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Editor’s notes:
This article focuses on memristive nano-devices and their use for stochastic 
computing (SC). It demonstrates how to convert numbers between binary 
and stochastic domains and how to perform multiplications using in-
memory computations by the memristive logic family “MAGIC.” In contrast 
to earlier works on memristive SC, the authors do not harness the intrinsic 
stochasticity of memristive devices but rather create deterministic SNs 
using well-defined operations.

—Weikang Qian, Shanghai Jiao Tong University

 Transferring data between memory and 
processing units in conventional computing systems 
is expensive in terms of energy and latency. It also 
constitutes the performance bottleneck, also known 
as Von-Neumann’s bottleneck. Memristors offer a 
promising solution by tackling this challenge via 
in-memory computation (IMC), i.e., the ability to 
both store and process data within memory cells. 
One promising in-memory logic for IMC is memris-
tor-aided logic (MAGIC) [2]. In MAGIC, nor and not 
logical operations can be natively executed within 
memory and with a high degree of parallelism [3]. 
Thus, applications such as stochastic computing 
(SC) that execute the same instruction on multiple 
data in parallel can benefit greatly from MAGIC.

Multiplication is a common but complex opera-
tion used in many data-intensive applications such as 
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digital signal processing 
and convolutional neu-
ral networks. In-memory 
methods for fixed-point 
binary  multiplication 
using MAGIC have been 
previously  investigated 
[3],  [4].  These  methods 
are faster and more energy 
efficient  than  conven-
tional off-memory binary 

multipliers. However, memristive technology is not a 
fully mature technology yet, in particular, compared to 
complementary metal–oxide–semiconductor (CMOS) 
technology [5]. It suffers from considerable process 
variations and nonidealities that affect its performance. 
These nonidealities can lead to the introduction of faults 
and noise into the memristive memory and in-memory 
calculations. The inherent vulnerability of fixed-point 
binary methods to fault and noise (e.g., to bit flips) 
poses a challenge to the reliability of the system.

SC [6] is a reemerging computing paradigm that 
offers simple execution of complex arithmetic func-
tions. The paradigm is more robust against fault and 
noise compared to conventional binary computing. 
Multiplication, as a complex operation in conven-
tional binary designs, can be implemented using 
simple standard and gates in SC [6]. Input data are con-
verted from binary to independent (uncorrelated) bit 
streams and connected to the inputs of the and gate. 
Logical 1’s are produced at the output of the gate with 
a probability equal to the product of the input data. 
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An important overhead of performing computation in 
the stochastic domain is the cost of converting data 
between binary and stochastic representation. Prior 
works have exploited the intrinsic nondeterministic 
properties of memristors to generate random stochas-
tic bit streams in memory [7], [8]. The bit-stream gen-
eration and the computation performed, however, are 
both probabilistic and approximate. Often very long 
bit streams must be processed to produce acceptable 
results. These make the previous SC-based in-memory 
multipliers inefficient compared to their fixed-point 
binary counterparts. In this work, to the best of our 
knowledge, we develop the first exact SC-based 
in-memory multiplier. The proposed multiplier can 
perform fully accurate multiplication, replacing the 
conventional binary multiplier, when needed. To 
this end, we exploit the recent progress in SC: deter-
ministic and accurate computation with stochastic 
bit streams [9]. The proposed multiplication method 
benefits from the complementary advantages of both 
SC and memristive IMC to enable energy-efficient and 
low-latency multiplication of data. In summary, the 
main contributions of this work are as follows:

•	 Performing deterministic and accurate bit-stream- 
based multiplication in memory. To this end, 
we propose using memristive crossbar memory 
arrays and MAGIC logic.

•	 Proposing an efficient in-memory method for 
generating deterministic bit streams from binary 
data, which takes advantage of the inherent 
properties of memristive memories.

•	 Improving the speed and reducing the memory 
usage as compared to the state-of-the-art (SoA) 
limited-precision in-memory binary multipliers.

•	 Reducing latency and energy consumption com-
pared to the SoA accurate off-memory SC multi-
plication techniques.

Background

Deterministic computation with stochastic  
bit streams

In SC, data are represented by streams of 0’s and 
1’s. Independent of the length and distribution of 1’s, 
the ratio of the number of 1’s to the length of the 
bit stream determines the data value. For example, 
bit streams 0100 and 11000000 both represent 0.25 
in the stochastic domain. Compared to conventional 

binary radix, this form of representation is more 
noise-tolerant as all bits have equal weight. A single 
bit-flip, regardless of its position in the bit stream, 
introduces a least significant bit error.

Deterministic approaches of SC [9] were proposed 
recently to perform accurate computation with SC 
circuits. By properly structuring bit streams, these 
methods are able to produce exact (fully accurate) 
output. Clock-dividing bit streams, using bit streams 
with relatively prime lengths, rotation of bit streams, 
and using low-discrepancy (LD) bit streams are the 
primary deterministic methods. Compared to conven-
tional SC, with these methods, the bit-stream length is 
reduced by a factor of approximately (1/2N ) where 
N is the equivalent number of bits precision. The out-
put bit stream produced by all these methods has the 
same length of 2i × N bits, when multiplying i N-bit pre-
cision data [9]. Due to the fast converging property of 
LD bit streams, we use the LD deterministic approach 
to process bit streams in memory. However, the pro-
posed idea is applicable to all deterministic methods.

Figure 1 shows an example of multiplying two 
input values, 1/4 and 3/4, using the LD deterministic 
method. With the LD method, the inputs are con-
verted to independent bit streams by using different 
LD distributions [9]. Here, we use the algorithm pro-
posed in [10] to determine the bit selection order 
for converting each binary input to the bit-stream for-
mat. The bit selection orders of [10] are determined 
based on the distribution of numbers in different 
Sobol sequences. The output bit stream of the exam-
ple in Figure 1 is a 16-bit bit stream representing 3/16, 
the exact result expected for multiplication of the 
two inputs. In general, when multiplying two N-bit 
precision data, the full-precision output bit stream 
has a total length of 22N bits. This corresponds to a 

Figure 1. Example of accurate 2-bit precision 
multiplication using the LD deterministic method 
[9]. The inputs are converted to independent LD bit 
streams based on the bit-stream generation method 
proposed in [10].
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total processing time of 22N clock cycles when pro-
ducing one bit of the output bit stream at any cycle.

Comparator-based [6], [9], and multiplexer 
(MUX)-based [10] bit-stream generators are proposed 
in prior work to convert the data from binary to bit 
stream representation. The overhead cost of conver-
sion and the latency of generating and processing bit 
streams make the conventional SC multiplier ener-
gy-inefficient compared to its binary counterpart. The 
large overhead of reading/storing data from/to mem-
ory further makes the conventional off-memory sto-
chastic and binary multipliers inefficient compared 
to the emerging in-memory multipliers.

SC and memristors
Knag et al. [7] exploit the intrinsic non-determin-

istic properties of memristors to generate random 
stochastic bit streams in memory. They develop a 
hybrid system that consists of memristors integrated 
with CMOS-based stochastic circuits. Analog input 
data are converted to random bit streams by a sto-
chastic group writing into the memristive memory. 
The computation is performed on the bit streams 
off-memory using CMOS logic and the output bit 
stream is written back to the memristive memory. In 
every write to the memristive memory, a new ran-
dom bit stream is produced. The design in [7] elim-
inates the large overhead of off-memory stochastic 

bit-stream generation. Their bit-stream generation 
process, however, can be affected by variation and 
noise, and the computation is approximate.

A flow-based in-memory SC architecture is pro-
posed in [8]. Their design exploits the flow of cur-
rent through probabilistically switching memristive 
nanoswitches in high-density crossbars to perform 
stochastic computations. The data are represented 
using bit-vector stochastic streams of varying bit 
widths instead of traditional stochastic streams com-
posed of individual bits. The crossbar computation 
performed in [8] is again approximate and proba-
bilistic. The design cannot produce accurate results 
and must generate and process very long bit streams.

In this work, we propose a crossbar-compatible 
SC-based multiplier to perform deterministic and 
accurate multiplication in memory. We propose a 
new method to convert input binary data into deter-
ministic bit streams and employ SC to multiply the 
data by anding the generated bit streams. Both the bit 
stream generation and the logical operation on the 
generated bit streams will be performed in memory.

Memristive IMC
Memristors are two-terminal electronic devices 

with variable resistance. This resistance depends 
on the amount and direction of the charge passed 
through the device in the past. For stateful IMC, we 
treat this resistance as the logical state, where the 
high and low resistances are considered, respec-
tively, as logical zero and one. MAGIC [2] is a well-
known stateful logic family proposed for IMC. It 
is fully compatible with the usual crossbar design 
and supports nor, which can be used to imple-
ment any Boolean logic. Figure 2 shows how nor 
logic operation can be executed within the mem-
ory in MAGIC by applying specific voltages [2] 
to the input(s) and output memristors. As shown 
in Figure 2 and the embedded truth tables, per-
forming logical nor on a negated version of two 
inputs (i.e., A B+ ) is equivalent to performing 
logical and on the original inputs (i.e., A . B). We 
will exploit this logical property to implement and 
operation in memory. Imani et al. [4] proposed a 
fixed-point MAGIC-based multiplication algorithm 
by serializing the addition of partial products in 
memory. An N-bit fixed-point multiplication with 
their method takes 15N 2 – 11N – 1 cycles and 15N 2 

– 9N – 1 memristors. An improved method to per-
form fixed-point multiplication within memristive 

Figure 2. (a) Performing a MAGIC nor operation 
within a memristive memory. For further detail on 
the execution of the nor operation, the readers are 
referred to [2]. (b) nor truth table. (c) Performing 
and operation using MAGIC nor within crossbar 
memristive memory array.
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memory using MAGIC gates is proposed in [3]. To 
multiply two numbers they use the partial product 
multiplication algorithm and reuse the memristor 
cells during execution. A two-input full-precision 
multiplication (the output has twice the preci-
sion/length of the inputs) using this method needs 
13N 2 – 14N + 6 cycles and 20N – 5 memristors. 
They also propose a limited-precision multiplica-
tion (the output has the same precision/length as 
the inputs) by generating and accumulating only 
the necessary partial products to produce the 
lower half (less significant bits) of the full-preci-
sion product. This improves latency by approxi-
mately 2×. The latency is reduced to 6.5N 2 – 7.5N 
– 2 cycles while 19N – 19 memristors are required. 
The limited-precision multiplication is especially 
useful for digital signal processing and fixed-point 
design of neural networks. More recently, Rada-
kovits et al. [11] introduced a fast and low-cost 
full-precision in-memory multiplier, which per-
forms two-input multiplication using 2N 2 + N + 2 
memristors in log2 N



 (10N + 2) + 4N + 2 cycles.

Proposed method
In this section, we discuss our proposed method 

of exact SC-based multiplication in memristive mem-
ory. We assume that the input data are already in 
memory in binary-radix format. We convert the data 
from binary to bit-stream representation in memory, 
process using stateful logic, and then convert the 
result back to binary format.

Binary to bit stream
Prior works exploited the probabilistic properties of 

memristors to generate random bit streams in memory 
[7], [8]. The bit streams generated by these methods 
suffer from random fluctuations and cannot produce 
accurate results. For accurate i-input multiplication, 
the input binary data must be converted to i 2i × N -bit 
independent bit streams [9]. With the LD determinis-
tic method, the independence between bit streams is 
guaranteed by converting each input data based on a 
different LD sequence. We convert the data to LD bit 
streams by using the LD distributions proposed in [10].

Figure 3a shows the sub-computations of a 3-input 
2-bit precision multiplication using the LD method. As 
can be seen, out of 64 operations only 27 operations 
can produce a non-zero output and contribute to the 
final result. This stems from the fact that the maximum 
value representable by a 2-bit precision data and the 

maximum result of multiplying three 2-bit data is 3/4 
and 27/64, respectively. In the general case, in an 
i-input N-bit precision multiplication, (2N – 1)i bitwise 
and operations contribute to the output value. Our 
proposed in-memory multiplier only performs these 
operations. To achieve high-performance multipli-
cation within memristive memory, we perform these 
bitwise operations in a parallel manner.

For multiplication, presented in the “Stochastic 
multiplication using MAGIC” section, we need the 
generated bit stream to be stored in a column (as 
opposed to a row). To this end, we use external 
CMOS switches to connect binary input memristors 
(e.g., Aj, Bj, Cj ) to respective bit-stream memristors 
in different rows. A CMOS control circuitry controls 
the connection of switches. Since memristors are 
CMOS compatible and can be produced as back end 
of line (BEOL) [5], [11], these external switches can 
be placed below the memristor crossbar to avoid 
area overhead. Moreover, our synthesis results show 
that the overhead power and energy consumption 
of the control circuitry is negligible compared to the 
IMC operations of the multipliers themselves.

Figure 3. Example of multiplying three 2-bit precision 
data using the proposed method: (a) symbolic 
operations and (b) effective operations in memory. 
Inputs are A = 2/4, B = 3/4, and C = 2/4 in binary 
format, and the output is bit stream S representing 
12/64. Only 27 out of 64 operations are performed in 
memory. The inputs are converted from binary to LD 
bit streams based on the LD distributions of [10].
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To convert each input data, we first initialize 
(2N – 1)i memristors in a column (e.g., the fourth col-
umn in Figure 3b), to a low resistance state (LRS) or 
logical value of one. For conversion, we apply V0 to the 
negative terminal of the input binary memristors (e.g., 
Aj), which is connected to respective memristors in the 
bit-stream column. If Aj is storing a logical zero, i.e., 
it is in a high resistance state (HRS), it is virtually an 
open circuit. Thus, the connected memristors see no 
voltage and will not change their state. If Aj stores one, 
it is in LRS and acts as a virtual short circuit. Thus, all 
memristors connected to it see a V0 across themselves. 
By selecting V0 large enough, all respective memristors 
experience a state change from LRS to HRS. In other 
words, from logical one (their initial value) to logical 
zero. Therefore, at the end of the conversion operation, 
the bit-stream memristors corresponding to a binary 
input bit of one will have a logical value of zero, and 
vice versa (i.e., zero → one). We note that this rep-
resentation is complementary to (i.e., it is the inverted 
version of) conventional bit-stream representation. 
However, this inversion—as we show later in this arti-
cle—is to our advantage as it reduces the number of 
steps necessary to perform a multiplication.

Stochastic multiplication using MAGIC
We convert each N-bit binary data to a (2N – 1)2 bit 

bit stream for two-input exact (full precision) and to a 
(2N – 1) bit bit stream for limited-precision multiplica-
tion. The multiplication consists of a bitwise and oper-
ation between the two operands. However, in MAGIC, 

which we have chosen for this work, the only opera-
tion compatible with crossbar memory is nor. There-
fore, we need to use an equivalency, namely

A ∧ B = A B∨ .� (1)

As we see in (1), to perform and in MAGIC, the input 
operands need to be inverted, followed by a nor oper-
ation. Therefore, our proposed method has the advan-
tage that by generating the bit streams already in their 
inverted form, as explained in the “Binary to bit stream” 
section, we save two steps (one for inversion of each 
operand). Hence, the proposed multiplication here 
consists of only one MAGIC nor operation between 
the two bit-stream operands. To perform the multiplica-
tion, i.e., MAGIC nor, the two operands need to be con-
nected in a row as shown in Figure 2c. That is, for this 
operation, each corresponding bit of the two operands 
need to be in the same row, which is one of the reasons 
why bit streams are generated in columns (as opposed 
to rows). The proposed design can be extended to i-in-
put multiplication by performing i-input MAGIC nor on 
i bit-stream operands. Converting each operand needs 
one initialization and one execution cycle. The nor 
operation also takes one initialization and one execu-
tion cycle. To decrease sneak paths, we perform these 
initializations in different cycles. This makes the total 
latency of i-input multiplication 2 × (i + 1) cycles. Figure 
3 shows an example of a 3-input 2-bit precision multipli-
cation using the proposed method. We will show that 
this 3-input multiplication is executed in eight cycles.

Bit Stream to Binary
After performing multiplication using MAGIC, the 

output is in memory in the bit-stream format. The 
output bit stream can be preserved in memory in the 
current format for future bit-stream-based process-
ing. However, if an output in binary format is desired, 
a final bit-stream-to-binary step is also needed. This 
can be done by counting the number of 1’s in the bit 
stream by adding all the bits of the bit stream. We 
suggest two methods to convert the output bit stream 
to binary representation.

In-memory conversion
We propose a new algorithm for counting all the 

1’s of a bit stream in memory. Figure 4b depicts the 
proposed method for converting an 8-bit bit stream 
to a 3-bit binary data. The proposed algorithm con-
sists of and and xor operations. As shown in Figure 4a, 
every pair of and and xor operations is implemented 

Figure 4. (a) xor and and operations using nor 
gates. (b) Proposed algorithm for 8-bit bit stream 
(S7-S0) to 3-bit binary (Q2Q1Q0) conversion. Each 
square represents an and operation and each circle 
represents an xor operation.
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with three nor and two not MAGIC operations. We 
re-use memristors to minimize the number of required 
memristors in implementing this in-memory conver-
sion. This algorithm can be easily extended to con-
vert longer bit streams. It takes 4 × (log2 L)2 cycles to 
count the number of 1’s in a bit stream of length L. 
The two-input full-precision and the limited-precision 
multiplication require 0.5 × (2N – 1)2 + N and 0.5 × 

(2N – 1) + N additional memristors, respectively, for 
in-memory conversion using this method.

Off-memory conversion
The output bit stream (e.g., bit stream S in 

Figure 3b) is read from the memory and its bits are 
summed using an off-memory combinational CMOS 
circuit. We described a sum function for adding L 
bits using Verilog HDL and let the synthesis tool find 
the best hardware design for summing those bits. 
The latency and hardware costs for conversion of 
output bit streams with this method are extracted 
from synthesis reports and used in the “Results and 
comparison” section for evaluation.

Results and comparison

Circuit-level simulations
For circuit-level evaluation of the proposed 

design, we implemented a 32 × 32 crossbar and nec-
essary control signals in Cadence Virtuoso. For mem-
ristors, we used the Voltage-controlled ThrEshold 
Adaptive Memristor (VTEAM)1 model. The values 
used for the parameters are {Ron, Roff, VTon, VToff, 
xon, xoff, kon, koff, αon, αoff} = {1 kΩ, 300 kΩ, −1.5 V, 
300 mV, 0 nm, 3 nm, −216.2 m/s, 0.091 m/s, 4, 4}.

Figure 5 shows the states of the memristors in the 
first two rows of the example shown in Figure 3b. 
At first, all memristors (except the binary memristors 
holding the input data) are in HRS. To convert each 
input we initialize the bit-stream memristors in the 
respective column to LRS using VSET = 2.08V (cycles 
1, 3, and 5 for initializing bit streams of input A, B, 
and C, respectively). After initialization, we apply  
V0 = 1.48V to binary memristors and gnd to bit-stream 
memristors to generate the bit streams (cycles 2, 
4, and 6). The output memristors are initialized in 
the next cycle and V0 = 1.08V is applied to execute 
the nor operations (cycles 7 and 8). Based on the 
LRS to HRS switching time of a memristor, 1ns was 

1 https://asic2.group/tools/memristor-models/

considered for time-length of each and every opera-
tion (i.e., voltage pulse-width is 1 ns).

Comparison with in-memory binary multiplication
Table 1 compares the latency (number of process-

ing cycles) and the area (number of memristors) of 
the proposed bit-stream-based multiplier with the prior 
in-memory fixed-point multiplication methods. As 
shown, the proposed multiplier is significantly faster 
than the prior in-memory binary methods by produc-
ing the output bit stream in only six cycles. In terms of 
the area too, the proposed method is more efficient 
(requires a smaller number of memristors) for N < 5 
for the limited-precision case. Compared to the limit-
ed-precision design of [3] that produces the lower half 
(least significant bits), our method is more precise as it 
produces the higher half of the full-precision result. For 
larger N s, other design considerations regarding the 
trade-off between memory and area should be taken 
into account. In general, for an i-input full-precision 
multiplication, 3 × (2N – 1)i memristors are needed. If a 
binary output is desired, the additional latency and area 
of the bit-stream-to-binary step must also be considered.

The inherent fault tolerance of the proposed design 
can still be a winning proposition for larger N s as the 
nonidealities of memristive technology can lead to 
the introduction of faults and noise into the memris-
tive memory and in-memory calculations. The current 
accurate in-memory multiplication methods are all 
based on the conventional binary representation of 
data which makes them inherently more vulnerable 
to faults compared to the SC-based methods.

Figure 5. Simulation output of the first two rows 
of the crossbar in the example of Figure 3b.
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We note that the power consumption of various 
IMC units heavily depends on the memristive tech-
nology used for the implementation (or the model 
representing it) and its respective necessary setup. 
Therefore, to have a fair comparison with prior work, 
they need to be implemented using the same technol-
ogy or simulated using the same model and model 
parameters. Moreover, most related works in the liter-
ature do not report any power or energy consumption 
numbers at all. Due to these reasons, we could not 
compare our work with others in that regard.

Comparison with off-memory stochastic 
multiplication

For an off-memory SC-based multiplication of N-bit 
binary data, the data must be first read from the memory 
and be converted from binary to bit-stream representa-
tion. The clock division method [9] has the lowest 
hardware cost among the SoA deterministic methods of 
SC. We implemented the clock division circuit of [9] to 
convert the data and generate bit streams. Multiplication 
is performed by anding the generated bit streams. The 
output is converted back to binary format using a binary 
counter and is stored in memory. We described this 
off-memory design using Verilog HDL and synthesized 
it using the Synopsys Design Compiler v2018.06-SP2 with 
the 45-nm NCSU-FreePDK2 gate library.

2https://www.eda.ncsu.edu/wiki/FreePDK

Table 2 compares the energy consumption of the 
proposed in-memory multiplier with that of the imple-
mented off-memory SC multiplier for data precision of 
two to eight bits. For the cases that include off-memory 
processing, we assume the data is read from or writ-
ten to a memristive memory. We use the per-bit energy 
consumption reported in [12] to calculate the total 
energy of the read and write operations. As shown in 
Table 2, for all different N s, the proposed in-memory 
design with in-memory bit-stream-to-binary conversion 
provides significantly lower energy consumption than 
the off-memory exact SC-based multiplier. For off-mem-
ory bit-stream-to-binary conversion, the size of the data 
read from the memory plays a crucial role. Our work is 
more energy efficient for small N s. However, for larger 
N s the traditional CMOS off-memory SC consumes less 
energy. The reason is the size of the data read from 
the memory, which grows exponentially in the case 
of in-memory multiplication off-memory conversion 
(bit streams are read), compared to the traditional 
off-memory SC computation (where binary data are 
read), giving the latter an edge.

This work proposes the first in-memory architec-
ture to execute exact multiplication based on SC. The 
multiplication results are as accurate as the results 
from fixed-point binary multiplication. The proposed 
method significantly reduces the energy consump-
tion compared to the SoA off-memory exact SC-based 

 
Table 1. Latency and area of the two-input stateful N-bit precision in-memory multiplication.

 
Table 2. Energy consumption results (in pJ): comparison of the proposed method and off-memory exact  
SC-based multiplication.
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multiplier. Compared to prior in-memory fixed-point 
multiplication methods, the proposed design pro-
vides faster results. For smaller N s, the area is com-
parable too. For larger N s, the area is the price for the 
gained speed. The proposed limited-precision mul-
tiplication is particularly interesting for applications 
such as neural networks and certain signal processing 
algorithms since it is not only faster but also more pre-
cise and for the usually targeted N s, area efficient. If 
outputs are desired in binary format, a bit-stream-to-bi-
nary conversion overhead should be considered too. 
We propose an efficient crossbar compatible method 
for this conversion. The inherent noise-tolerance of 
bit-stream processing makes the proposed design fur-
ther advantageous for memristive-based computation 
compared to its binary counterparts. We leave the 
study of this aspect for future works.� 
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