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SIXOR: Single-Cycle In-Memristor XOR
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Abstract— With the fast approach of the end of silicon scaling
and existing problems, such as the Von-Neumann bottleneck,
alternative computing paradigms are in demand. In-memory
computation (IMC) is one of the most promising solutions, and
memristive technology is one of the best platforms for that
purpose. Many logic families have been proposed to enable
memristive IMC, among which stateful logic family stands out
due to its minimal power consumption and simplicity. In this
work, to complement existing works, we propose the first stateful
crossbar-compatible XOR atomic logic operation that requires
only one cycle for its completion, which is two times faster than
the current minimum required time for performing XOR (which
is two cycles) using other atomic operations in comparable
memristive stateful logic families. We show that, in an example
case of an adder, by taking advantage of the proposed single-cycle
in-memristor XOR (SIXOR), up to 4.5× speedup can be achieved
compared to other SoA stateful adders. The gained speed-up
scales up in more complex systems and calculations that use XOR.

Index Terms— In-memory computing, memristors, resistive
random access memory (ReRAM), single-cycle logic, stateful
logic, XOR.

I. INTRODUCTION

COMPUTER technology is currently facing severe chal-
lenges in keeping up with the demand for increased

performance capabilities. Dennard’s scaling has already
stopped [1], and the speed-up gains due to silicon scaling
have decreased. By approaching the size of a single atom,
the threat of coming to the end of silicon scaling is more
serious than ever. One of the frequently used solutions for
avoiding these technological hurdles has been increasing the
number of processing cores and their capabilities. However,
that too is currently facing a critical challenge: “Von-Neumann
Bottleneck” [2]. Transferring data from storage units to the
processing cores takes up a significant portion of the system’s
energy, resources, and cost. This is the major bottleneck of
high-performance and data-intensive applications since data
cannot be provided to the processing units fast enough.

The abovementioned challenges have motivated science and
industry to pay more attention to emerging technologies and
innovative methods. Memristive technology and in-memory
computation (IMC) are two of those promising emerging solu-
tions. The infusion of the two, namely, IMC using memristors,
is an ideal approach to which a substantial amount of research
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has been dedicated. Memristors are nonvolatile devices, often
built in large arrays in a very compact fashion [3]. They can
store data [4]–[8] and perform logical operations [9]–[13]
and calculations [14]–[17], where the data are located.
This reduces unnecessary data transfer and alleviates the
Von-Neumann bottleneck [2]. This advantage is more signifi-
cant when working with big data (e.g., sorting data [18]).

The nonvolatility of memristors renders them ultra-low
power, and their compactness makes them economical. They
are also compatible with complementary metal-oxide semi-
conductor (CMOS) technology, as they can be built in
the Back end of line (BEOL) [19], [20] in additional steps
and without requiring changes in the traditional CMOS tech-
nology. This ensures a smooth transition and minimal addi-
tional cost. These advantages have led to their incorporation
in some products in the market (e.g., in certain Panasonic
products [21] or crossbar memories [22]) and in major tech-
nology providers’ processes, such as Taiwan Semiconductor
Manufacturing Company (TSMC) [23].

Among the myriad of possibilities for near- and in-memory
computing using memristors and memristive logics [9], [10],
[10], [11], [14], [24]–[34], stateful logics seem to be one of
the most promising solutions. In stateful logics, both input
and output values are represented as the internal state of
memory elements, which is the resistance of memristors, also
known as memristance. A unique advantage of this kind of
logic is that no read or write is necessary for performing
logical operations and calculations. Saving reads and writes
for when they are only intended as such (e.g., once at the
beginning or end of a long process or function to transfer
inputs and results of calculation) prevents unnecessary power
consumption and delay in computations, which read and write
operations impose. This simplifies the stateful logic operations
and increases their efficiency. Many logical functions can be
executed as atomic stateful operations, but there is currently
no possibility of running XOR in a single cycle. Due to the
importance and pervasive use of this logical function, creating
a circuit that allows single-cycle execution of XOR will have
significant benefits for a wide range of circuits and systems.
This article tackles this challenge by proposing a new mem-
ristive circuit that can perform XOR in a single cycle.

The rest of this article is organized as follows. We begin
with a brief literature review in Section II. In Section III,
we present the proposed design. We verify the operation
of single-cycle in-memristor XOR (SIXOR) and formulate
the design constraints in Section IV. In Section V, using
the example of a new adder, we showcase the advantages
of using the proposed XOR. We discuss other design and
usage considerations, including crossbar arrays, in Section VI.
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Fig. 1. TMSL AND [12].

Fig. 2. FELIX OR [13].

Finally, we delve deeper into implementation aspects in
Section VII before concluding this article in Section VIII.

II. STATEFUL LOGICS—OVERVIEW

The first stateful logic in the literature was material implica-
tion (IMPLY), proposed in the late 2000s [9], [10]. Afterward,
memristor-aided logic (MAGIC) was proposed in 2014 [11],
which included NOT, NOR, OR, NAND, and AND operations.
Since only the first two were compatible with the memory
production technology, namely, crossbar arrays, mainly those
two were picked up by the community.

In 2016, crossbar compatible AND and NAND operations
were proposed [12], which also go by the name of three
memristors stateful logic (TMSL). Fig. 1 shows the TMSL
AND that we have used in this article to construct our proposed
adder. The need for a resistor and an additional voltage source
(VR � Vsupply) makes this circuit more complex than MAGIC
and somewhat similar to IMPLY in terms of complexity.
Nevertheless, it remains practical for implementation, includ-
ing on crossbar arrays [12]. Performing AND and NAND oper-
ations atomically and in a single cycle renders TMSL efficient
and important addition to stateful logic literature.

The contribution of fast and energy-efficient logic (FELIX)
in 2018 [13] in basic logic was a modified version of MAGIC
NOR, which enabled crossbar compatible OR operation.
We have used FELIX OR in the adder that we propose in
this article. As we see in Fig. 2, FELIX OR has a simple
structure and is easy to implement. The list of stateful logics
goes on (see [1], [35]); however, the abovementioned designs
are a good representative of capital milestones and stateful
logic design concepts in the current literature.

Fig. 3. Proposed single-cycle XOR: basic concept.

TABLE I

TRUTH TABLE OF XOR

We note that, in FELIX [13], they also proposed a method
for performing XOR in two cycles using a particular combi-
nation of OR- and NAND-like operations. This way, FELIX
reduces the delay of XOR operation by three cycles (from five
cycles in [33] to two cycles in [13]). Another attempt to create
an XOR/XNOR function is reported in [36]; however, it does
not present a substantial advantage to FELIX since it needs
two to three cycles to complete. More importantly, it cannot
be implemented in homogenous memories since it requires a
heterogeneous memristor array (with both unipolar and bipolar
memristors).

In continuation of this trend, we complement existing logics
by proposing SIXOR, the first atomic stateful XOR operation,
which requires only one cycle for completion, uses only
common bipolar memristors, and is compatible with crossbar
arrays. The proposed XOR can speedup IMCs that use this
logic, such as additions, multiplications, search algorithms,
image processing, neural networks (NNs), and many more.
The speed-up scales up with the increase in the complexity of
the overall system and the number of used XOR operations.

III. PROPOSED SINGLE-CYCLE IN-MEMRISTOR XOR

A. Basic Version

Fig. 3 shows the basic concept of the proposed single-cycle
XOR, where A and B are input memristors and F is the output
memristor storing the result. Memristor C is an auxiliary
memristor whose role we will explain later. Both F and C
are initialized to high resistance state (HRS) or logic “0”.
Therefore, at the beginning of each operation, F and C are—
virtually—open circuits.

During the operation, in Cases 1 and 4 of the XOR truth
table shown in Table I, given that A and B are in the same
state and have a similar resistance, the voltage of the common
node, Vn , will be virtually ground, keeping F at its original
state, i.e., “0”. In Case 3, B is virtually an open circuit,
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Fig. 4. Simulation result of Case 4 for basic XOR.

and A is virtually short; hence, F sees V x across it and changes
its state from “0” to “1”. In Case 2, A is open, and B is short,
which brings the common node, n, to −V x . This should not
affect F; however, since C sees 2V x across itself, it changes
status from “0” to “1”. During this process, the current passing
through B changes its status from “1” to “0”, leaving C the
only memristor in low resistance state (LRS) (logic “1”).
Since C is now conducting, the voltage of the common
node, Vn, rises to approximately V x , which causes a state
change in F, from “0” to “1”. Hence, this circuit fulfills all
the cases of the truth table of XOR. We note that, in Case 2,
the auxiliary memristor C plays a crucial role, without
which F would not correctly switch.

Even though this circuit is functional, in Case 4, there is
a minor undesired effect. Since both A and B are in their
LRS and conduct, the current going through them, as shown
in Fig. 4, causes a state change in B. This loss of status
brings the circuit practically to Case 3, which initiates a state
change in F. Due to limited pulsewidth, this state change
in F is not completed, as shown in Fig. 4, even though we
observe a significant state drift. Tackling this matter is the topic
of Section III-B.

B. Complete Version

To resolve the output drift issue in Case 4 of the circuit pro-
posed in Fig. 3, one could reduce the duration of operation or
change the drives. However, those lead to sensitivities to those
parameters and their variations, as well as extra complexity
or even potentially incompatibility with other timings in the
system. Hence, we propose the circuit shown in Fig. 5, where
another auxiliary memristor, namely D, which is initiated
to “0” (HRS), is added to the circuit.

Given the circuit topology, memristor D can never switch
its state and will always remain in HRS. Therefore, whenever
memristor B is in LRS (“1”), D is an open circuit in compar-
ison and plays—virtually—no role in the circuit. Whenever
B is in its HRS, since B and D will be in the same order of
magnitude, their parallel constellation leads to an equivalent

Fig. 5. Proposed single-cycle XOR: complete version.

Fig. 6. Simulation result of Case 4 for the complete version of the
proposed XOR.

resistance of approximately half their individual values. This
lowers the voltage of Vn (particularly, in Case 4, after
B changes from “1” to “0”) to a voltage below the threshold
voltage of F and prevents its drift. Since memristor B and D
will share the current between themselves, the state change
in B is slowed down, which further delays the undesired rise
of the voltage of Vn . This effect contributes to preventing the
undesired drift too. The result of this operation can be seen
in Fig. 6, where no drift occurs.

We note that, in Case 2, a similar behavior should be
observed. However, since in that case, B experiences a much
slower change (A is open), F already begins a state change,
which further delays the voltage drop at Vn. Thus, as shown
in Fig. 7, Case 2 (similar to all other cases) provides a correct
output, with no state drift in F. By reducing the duration of
operation, as we can see in Fig. 7, an undesired state change
in memristor A can be prevented in all cases. However, input
memristor B loses its state after the operation in Case 2 and
Case 4.

IV. VERIFICATION AND FORMULIZATION

A. Simulations

The proposed design was verified by SPICE simulations
in LTSpice. To model the behavior of memristors, we used
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Fig. 7. Simulation results of all cases for the complete version of the proposed XOR.

TABLE II

PARAMETER SETUP USED IN THE VTEAM MODEL, OBTAINED

BY FITTING IT TO OUR MEASUREMENTS [8] OF KNOWM

“BS-AF-W” DISCRETE MEMRISTORS [40]

the voltage-controlled threshold adaptive memristor (VTEAM)
model [37] implemented in SPICE [38], [39]. The parameters
used for the model are inserted in Table II. We note that we
obtained the model parameters by fitting the VTEAM model
to our measurements [8] of Knowm “BS-AF-W” discrete
memristors [40]. In all experiments, Vx = 1.2 V, and the pulse
duration has been 20 μs for Fig. 4 and Fig. 6 and 2 μs for
the rest of the simulations. The rise time and fall time of
the pulses were set to 5% of the pulse duration. As shown
in Fig. 7, the simulations lead to correct results for all cases.

For evaluating the power and energy consumption, we have
used the built-in measurement tool of LTSpice. Since the
power dissipation depends on the cases and states of input
memristors, we have averaged the power consumption over
all four combinations of the inputs. On average, for the
2-μs pulse duration, the proposed circuit has a power con-
sumption of 20.25 μW and energy consumption of 44.55 pJ.
These numbers include only the power consumption
of memristors.

We note that the (minimum) operation delay (here 2 μs),
power, and energy consumption of memristive circuits depend
heavily on the model—or the technology—used for the imple-
mentation of the circuit. Therefore, they will be different

and should be adjusted when considering other technology or
models. Nonetheless, we provide those numbers to serve as a
good base for comparison in the future. The models that we
have used are available to the public, and others can use them
to simulate their own circuits and obtain comparable numbers
for the delay, power, and energy consumption.

B. Formulization of Design Constraints

In this part of the article, we analyze the constraints of each
case and extract governing equations and considerations based
on those constraints. We bear in mind that, to have any state
changes in the F

Vx ≥ V on
th (1)

must hold.
Other case-specific constraints are as follows.

Case 1 In this case, the main constraint is keeping F in its
initial state by ensuring Vn < V on

th , where V on
th is the

threshold voltage of a memristor going from HRS to
LRS. Given the symmetry of the circuit, Vn = 0 at
the beginning and as long as (Vx − Vn) < 2V on

th or
equivalently

Vx < 2V on
th (2)

none of the memristors should switch.
The only concern, in this case, is the slow rise of Vn

due to a state change in C, which affects the timing.
This rise can be faster if Vx has a value close to the
maximum dictated by (2). In the proximity of 1.5 V on

th
and the optimum timing (minimum time required for
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full state change in F in all cases), this effect is
negligible. Even in a few times larger periods, this has
no functional effect on the proposed XOR operation.

Case 2 In this case, the primary constraint is

Vn ≥ V on
th . (3)

To calculate Vn , we need to consider that memristor C
sees 2 Vx , which, following (1), is significantly larger
than V on

th . Thus, C quickly changes its state to LRS,
during which B also changes to HRS. If the parallel
resistance of A and C is RH /k2, where RH is the
memristance in HRS and k2 is a constant coefficient,
we have

Vn ≈ k2

k2 + 3
Vx + 2

k2 + 3
(−V x) ≥ V on

th . (4)

This gives us

V x ≥ k2 + 3

k2 − 2
V on

th (5)

In a technology, such as tungsten chalcogenide
resistive random access memorys (ReRAMs) of
Knowm [41], where RH ≈ 100RL (RL is the mem-
ristance in LRS), k2 = 101, and (4) is estimated
by Vx . By replacing this in (3), we have—with a
very good approximation—the same constraint as (1).
To be exact, Vx ≥ 1.05 V on

th .
Case 3 In this case too, we consider the constraints and

equations that govern Case 2. The reason is that again
one memristor is short to Vx (this time, A itself
is short, and C is open), and two open memristors
(B and D) are in the path of node n to −Vx .

Case 4 The main constraint, in this case, is Vn < V on
th , which

is valid at the beginning of the cycle since Vn = 0
due to the symmetry of the circuit (the same value of
resistance connects node n to Vx and −Vx , creating a
virtual ground at that node). However, this symmetry
is broken when, due to the passing current, B loses its
state and draws current from A and C. Assuming that
here RA||RC = (RH /k4), where k4 is a coefficient
representing the drift of memristor A and C during
the operation, we have

Vn ≈ k4

k4 + 3
Vx + 2

k4 + 3
(−V x) < V on

th (6)

or

Vx <
k4 + 3

k4 − 2
V on

th . (7)

We know that both A and C have drifted from LRS
and HRS, and we cannot estimate k4 with 100, espe-
cially given the highly nonlinear nature of memristors.
In the example case of Fig. 7, RA = 0.18RH and
RC = 0.6RH , which gives k4 = 7.2. This means that
Vx < 1.96 V on

th must hold.

In summary, all design constraints can be expresses as

V on
th ≤ k2 + 3

k2 − 2
V on

th ≤ Vx <
k4 + 3

k4 − 2
V on

th < 2V on
th (8)

where k2 and k4 are technology dependent values. As a rule
of thumb, it is reasonable to assume roughly one order of
magnitude difference between the two. In the example case of
Knowm [41] and our simulation setup, k2 = 100 and k4 = 7.2,
leading to

1.05V on
th ≤ Vx < 1.96V on

th . (9)

V. SHOWCASE: FULL-ADDER

A. Design

To showcase the impact of SIXOR, we present a new
stateful in-memory full-adder (FA) that uses the proposed
XOR to calculate a single bit addition in only four cycles.
In this adder, the sum (SHA) and carry (CHA) of the half-adder
(HA) are the direct implementation of

1 : CHA = A · B (10)

2 : SHA = A ⊕ B (11)

using the proposed XOR and TMSL AND, taking two cycles
only. From there to full addition, first, an interim value (Int)
needs to be calculated in the third cycle

3 : Int = Cin · SHA (12)

Re-initialize B & Caux (13)

Where, again, the TMSL AND is used. At this step, in parallel,
we reinitialize B to store the final sum in it. In addition,
Caux, the auxiliary C memristor in Fig. 5, may have lost its
state during the first XOR and is reinitialized. In the fourth
cycle, two independent operations can run in parallel

4 : SFA = Cin ⊕ SHA (14)

CFA = CHA + Int (15)

where FELIX OR is used in addition to our proposed SIXOR,
therefore finishing a single-bit full-addition in four cycles
only. This FA would need ten memristors; however, since
memristor B loses its original state, B can store the output.
Thus, we can reduce the number of required memristors to
nine only.

Algorithm 1 shows how this can be extended to an n-bit
addition, which requires 2n + 2 cycles and 6n + 3 memris-
tors. To keep the number of memristors down, we propose
reusing B to store the sum and using the same memristors for
Int and C in each iteration of the loop.

B. Validation
We validated the proposed adder design through SPICE

simulations using the VTEAM model [37] implemented in
SPICE [38], [39]. Model settings are shown in Table II
(fitted to our measurements [8] of Knowm “BS-AF-W” dis-
crete memristors [40]). In these simulations, Vsupply = Vx =
1.3v and tpulse = 2 μs. For the TMSL AND, additional para-
meters are VR = 0.6 and R = 16 k�. All input combinations
led to correct outputs. Fig. 8 shows sample simulation results
for A = 1, B = 1, and Cin = 1. For this experiment, every
10 μs, a 2-μs pulse has been applied to respective memristors
to perform one of the steps of addition. That is, from 10 to
12 μs, memristors A and B have been ANDed and stored
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Algorithm 1 Proposed n-Bit Full-Adder

Fig. 8. Simulation results of addition for A = 1, B = 1, Cin = 1, leading to
S = 1 and Cout = 1.

in CHA, according to (10). From 20 to 22 μs, A and B have
been XORed and stored in SH A, according to (11). During
the 30–32-μs period, B and Caux are reinitialized, as in (13),
while Int is calculated according to (12). During 40–42-μs,
two operations, namely (14) and (15), are conducted simulta-
neously, leading to the calculation of the final sum and carry
out.

C. Comparison: Single-Bit

Table III shows a list of stateful FAs published in the last
three years. As we can see in this table, the proposed FA is the
fastest adder with a significant margin compared to other FAs.
Due to the XOR operations proposed here, the proposed adder
is, on average, 2.94 times faster than other FAs. Compared to
the fastest competitor, namely, FELIX FA [13], the proposed
FA achieves a 50% improvement in speed while using the
same number of memristors. On average, the proposed adder
uses 43% more memristors than other designs, which is
negligible compared to the 294% average speed-up gained.

Table III also provides the reported power consumption
of different FAs. We note that, for a fair comparison, both
circuits should be simulated (or implemented) using the same
memristive technology since technological parameters affect

TABLE III

RECENT STATEFUL SINGLE-BIT FULL-ADDERS

delay, power, and energy consumption to a considerable extent.
For example, our model and, consequently, our simulations
are based on Knowm discrete devices. Discrete devices have
substantial parasitics that considerably increase their delay and
energy consumption compared to integrated devices. Similarly,
the different material composition of memristors leads to
considerably different features (e.g., HRS, LRS, threshold
voltages, and switching speed), as well as delay and power
consumption behaviors. Hence, the absolute numbers of delay,
power, and energy consumption of various circuits cannot be
directly compared if they are not based on the same technol-
ogy. In the case of here proposed SIXOR, these numbers will
significantly decrease when implemented (or simulated) in an
integrated fashion.

Among the designs listed in Table III,
TaheriNejad et al. [39] and Ganjeheizadeh Rohani et al. [45]
use the same memristor model and use the same parameter
values in the model. Therefore, these two designs can be
fairly compared with the proposed design. We see that the
proposed design has a significantly lower energy and power
footprint than those other two designs. Two main contributing
factors are the use of the new and different logics and the
significantly smaller number of steps (which is a consequence
of using the newly proposed XOR logic). We believe that, for
the same reasons, particularly the reduced number of steps,
other circuits and systems that use the proposed SIXOR will
benefit from energy savings.

D. Comparison: Multibit

We note that a single-bit FA is not fully representative of
the practical impacts of a design since it is rarely used as
such. Therefore, in Table IV, we have inserted the number of
steps and memristors for an n-bit adder, as it would be used
in practice. We have also calculated the number of steps and
memristors for a 32-bit addition as an example. Some designs
in Table III do not explain how they would expand their design
from a single-bit FA to an n-bit adder and how many steps
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TABLE IV

SUMMARY OF STATEFUL ADDERS

or memristors would be required in that case. For this reason,
they are not included in Table IV.

Comparing Tables III and IV, we can see that the difference
in performance has a considerable change from single-bit
to n- or, in the example of Table IV, 32-bit adders. For
instance, the Iterative design [42] is 3.5 times slower than
the proposed FA and uses 12.5% fewer memristors. However,
in a 32-bit addition, that design is 9.1 times slower while using
31% more memristor, thus having no advantage either in the
number of steps or number of memristors. We observe that this
is the general trend of performance change between single-bit
FA and the n-bit adder proposed here. That is, the gap in
the number of used memristors closes (by reducing the extra
memristor usage by an average of 37%) and the gap in the
number of steps increases (by improving the speedup by an
average of six times) for the 32-bit adders in Table IV. These
improvements happen due to the single-cycle XOR operation,
which allows faster computations.

To have a uniform overview of the merit of the proposed
design, we consider two figures of merit (FoMs), as defined
in [47]. These figure of merits (FoMs) consider a combination
to speed and area or the number of memristors to evaluate
the merit of a design. In a balanced design, where the
number of steps (nS) and number of memristors (nM ) have
the same importance, the FoM of all designs can be calculated
using [47]

FoMB = 1

nM · nS
. (16)

For a 32-bit adder of the proposed design, FoMB = 77 μ,
which is between 21% and 12× better than all other adders
in Table IV. On average, FoMB of the proposed design is three
times better than other adders.

The main goal and advantage of the proposed XOR operation
is to speedup the computation. Hence, if we consider the
speed-centered FoM [47]

FoMS = 1

nM · n2
S

(17)

the minimum and average improvements of the proposed
32-bit adder compared to other adders in Table IV are
45% and 35×, respectively. This demonstrates the merit of
the proposed adder and, consequently, the advantages of
using SIXOR.

VI. DISCUSSION

A. Design Considerations

One of the important advantages of the proposed XOR is
its ease of design and robustness. This robustness was shown
by the correct operation under various voltages (1.05 V on

th to
1.96 V on

th ) and timings (the operation length was changed for
one order of magnitude from 2 to 20 μs. As we saw in
Section IV-B, the design constraints are summarized into (8),
further simplified for our target technology to (9). This allows
for a relatively wide range of values to select Vx from, namely,
0.91 V on

th . Here, we first discuss how this range should be
calculated in other technologies. Next, we discuss the state
loss in memristor B.

Regarding the design constraints in other technologies,
we have

k2 = RH

RA||RC
(18)

where RA and RC are the resistance of memristors at the end
of the operation in Case 2. At the end of Case 2, memristor A
is in HRS, and memristor C is in LRS, which gives us

k2 = RH

RH ||RL
= RH + RL

RL
. (19)

The same formulation as (18) can be used for k4, i.e.,

k4 = RH

RA||RC
(20)

with the difference that RA and RC are the resistance of
memristors at the end of the operation in Case 4. At the
end of Case 4, neither of the memristors is in LRS or HRS.
Memristor A is close to HRS, and memristor C is close
to LRS. The value of k4 is, thus, decided based on the
acceptable drift or deviation from LRS and HRS. Therefore,
k4 presents itself as the main parameter that the design
engineer should decide at design time. In doing so, they should
consider that this drift limits the range of allowable supply
voltages (Vx). However, as we saw in our example, targeting
a very small drift allows for a reasonably large range of supply
voltage. Therefore, no complex decision process is necessary
here.

Another design consideration is the loss of state for input
memristor B in Case 2 and Case 4. A known loss of state is
acceptable since it can be taken into account and mitigated
at design time. We see a similar concept in IMPLY, where at
least one and, in many cases, both inputs lose their states [48].
As shown in Section V, a careful design (proper ordering of
operations) can render this loss of state during the XOR oper-
ation inconsequential. In that example, XORs are performed
when the inputs were not used in further steps anymore. If such
an ordering is not possible in a circuit, or for any reason,
the input is necessary for further calculations, a copy of B can
be stored prior to applying XOR. However, in many cases
(e.g., intermediate results), this is not necessary. This further
use or lack thereof can be easily determined at the compiler
level, thus preventing any extra load for the operations and
respective performance.
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Fig. 9. Schematic of a 2-D implementation of the proposed XOR.

B. Crossbar Compatibility

A critical aspect of memristive circuits is their compati-
bility with crossbar implementation. The main reason is that,
as memory arrays, a crossbar implementation is the most-likely
and most compact implementation for an integrated circuit.
It needs no extra clarification on how the proposed circuit can
be implemented using discrete devices. Therefore, we discuss
the implementation of SIXOR on 2-D and 3-D memristive
crossbar arrays.

Fig. 9 shows a schematic of how the proposed XOR can
be implemented on a 2-D memristive crossbar array. As we
see in this figure, due to the polarity of memristors
(A and F, being different from the three other memristors),
they cannot be implemented all in the same row (or the same
column).1 Therefore, a switch is needed to connected the row
(or column) where B, C, and D are located to a column
(or a row), where A and F are located. We have symbolically
shown this switch on the crossbar. In practice, this switch will
be implemented on the periphery of the crossbar, inside the
control and read/write circuitry fabricated on CMOS. Although
it is preferred to avoid additional switches, they have been used
in many memristive circuits and systems (e.g., [13], [44], [47],
[49]) since the benefit of using them can more than justify the
imposed additional resources (in our case, the speed gain due
to performing XOR in a single cycle only).

Given how most memristors, particularly ReRAMs, are fab-
ricated, it is more likely that the crossbar arrays be fabricated
in 3-D stacks (as opposed to 2-D, which implies only a single
layer of memristors). This domain is little explored, and the
literature on 3-D memristive circuits and logics is relatively
sparse [1]. The proposed SIXOR is fully compatible with
3-D crossbars and achieves further efficiency on 3-D arrays.
Fig. 10 shows how SIXOR can be implemented on a 3-D array,
where memristors A and F are highlighted in blue, whereas
B, C, and D are depicted in green. As we see in Fig. 10, the
3-D implementation of SIXOR does not need any external
switches since the memristors in the blue layer and the green
layer are by default connected with antiparallel polarities.
In the 3-D crossbar, SIXOR occupies a more limited number

1We note that the position of memristors in rows and columns can be
exchanged. That is, B, C, and D could be located on the same column, while
A and F sit on one row. From these two possibilities, we have shown only
one and mention the other possibility inside parentheses.

Fig. 10. Schematic of a 3-D implementation of the proposed XOR, where
memristors A and F are highlighted in blue and others in green.

of rows and columns, allowing for further parallelism and
simultaneous computations.

VII. IMPLEMENTATION ASPECTS

To implement the proposed circuits on real memristors,
additional aspects need to be taken into consideration. Some
of these issues (such as sneak paths, memristance variation,
and leakage) are general concerns in the community and not
specific to this work only. For instance, statistical variation
in memristance of the devices and the leakage phenomenon
(state drift in the absence of stimuli) affect other existing
stateful logics too (see [50] for an example) and in each case
differently. However, they have not been thoroughly studied
since they require new models that reflect these practical
aspects. We are currently developing a model that will enable
us to conduct such studies for all logics in the literature.
Moreover, such an in-depth discussion requires its own venue,
especially that it would be the first in the literature to evaluate
all stateful logics in that regard. Therefore, we leave those two
aspects for future publications.

A. Negative Voltage Supply

One implementation point to consider is that the pro-
posed XOR requires both positive (Vx) and negative (−Vx)
supply voltages. A simple solution for this requirement,
using a single-pole input supply, is to have a supply volt-
age of 2Vx (or larger) and connect the positive supply to
the positive pole and the negative supply to the negative
pole. In this case, Vsupply/2 will be the virtual GND node,
and memristors should be able to switch with (Vsupply/2),
i.e., (Vsupply/2) ≥ V on

th . For memristors with smaller V on
th

(e.g., 0.1–0.5 V), this would be no problem. However, with a
memristive technology with a relatively high V on

th (e.g., 0.7 V),
a relatively large voltage supply (in this example, 1.4–2.8 V)
would be necessary. This requirement can be challenging.

Large voltage ranges limit the CMOS technology nodes that
can be used for the peripheral and control circuits. Smaller
technology nodes cannot be used since they cannot operate
in such high voltage ranges (≥ 1.5). Using larger technology
nodes can be acceptable for certain applications, such as
memory chips, which generally operates at lower frequencies.
Since they do not need high frequencies, they can use larger
technology nodes, which are more economical. However, this
is not ideal for the integration in processor chips, especially

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 26,2021 at 13:52:19 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TAHERINEJAD: SIXOR: SINGLE-CYCLE IN-MEMRISTOR XOR 9

Fig. 11. Comparison of simulation results of all cases for the proposed XOR stand-alone (shown in solid blue lines) and in an 8 × 8 crossbar array (shown
in dashed lines and marked with xbar).

Fig. 12. Comparison of simulation results of all cases for the proposed XOR in a 16 × 16 crossbar array (shown in solid blue lines) and the 16 × 16 crossbar
array with modifications (shown in dashed lines); that is, application of bias voltages to unused rows and columns as opposed to leaving them float.

high-end processors, which are fabricated on the smallest of
technology nodes to meet the demand for speed.

To tackle this problem, an alternative solution can be used,
namely, negative voltage generators and charge pumps that
produce negative supply voltage on-chip (see [51]–[53]). This
would allow using a power supply with a voltage as low as Vx

and produce −Vx from the same power supply on-chip. Using
this approach, which is used for Dynamic Random Access
Memorys (DRAMs) too [51], [52], smaller technology nodes
can be used. We note that, for all logics (even those using
a single-pole voltage), the technology node should support
voltages higher than the V on

th .

B. Sneak Paths

In larger integration of memristive structures with no ded-
icated switch for each memristor, such as 1R (1M) cross-
bar arrays, sneak path is an important concern [54], [55].
Therefore, many researchers in the community have tried
to study [55]–[58] and tackle [26], [54], [56] this problem.

To study this effect, we have simulated the proposed SIXOR
in crossbar arrays for functionality validation. In the rest of
this section, we present and discuss our simulations of 4 × 4,
8 × 8, and 16 × 16.1 R (1M) crossbar arrays. For these
simulations, unused rows and arrays were left floating. In the
4×4 array, no considerable difference was observed, and only
a slight difference was observed in the 8 × 8 array. As shown
in Fig. 11, this difference is too small to affect the functional
validity of the XOR operation. In the 16 × 16 array, however,
as shown with solid blue lines in Fig. 12, the sneak paths
already affect the functional validity of the XOR operation.
To counter this effect, we slightly increased the Vx (from
1.2 to 1.3 V), connected the unused rows to Vx/2, and unused
columns to the ground. This way, unused memristors see Vx/2,
which, following (2), is smaller than V on

th and does not change
their states. These actions reduce the undesired contributions
of unused memristors to sneak paths and thus, as shown with
dashed magenta lines in Fig. 12, make the XOR functional
again.
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As shown above, in cases where the sneak paths negatively
affect the functional validity of the operation of a circuit,
some strategies can be deployed to help. Strategies such as
the judicious application of voltages to unused columns and
rows can limit the sneak path effect. Our proposed circuit uses
HRS as the initial value of memristors, which reduces the
sneak paths current compared to those with LRS as their initial
value. Nevertheless, 1R (1M) crossbar arrays are very difficult
to handle [59]–[61], and in many cases in the literature,
sneak paths have disrupted the functionality of implemented
systems. Hence, even though we have not verified it, there
is a chance that, in larger array sizes, the sneak paths may
affect the functional validity of the proposed XOR, despite the
above-used strategies. This common issue in the field has led
to 1T1R (1T1M) being currently the dominant and preferred
implementation method [59]–[61]. In 1T1R (1T1M) crossbar
arrays, each memristor is in series with a transistor as the
select switch. Hence, if a memristor is not participating in an
operation, the transistor switch is in the off state, is virtually
open circuit, and prevents sneak path currents going through
that memristor. Following the current state-of-the-art (SoA),
we propose 1T1R as the preferred method for implementing
our circuit in larger crossbar arrays.

VIII. CONCLUSION

In this article, we proposed SIXOR: a new single-cycle
XOR for in-memory computations using memristors. We pre-
sented the design constraints for SIXOR and discussed various
aspects of design and implementation. By saving on the num-
ber of cycles necessary to run an XOR operation, the proposed
SIXOR contributes to speeding up many IMC applications.
We showcased this effect by designing a new adder using
the proposed SIXOR. This adder proved to be the fastest
stateful adder thus far, achieving a minimum of 50% and
up to 4.5× improvement in that regard compared to other
SoA stateful adders. Moreover, we observed that the proposed
adder is significantly more energy efficient in contrast to other
comparable designs due to the faster calculation and reduced
number of steps made possible by SIXOR. We expect such an
impact on speed and energy consumption to be achievable in
a large variety of other circuits and systems to be designed in
the future using the proposed single-cycle XOR.
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