019.

	 [6]	 A. Alaghi, W. Qian, and J. P. Hayes, “The promise

and challenge of stochastic computing,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 37,

no. 8, pp. 1515–1531, Aug. 2018.

	 [7]	 P. Knag, W. Lu, and Z. Zhang, “A native stochastic

computing architecture enabled by memristors,” IEEE

Trans. Nanotechnol., vol. 13, no. 2, pp. 283–293, Mar. 2014.

	 [8]	 S. Raj, D. Chakraborty, and S. K. Jha, “In-memory flow-

based stochastic computing on memristor crossbars using

bit-vector stochastic streams,” in Proc. IEEE 17th Int. Conf.

Nanotechnol. (IEEE-NANO), Jul. 2017, pp. 855–860.

	 [9]	 M. H. Najafi et al., “Performing stochastic computation

deterministically,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 27, no. 12, pp. 2925–2938, Dec. 2019.

	[10]	 S. Asadi and M. H. Najafi, “Late breaking results:

LDFSM: A low-cost bit-stream generator for low-

discrepancy stochastic computing,” in Proc. 57th ACM/

IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–2.

	[11]	 D. Radakovits et al., “A memristive multiplier using semi-

serial IMPLY-based adder,” IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 67, no. 5, pp. 1495–1506, May 2020.

	[12]	 J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive

devices for computing,” Nature Nanotechnol., vol. 8,

no. 1, p. 13, 2013.

Mohsen Riahi Alam is currently a Research
Scholar with the School of Computing and Informatics,
University of Louisiana at Lafayette, Lafayette, LA,
USA. His research interests include in-memory
computation, stochastic computing, low power and
energy-efficient VLSI design, and embedded systems.
Alam has an MSc in computer architecture from the
University of Tehran, Tehran, Iran.

M. Hassan Najafi is currently an Assistant
Professor with the School of Computing and Informatics,
University of Louisiana at Lafayette, Lafayette, LA,
USA. His research interests include stochastic
and approximate computing, unary processing,
in-memory computing, and machine learning. Najafi
has a PhD in electrical engineering from the University
of Minnesota, Twin Cities, Minneapolis, MN, USA.

Nima TaheriNejad is currently a “Universitä-
tassistant” with the TU Wien (formerly known as Vienna
University of Technology as well), Vienna, Austria, where
his areas of research interests includes self-awareness
in resource-constrained cyber–physical (embedded)
systems, computing in memory, memristor-based
circuit and systems, and healthcare. TaheriNejad has
a PhD in electrical and computer engineering from The
University of British Columbia (UBC), Vancouver, BC,
Canada. He is a member of ACM and the IEEE Circuits
and Systems Society as well as the IEEE Engineering in
Medicine and Biology Society.

 Direct questions and comments about this article to
Mohsen Riahi Alam, School of Computing and Informatics,
University of Louisiana at Lafayette, Lafayette, LA 70504
USA; mohsen.riahi-alam@louisiana.edu.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 27,2021 at 19:01:24 UTC from IEEE Xplore. Restrictions apply.

