
0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

1

High-Accuracy Multiply-Accumulate (MAC)
Technique for Unary Stochastic Computing

Peter Schober, M. Hassan Najafi, Member, IEEE and Nima TaheriNejad, Member, IEEE

Abstract—Multiply-accumulate (MAC) operations are common
in data processing and machine learning but costly in terms
of hardware usage. Stochastic Computing (SC) is a promising
approach for low-cost hardware design of complex arithmetic
operations such as multiplication. Computing with deterministic
unary bit-streams (defined as bit-streams with all 1s grouped
together at the beginning or end of a bit-stream) has been recently
suggested to improve the accuracy of SC. Conventionally, SC
designs use multiplexer (MUX) units or OR gates to accumulate
data in the stochastic domain. MUX-based addition suffers
from scaling of data and OR-based addition from inaccuracy.
This work proposes a novel technique for MAC operation
on unary bit-streamsthat allows exact, non-scaled addition of
multiplication results. By introducing a relative delay between
the products, we control correlation between bit-streams and
eliminate OR-based addition error. We evaluate the accuracy of
the proposed technique compared to the state-of-the-art MAC
designs. After quantization, the proposed technique demonstrates
at least 37% and up to 100% decrease of the mean absolute
error for uniformly distributed random input values, compared
to traditional OR-based MAC designs. Further, we demonstrate
that the proposed technique is practical and evaluate area, power
and energy of three possible implementations.

I. INTRODUCTION

STOCHASTIC computing (SC) [1]–[3] is an unconven-
tional computing paradigm providing low-cost and noise-

tolerant design for complex arithmetic functions such as mul-
tiplication. In contrast to common positional binary represen-
tation, in SC, data is represented using non-positional uniform
bit-streams. The bit-streams can be random with interleaved
bits of 0s and 1s or predictable (deterministic) with uniform
unary bit-streams having first all 1s and then all 0s (or vice
versa) [4]–[6].

Stochastic Computing (SC) can be realized in both digital
and analog domain. In digital domain, the binary to bit-stream
conversion is often performed using a stochastic number
generator (SNG) unit built from a random number generator
(RNG) (or a counter for the unary case) and a comparator [5].
Alternatively, in the analog domain where the input is given in
analog voltage or current format, an analog-to-time converter
such as a pulse-width modulator can be used to convert the
data into a time-encoded stochastic number [7]. The important
factor in generating stochastic numbers is the ratio of the num-
ber of 1s to the length of bit-stream, or the fraction of the time
that the signal is high (i.e., logic-1). For example, if a signal
is high 20% of the time, or equivalently, if 20% of the bits in

Peter Schober and Nima TaheriNejad are with the Institute of Computer
Technology (ICT), Technische Universität Wien (TU Wien), Vienna, Aus-
tria. M. Hassan Najafi is with the School of Computing and Informatics,
University of Louisiana, LA, 70504, USA. Email: peter-schober@gmx.at,
najafi@louisiana.edu, nima.taherinejad@tuwien.ac.at

Time

B
oo

le
an

V
al

ue

LOW

HIGH

Duty Cycle

Period Length

Fig. 1: Encoding the value 0.75 into the duty-cycle of a time-
encoded pulse-width-modulation (PWM) signal. SC works
with time-continuous PWM signals as well as with their time-
discrete represented which we call periodic unary bit-streams.

a bit-stream are 1, the signal/bit-stream represents 0.20 in the
so-called unipolar representation [3]. In the unipolar format,
the probability of observing a 1 in the bit-stream is equal to
the represented value1. Unless otherwise stated, the bit-streams
discussed in this paper are in the unipolar format. The outputs
of stochastic operations are again two-level signals, which can
be used as the input(s) to other stochastic circuits or converted
back to positional binary representation for further processing
using conventional binary designs or storing in memory.

While (pseudo) random bit-streams have been the common
form of representing data in SC [2], [3], unary bit-streams
recently attracted attention due to their efficient and low-cost
generation, and their potential for deterministic and accurate
computation using SC logic [6]–[11]. For example, 1100,
0011, and 1111000 are all examples of unary bit-streams
representing 0.5. Unary bit-streams in the digital domain are
interpreted as PWM signals in the analog domain [7]. A PWM
signal is defined by a duty cycle (D) and a frequency (or period
where frequency=1/period). The duty cycle is the fraction
of time in which the signal is high. Hence, the duty cycle
determines the represented value. Fig. 1 shows a PWM signal
with D = 3

4 , which can also be sampled as a discrete unary
bit-stream and represented by 0111. Continuous PWM signals
can work with significantly higher speed [7], but are more
susceptible to environmental conditions and noise compared to
discrete bit-streams. While processing of discrete bit-streams
is also limited by quantization noise, digital bit-streams are
easier to buffer and process compared to continuous signals.

Accumulation (addition) is an essential operation for many
computing systems. In unipolar SC, numbers are limited
to the [0,1] interval [2]. Hence, scaled addition, instead of
normal addition, is natural as the maximum output from
normal addition will be above the upper bound. A multiplexer
(MUX) implements scaled addition in SC, when correlated

1A stochastic value is said to be unipolar, if x = Mρx, where x denotes
the represented value, ρ denotes the probability of observing high (logic 1),
and M is a positive scaling factor. In this paper, we assume M = 1.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

2

(or uncorrelated) bit-streams are connected to the main and
an uncorrelated bit-stream, representing 0.5, is connected to
the select input [5], [7]. In this paper, we use the stochastic
cross correlation (SCC) [12] as a measure for correlation.
Two bit-streams are called positively correlated (SCC = +1)
when they have maximum overlap between 1s, and negatively
correlated (SCC = −1) when they have minimum overlap
between 1s. Further, the term uncorrelated (SCC = 0) is
used interchangeable with independent. The correlation of bit-
streams can be controlled during generation of them or ma-
nipulated [13] when receiving from other stochastic circuits.
It is also possible to generate approximately uncorrelated or
correlated bit-streams from existing bit-streams using addi-
tional circuitry. For example, the uncorrelated select input of
the MUX can be generated by using an additional XOR gate
and a (toggle) flipflop [14], [15].

The processing time increases exponentially with the bit-
stream lengths as the output length equals the product of the
periods of the input bit-streams [5]. When the input values
are small and the result stays in the representable range, i.e.,
in the [0,1] interval, non-scaled addition is preferred. As an
alternative to the MUX-based scaled addition, OR gate has
been suggested for fast and non-scaled addition of data [16].
A requirement for OR-based addition, however, is that the input
bit-streams must be negatively correlated to produce accurate
output. If a bit in a bit-stream is 1, the same bit position in the
other bit-stream(s) must be 0. Any overlap between 1s results
in inaccuracy in the OR-based addition.

Besides the traditional summation methods using MUX
unit and OR gate, several modifications and alternatives have
been proposed in the literature. One approach for non-scaled
addition combines an OR-based adder with additional circuitry
that includes a shift-register [17]. When both inputs of the OR
gate are 1, the circuit forwards logic-1 to the output and stores
a 1 bit in the shift register. When both inputs are 0, a previously
stored 1 bit is added to the inputs. Assuming that the shift-
register is large enough to store enough 1s and the sum is in
the valid interval, this method also allows exact summation.
If the sum should be converted back to a binary number, an
accumulative parallel counter (APC) can be used to implement
the exact non-scaled summation and the conversion to binary
in a single circuit. APCs function as multi-input stochastic-to-
binary converters that increase an internal counter for each 1 at
their inputs [18]. Finally, scaled summation can be mapped to
mealy finite state machines [15]. The number of inputs is equal
to the number of states and the current state in conjunction
with the current input determine the output. Despite the fact
that in SC, multiplication can be accurate and efficient, it
has been shown in [19] that multiply-accumulate (MAC)
circuits can be implemented without conventional stochastic
multiplication and addition. In [19], the authors use counters
to compute multiplication as well as accumulation and the
inputs and outputs are in conventional binary format.

In this work, we propose a novel summation theory that
builds on the already existing work on exact multiplication
operation (with AND gates) using deterministic unary bit-
streams [5], [7], [8]. Combined, this work performs fast,
efficient and accurate MAC operation that can be used in

b

c
∗

+

Accumulator

a

x1

y1

∗

x2

y2

∗

xN

yN

∗

+

z

(a) (b)

Fig. 2: (a) MAC architecture with accumulator a and factors b
and c for sequential data. (b) Parallel MAC architecture with
factors xi, yi and result z.

many applications. We propose an OR-based MAC unit that
accurately accumulates the output of multiplication operations
performed on unary bit-streams.

The rest of this paper is organized as follows. Section II
provides a brief overview of unary SC and MAC operation. In
Section III, we present our claims for the proposed theorem as
well as the theoretical limits on summation of multiplication
results for our technique. In Sections IV and V, mathematical
proofs are derived for the proposed theory and its upper error
bound, respectively. Section VI presents experimental results
of the proposed technique. In this section, we also provide
accuracy comparisons with the state-of-the-art MAC designs
and evaluate gray-scaling as a practical case study. In Sec-
tion VII, we provide an analysis of the resource consumption
between different MAC implementations. We further discuss
constraints and latency of our technique in Section VIII.
Finally, we draw conclusions in Section IX.

II. BASICS OF MAC OPERATION USING TIME-ENCODED
STOCHASTIC COMPUTING

The MAC operation is defined as

a← a+ (b · c). (1)

with a as accumulator, and b and c as factors. A block diagram
of Equation (1) is illustrated in Fig. 2(a). It is worth pointing
out that using multiple multipliers in parallel combined with a
multi-input adder produces the same output value z. That is,

z =
N∑
i=1

xiyi (2)

with inputs xi, yi. The corresponding architecture is shown in
Fig. 2(b). The advantage of (2) lies in a faster computation
speed at the cost of additional hardware resources.

A unary bit-stream is mathematically describable through
a length (or period), n, and number of 1s, v. The value
represented by a unary bit-stream is therefore v

n . For example,
if n = 16 and v = 4, the bit-stream represents v

n = 4
16 = 0.25.

We will show that factors with relatively prime lengths of
k = n− 1 always have a centered interval of uninterrupted 0s
in the products. A relative delay (i.e., a unique lag between
bit-streams) can position 1s of other summands in an interval
where all other products exclusively have 0s. This allows

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

3

accurate accumulation of stochastic-products through logic-
OR. The proposed technique has no restrictions concerning the
cause of the relative delays between summands. As examples,
we provide three possible implementations in Section VI-B.

Throughout the paper, whenever we refer to multiplication,
the underlying operation is logic-AND, and addition stands for
applying logic-OR to stochastic bit-streams. When we use the
terms summands, products or the inputs of the OR gate, we
refer to the intermediate results between multiplication and
summation. We emphasize that the focus of this paper lies
in the summation of unary bit-streams. For more detail on
why and how multiplication of unary bit-streams is performed
accurately, we refer the reader to [5]. In Section III, we will
take a closer look at the limits on summation of products using
logic-OR and upper-error-bound, if these limits are exceeded.

III. THEOREM

A. Claim

Let v denote the maximum allowed number of 1s in the
input bit-streams. If binary numbers, represented by unary bit-
streams with relatively prime lengths of n, k (where k = n−1
and both inputs are less than or equal to v

k) are multiplied using
logic-conjunction, then N products (results of multiplication)
can be accurately summed using logic-disjunctions, when each
summand is processed with a predefined lag. The upper-bound
of N and v is given by

N ≤
⌊
n− v

v

⌋
·
⌊
n

v

⌋
(3)

v ≤
⌊

n

d
√
4N+1−1

2 e+ 1

⌋
, (4)

where {N,n, v ∈ N}.

B. Expanded Explanation and Examples

Note that N is the number of inputs to the OR gate (not to
the MAC unit). A pairwise multiplication of 2N inputs with
AND gates results in N products, which are then summed by
OR gates. For example, if n = k + 1 = 8 and v = 4, at
most N = 2 products can be summed by an OR gate without
producing any error. The four inputs of the MAC unit must
be less than or equal to v

k = 0.5714. As some additional
examples, Table I lists the maximum allowed input thresholds
for different n = k + 1 and N for exact MAC.

Note that, Equation (4) can be used when the application
determines the number of inputs. In that case, the input range
is [0, v

k]. We also provide (3), which is more applicable when
the input ranges are known in advance or application does not
imply a specific number of inputs.

The delays mentioned above need to be applied in the
computation-chain before performing logic-OR. This is done
by either inserting registers, delaying the bit-stream genera-
tion, or using the intrinsic delay of sequential arriving data.
The important point in performing exact addition is that all
summands are delayed differently and therefore, N unique
delays are required to sum N products. In Section IV, we will
derive two types of delays. Long or major, and intermediate or
minor delays. We will show Nmajor=

⌊
n−2v

v

⌋
(Nmajor ∈ N) as

TABLE I: Examples for the accuracy threshold v
k for different

period lengths n = k + 1 and number of MAC inputs, see
Equation (92)

Calculation with input values below the thresholds is exact.
Period length n = k + 1

16 32 64 128 256
4 Inputs (N=2) 0.53 0.52 0.51 0.50 0.50

12 Inputs (N=6) 0.33 0.32 0.33 0.33 0.33
24 Inputs (N=12) 0.27 0.26 0.25 0.25 0.25
40 Inputs (N=20) 0.20 0.19 0.19 0.20 0.20
60 Inputs (N=30) 0.13 0.16 0.16 0.17 0.16

the number of different long and Nminor=Nmajor+1=
⌊
n−v
v

⌋
(Nminor ∈ N) as the number of different minor delays. Having
defined the required variables, we will now present the algo-
rithm that computes the delays. Algorithm 1 gets two inputs
n, v and returns a vector with N=(Nmajor+1) · (Nminor+1)
unique delays, which guarantees exact MAC for input values
less than or equal v

k . As an example, we calculate Nmajor

= 1 and Nminor = 2, when n=16 and v=5. We compute
N=6 different delays with Algorithm 1 and get Delays :=
{0, 5, 10, 80, 85, 90}. Fig. 3 shows the summation for this
example. The first six sequences are the delayed products of
two factors (5

16 · 5
15). The last sequence represents the sum,

produced using a 6-input OR gate.

Algorithm 1 Computing delays for N summands

Input: n, v
Output: Delays

1: Nmajor =
⌊
n−2v

v

⌋
, Nminor =

⌊
n−v
v

⌋
, i = 1

2: for q = 0, 1, 2, to Nmajor do
3: for p = 0, 1, 2, to Nminor do
4: Delays(i) = q · vn+ p · v
5: i = i+ 1
6: end for
7: end for
8: return Delays

If input bit-streams have more 1s than allowed by (4),
exact MAC operation cannot be guaranteed. In that case,
inputs represent values that are greater than v

k . Pairwise
multiplication of these inputs is exact, but the accumulation
of their products causes error. In that circumstance, the upper
error bound, Eupper, gives the maximum summation error:

Eupper =
3
2c(c+ 1) + c(v − 1)

nk
· L (5)

where c is the number of extra (and potentially overlapping)
1s per period in the input bit-streams and v + c is the total
number of 1s in them. Further, L(L ≤ N |L ∈ N) is the
number of products, where inputs represent values in [0, v+c

n].
We highlight that L is the number of products, i.e., the number
of inputs to the OR gate.

Subsequently, we give two examples for the usage of (5). In
the first one, the application guarantees that half of the inputs
satisfy (4), but no assumptions are made for the remaining
inputs. This example is meant to point out how to use variable
L to consider correct summands during the error estimation.
Fig. 4 shows the proposed MAC circuit with two of four input

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

4

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1 a[n-0]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1 b[n-5]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1 c[n-10]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1

L
og

ic
al

V
al

ue

d[n-80]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1 e[n-85]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1 f[n-90]

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320
0

1

Bits

Sum

100 105 110 115 120
0

1

Bits
260 270 280 290

0

1

Bits
Fig. 3: The proposed method for exact summation of six unary bit-streams using relative delays and logic-disjunction. The
summands a, b, c, d, e, f are delayed by 0, 5, 10, 80, 85, 90 bits, respectively. All summands are equal besides of the different
delay (a = b = c = d = e = v

n
v
k) and sum to a + b + c + d + e = 6(vn

v
k) = 0.625, with n = 16, k = 15 and v = 5. The

bottom plot shows the logic-OR of upper sequences and represents the exact sum.

1 1���
1

0 ���
1

00 0

1 ���
1

0 1 ���
1

0 1 ���
1

0

1 0 0 1 0 0

1 0 1 0 1 0

x1 : 2
3

y1 : 1

x2 : 1
3

y2 : 1
2

X1

Y1

X2

Y2

AND

AND

OR
z

Fig. 4: The proposed MAC technique for four inputs, relative
prime lengths n = k + 1 = 3 and a relative delay between
summands of 1 bit (marked by gray squares). The circuit is
exact for inputs with at most 1 bit logic-1 per period (input
values less than or equal v

k = 1
2). Because X1 and Y 1 exceed

this limit by c = 1 bit, the result z has a maximum error of
Eupper = 0.5 (5).

bit-streams (X1 and Y 1) not satisfying (4), having one extra
logic-1 (c = 1) per period. Because both are connected to the
same AND gate, one product (L = 1) has too many 1s for
exact summation. We use short relative prime periods n =
k + 1 = 3 for better graphic display. The circuit computes
1101100 which represents 4

6 , the number of 1s divided by the
least common multiple (LCM) of the input periods. The MAC
error is 5

6 - 46 = 1
6 , which is less than the upper error bound

Eupper =
3
2 ·1·(1+1)+1·(1−1)

3·2 · 1 = 1
2 .

In the second example, all input values stay in the allowed

[0, v
k] interval. The results are exact, when all input values are

less than or equal v
k = 0.315, with n = k+1 = 16, v = 5 and

N = 6. The maximum exact result is z =
∑6

1
5
16 · 5

15 = 0.625,
when all input bit-streams have v = 5 1s per period. In contrast
to the first example, all input values exceed the threshold at
the same time. Now assume that all 12 MAC inputs (L = 6)
have one additional bit toggled from 0 to 1 (c = 1). The output
increases to z =

∑N
i=1

6
16 · 6

15 = 0.9, whereas the proposed
method computes 0.8625. The error 0.9− 0.8625 = 0.0375 is
less than the upper-error estimation in (5):

Eupper = [
3

2
· 1(1 + 1) + 1 · (5− 1)]/(16× 15)× 6 = 0.175 (6)

In the next section, we prove that the proposed method is
exact when condition (3) or (4) is satisfied.

IV. PROOF OF THE THEOREM

Assume Sn and Sk are two unary bit-streams with v 1s,
followed by n−v and k−v 0s. Their product is computed by
feeding k repetitions of Sn and n repetitions of Sk to an AND
gate as elaborated in [7]. The n times repetition of Sk will
be denoted as Sk,n. Similarly, Sn,k is the k times repeated
sequence of Sn. Sn,k, Sk,n and their logic-conjunction SAND
are piecewise defined as

Sn,k[i] =

{
1 {nx ≤ i < nx+ v} (a)
0 {nx+ v ≤ i < n(x+ 1)} (b) (7)

Sk,n[i] =

{
1 {ky ≤ i < ky + v} (a)
0 {ky + v ≤ i < k(y + 1)} (b) (8)

SAND[i] = AND(Sn,k, Sk,n) (9)
with {0 ≤ x < k, 0 ≤ y < n|x, y ∈ N}. (10)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

5

Note that, in the binary domain, (7) and (8) are factors of
the product represented by (9). Fig. 5 shows these sequences
for n = 5, k = 4 and v = 2. The subsequent proof of (3) is
divided into two parts. We begin by deriving positions of 1s in
SAND. We will then use this information to derive the relative
delays that lead to no overlap between 1s. Using these delays
will guarantee exact summation through logic-disjunction.

1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sn,k

Sk,n

SAND

DSn,k
= 2

5

DSk,n
= 2

4

DSn,k
·DSk,n

= 1
5

Sk,n

Sn,k
SAND

Fig. 5: Stochastic multiplication of two unary bit-streams using
AND gate. Sn,k represents v

n = 2
5 with v = 2 1s and a period

of n = 5 bits (Duty Cycle DSn,k=0.4). Sk,n represents v
k = 2

4
with a period of k = 4 bits (Duty Cycle DSk,n=0.5). The
output SAND represents 1

5 .

By definition AND(Sn,k[i], Sk,n[i]) produces a 1 when

{Sn,k[i] = 1 AND Sk,n[i] = 1}. (11)

It follows that both inequations, (7,a) and (8,a) are required to
be fulfilled to get a 1 in SAND.

{nx ≤ i < nx+ v and ky ≤ i < ky + v} (12)

We use natural numbers m, t to rewrite inequations (12) as

{nx ≤ i < nx+ v} = {i = nx+m} (13)
{ky ≤ i < ky + v} = {i = ky + t} (14)

with {0 ≤ m < v, 0 ≤ t < v|m, t ∈ N}.
Equations (12) to (14) lead to two possible substitutions:

{{nx ≤ i < nx+ v and i = ky + t} or
{ky ≤ i < ky + v and i = nx+m}} (15)

= {{nx ≤ ky + t < nx+ v} or
{ky ≤ nx+m < ky + v}} (16)

= {{−t ≤ ky − nx < v − t} or
{−m ≤ nx− ky < v −m}} (17)

= {{v − t > ky − nx ≥ −t} or
{m ≥ ky − nx > m− v}} (18)

The disjunction in (18) has two maximum solutions (m =
t = 0 and m = t = v− 1) that both can be simplified to (19).

{v > ky − nx ≥ 0 or 0 ≥ ky − nx > −v} (19)
v > |ky − nx| (20)

For given k and n there are different solutions to (20). We
set k = n− 1 for the reasons mentioned in Section I. Hence,

v > |n(y − x)− y| (21)

A closer look at (21) and constraint n > v reveals that no
solution is possible for y ≤ x−1 and y ≥ x+2 because both
equations result in a contradiction:

for y ≤ x− 1→ y = x− 1−m

v > |n(y − x)− y| y=x−1−m
= | − n−mn− y| 6< v (22)

for y ≥ x+ 2→ y = x+ 2 +m

v > |n(y − x)− y| y=x+2+m
= |2n+mn− y| 6< v (23)

with {m ≥ 0|m ∈ N}

Next, we find explicit solutions for x, knowing that the only
possible values for y in (21) are (I.) y = x and (II.) y = x+1.

v > |ky − nx| = |ny − y − nx| (24)
for (I) y = x

v > |nx− x− nx| = x→ x < v (25)
for (II) y = x+ 1

v > |nx+ n− x− 1− nx| = |n− x− 1| (26)
x<n
= n− 1− x

k=n−1
= k − x→ x > k − v (27)

Therefore, 1s in SAND only appear in the beginning and end
(x < v and x > k−v). Substituting for y in (12) leads to (30)
and (33) that describe 1s of SAND, if both factors have v 1s.

y=x→ {nx ≤ i < nx+ v and kx ≤ i < kx+ v} (28)
= {max(nx, kx) ≤ i < min(nx+ v, kx+ v)} (29)

= {nx ≤ i < kx+ v} for x < v (30)

y=x+1→ {nx ≤ i < nx+ v and kx+ k ≤ i < kx+ k + v} (31)
= {max(nx, kx+ k) ≤ i < min(nx+ v, kx+ k + v)} (32)

= {k(x+ 1) ≤ i < nx+ v} for x > k − v. (33)

SAND[i] =

1 {nx ≤ i < kx+ v} (a)

for 0 ≤ x < v
1 {k(x+ 1) ≤ i < nx+ v} (b)

for k > x > k − v
0 else (c)

(34)

We will follow the common notation |I| for the length of
interval I . The length of an interval is the absolute value of
the difference between the two endpoints. The minimal interval
with property {{nx ≤ i < kx + v} for x < v} ⊂ Ibegin that
includes all sections of (34,a) is

Ibegin = [0, k(v − 1) + v) (35)
|Ibegin| = kv + v − k = nv − k. (36)

In the same manner, we define Iend for (34,b) and get

Iend = [k(k − v + 2), n(k − 1) + v) (37)
|Iend| = nv − n− k. (38)

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

6

Observe that |Ibegin| is greater than |Iend| regardless of v.

max(|Ibegin|, |Iend|) = |Ibegin| = nv − k (39)

Both Ibegin and Iend contain a certain percentage of 1s
proportional to the values of factors. On the contrary, IF,major

contains 0s only and is between Ibegin and Iend.

IF,major = [nv, n(k − v + 1))

= [nv, n(n− v)) (40)
|IF,major| = n(n− v)− (nv)

= n2 − 2nv. (41)

Knowing q · vn ≥ |Ibegin| (1 ≤ q|q ∈ N), a relative delay
of q · vn bits between two summands avoids overlap between
their Ibegin. As a result of |Ibegin| > |Iend| it also avoids
overlap between their Iend. Delays of form q ·vn will be called
major delays. We write SAND,q for major-delayed products and
Ibegin,q, Iend,q , IF,major,q for their right-shifted intervals:

SAND,q[i] = SAND[i− q · vn] (42)

The task is now to find maximum qmax = Nmajor that
Ibegin,Nmajor does not intersect with Iend of other products.

|IF,major| − (vn)Nmajor ≥ 0 (43)

Nmajor ≤
|IF,major|

vn
(44)

Nmajor ≤
n− 2v

v
(45)

It follows that interval Ibegin,q (1 ≤ q ≤ Nmajor) is
in IF,major,q−1 and Iend,q is right-shifted out of SAND,q−1.
Therefore, Nmajor + 1 =

⌊
n−v
v

⌋
major-delayed products do

not create overlap in logic-disjunction, when each of them is
uniquely delayed.

We can now consider the derivation of Nminor and factor
b vnc in (3). By definition of logic-AND, 0s in Sn,k (and Sk,n)
also appear in SAND. Substituting i → i − q · vn into (7,b)
shows that applying major delays extend and do not disturb the
periodicity of 0s. Therefore, SAND,q and the logic-disjunction of
them share a regular occurring pattern of 0s, denoted IF,minor.

SAND,q[i] = 0 for {n(x+ qv) + v ≤ i < n(x+ 1 + qv)} (46)

IF,minor = [n(x+ qv) + v, n(x+ 1 + qv)) (47)
|IF,minor| = n(x+ qv + 1)− (n(x+ qv) + v) (48)

= n− v (49)

Let Itwo−level be a recurring interval that does not intersect
with IF,minor. Itwo−level has 1s proportional to the input
values and contains all 1s of SAND,q . The exact positions of
1s are not required for this proof.

Itwo−level = [n(x+ qv), n(x+ qv) + v) (50)
for 0 ≤ x < v and k > x > k − v

with Itwo−level ∩ IF,minor = {}
|Itwo−level| = v (51)

According to (49) and (51), S∑
AND,q consists of an alternat-

ing pattern of v logical-undetermined bits, followed by n− v
bits being guaranteed 0s. Assuming |IF,minor| ≥ |Itwo−level|,

a relative minor-delay of |Itwo−level| = v between SAND,q
avoids overlap at logic-disjunction, because IF,minor exclu-
sively has 0s. We now proceed similar to (45) and compute
the number of unique minor-delays Nminor.

|IF,minor| − |Itwo−level| ·Nminor ≥ 0 (52)

Nminor ≤
|IF,minor|
|Itwo−level|

=
n− v

v
. (53)

The delay for each summand is computed with two variables
0 ≤ q ≤ Nmajor and 0 ≤ p < Nminor with Delay(q, v) =
q · vn+ p · v. In its final form SAND,q,p[i] = SAND,q[i− p · v] =
SAND[i− q · vn− p · v] is defined as

SAND,q,p[i] =
1 {nx+ q · vn+ p · v ≤ i < kx+ q · vn+ (p+ 1) · v}

for x < v
1 {k(x+ 1) + q · vn+ p · v ≤ i < nx+ q · vn+ (p+ 1) · v}

for x > k − v
0 else

(54)

The result of MAC operation is

SSUM [i] =

Nmajor,Nminor∑
q=0,p=0

SAND[i− q · vn− p · v] (55)

Counting the number of different available delays (N ∈ N),
that is the possibilities for q and p leads to the claim in (3):

N ≤ (Nmajor + 1)(Nminor + 1) (56)

N ≤
⌊
n− 2v

v
+ 1

⌋⌊
n− v

v
+ 1

⌋
=

⌊
n− v

v

⌋⌊
n

v

⌋
(57)

The maximum integer function in (57) is required because
Nminor and Nmajor are naturals. Solving (57) for v is possible
because of the property Nminor = Nmajor + 1. Since N is
the product of two consecutive integers we call N a pronic
number (N = x(x+1) with x = Nmajor+1). By analogy with
the square root of N , the pronic-root of N is x =

√
4N+1−1

2 .
Knowing N we can calculate its Nmajor with

Nmajor + 1 =

⌈√
4N + 1− 1

2

⌉
(58)

Next, we solve (45) for natural v and substitute for
Nmajor + 1. The result is equal to claim (4).

v ≤
⌊

n

Nmajor + 2

⌋
(59)

v ≤
⌊

n

d
√
4N+1−1

2 e+ 1

⌋
(60)

In the following section, we discuss the behavior of the
proposed technique when the maximum input constraint (4)
is not satisfied. We derive a maximum error-bound and prove
that the error is less than Eupper from (5).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

7

V. PROOF OF THE UPPER ERROR BOUND

This section proves that inputs representing greater values
than (4) cause a maximum error given in (5). So far, we
have been working under the assumption that the system was
designed for N summands and input values are in the [0, v

k]
interval. Now suppose that the allowed input interval expands
to [0, v+c

n] and N is not reduced. To account for greater input
values, we substitute v → v+c in (34,a) and (34,b), and write
S′AND for products (summands) with increased input values.

S′AND =

1 {nx ≤ i < kx+ (v + c)} (a)

for 0 ≤ x < (v+c)↔ x ∈ {x0, x1}
1 {k(x+ 1) ≤ i < nx+ (v + c)} (b)

for k > x > k − (v+c)↔ x ∈ {x3, x4}
0 else (c)

(61)

Partitioning index x (0≤x<k) into five shorter indexes (x =
x0∪x1∪x2∪x3∪x4) simplifies the subsequent error analysis.

0 ≤ x0 < v (62)
v ≤ x1 < (v + c) (63)

(v + c) ≤ x2 < k − (v + c) + 1 (64)
k − (v + c) + 1 ≤ x3 < k − v + 1 (65)

k − v + 1 ≤ x4 < k (66)

Whenever we analyze one specific section of SAND, we
abbreviate intervals of SAND with side condition x = xi ∈
{x0, x1 . . . x6} to S′AND,xi

:

S′AND,xi
= SAND and x = xi (67)

Logic-1s within previously assumed logic-0 intervals produce
error at logic-OR, because they can overlap with 1s of other
delayed summands. The proposed upper-error bound assumes
all extra 1s to cause error and sums the individual components.
In what follows, the error is calculated by intersecting both
intervals ((47) and (40)) with 1s in S′AND (61,a) and (61,b).
The intersection between intervals is defined as Ii ∩ Ij . We
use variable Mi,j for the number of bits in the intersections.

I1 ∩ I2 = [a, b) ∩ [c, d) (68)
= [max(a, c),min(b, d)) (69)

M1,2 = |I1 ∩ I2| (70)
= min(b, d)−max(a, c) (71)

There is no intersection between IF,major and SAND,x0,
because max(SAND,x0) < min(IF,major). Same technique for
x1 shows that in the worst case, S′AND,x1 is in IF,major, so all
1s of S′AND,x1 could cause error. We sum all bits of |S′AND,x1|
using Gauss-Sum for natural numbers:

Mx1,Fmajor = |S′AND,x1
∩ IF,major| (72)

=
∑
x=x1

min(kx+ (v + c), n(n− v))

−max(nx, nv) ≤
∑
|S′AND,x1

| (73)

=
∑
x=x1

|[nx, kx+ v + c)| (74)

=
v+c−1∑
x=v

v + c− x =
c(c+ 1)

2
(75)

By definition S′AND,x2
[i]=0 regardless of inputs and Mx2,Fmajor

is zero as a result. In worst case, S′AND,x3 is completely in
IF,major, which can be seen when comparing their maximum
and minimum. Hence, we again sum bits in S′AND,x3

.

Mx3,Fmajor = |S′AND,x3
∩ IF,major| ≤

∑
|S′AND,x3

| (76)

=
∑
x=x3

|[k(x+ 1), (k + 1)x+ (v + c))| (77)

=

k−(v)∑
x=k−(v+c)+1

(v + c)− k + x =
c(c+ 1)

2
(78)

Similar to x0 there is no error for x4, because
max(IF,major) < min(S′AND,x4

). In (47) we showed that
IF,minor does not intersect with 1s in SAND and contains 0s
only. For x1, x2, x3, IF,minor is in IF,major, so error within
this interval are already covered. Substituting v → (v + c) in
(50) leads additional error for x0 and x4:

Mx0,Fminor = |IF,minor ∩ |S′AND,x0
| (79)

=
∑
x=x0

[nx+ v, n(x+ 1)) ∩ [nx, kx+ (v + c)) (80)

=
∑
x=x0

min(n(x+ 1), kx+ (v + c))

−max(nx+ v, n(x+ 1)) (81)

=
∑
x=x0

kx+ (v + c)− nx− v (82)

=

v−1∑
x=0

c− x ≤ c(c+ 1)

2
(83)

Repeating the same concept for IF,minor ∩ S′AND,x4
with

max(nx+ v, k(x+ 1)) = nx+ v gives Mx4,Fminor
.

IF,minor ∩ S′AND,x4
= [nx+ v, n(x+ 1))

∩{[k(x+ 1), nx+ (v + c)) for k > x > k − v} (84)
= min(n(x+ 1), nx+ (v + c))

−max(nx+ v, k(x+ 1)). (85)

Mx4,Fminor = |IF,minor ∩ S′AND,x4
| (86)

=
∑
x=x4

(nx+ (v + c))− (nx+ v) (87)

=

k−1∑
x=k−v+1

c = (v − 1)c (88)

Mtotal is the sum of individual error contributing intersections.

Mtotal =
∑

Mxi
=

3

2
c(c+ 1) + c(v − 1) (89)

Up to this point we considered only one summand having
extra 1s that cause error. This is the result of two MAC inputs
having v+c instead v 1s. When L (L ∈ N) summands exceed
the allowed input range, the error increases proportional to L.
The number of potential error bits is converted to the positional
binary representation Eupper by scaling with 1

nk .

Eupper =
3
2c(c+ 1) + c(v − 1))

nk
· L (90)

The upper error limit Eupper increases linear w.r.t. v and L,
and quadratic with c. Note that Eupper = 0 (the computation
is accurate), when c = 0 (Equation (4) is satisfied).

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

8

x1

y1
AND

x2

y2
AND

xN

yN
AND

MUX
z

Uniformly
distributed

select signal

x1

y1
AND

x2

y2
AND

xN

yN
AND

OR
z

(a) (b)

Fig. 6: Two common SC MAC: (a) AND gate followed by a
multi-input MUX, (b) AND gate followed by a multi-input OR.

VI. EXPERIMENTAL RESULT

In this section, we verify our theory by using circuit
implementations of the proposed technique. We compare the
proposed unary bit-stream-based MAC with three state-of-
the-art designs which represent data using Sobol-based low-
discrepancy (LD) bit-streams [20] while perform the summa-
tion using either MUX or OR gates. Since all four designs use
AND gates for multiplication, we distinguish them by their data
representation and summation method, and call them SobolMUX,
SobolMUX/TFF, SobolOR and UnaryOR. Below, we discuss the
MUX-based methods (SobolMUX and SobolMUX/TFF) and OR-
based method (SobolOR) and their corresponding equations and
compare them to our proposed technique.

A. Traditional summation

Fig. 6(a) shows the most common SC design for MAC units.
Multiplications are performed using AND gates and summation
is implemented with MUX unit [3] [21] [22]. A MUX-based
adder divides the sum by the number of data inputs N . The
MAC function is described as follows:

zMUX =

∑
1≤i≤N xiyi

N
(91)

where xi and yi are inputs, and zMUX is the output. OR gates
replace the MUX unit in an alternative MAC circuit [23] [16]
(see Fig. 6(b)). OR gates find the union of input bit-streams.
For example, the result of a three-input OR is zOR = a1 ∪
a2 ∪ a3 = a1 + a2 + a3 − a1a2 − a1a3 − a2a3 + a1a2a3. In a
two-stage stochastic MAC, ais are the outputs of AND gates
(ai = xiyi and i = 1, 2, . . . N).

Recent works on deterministic methods of SC [8] [7] [5]
showed that completely accurate computations can be done
using SC designs. Different deterministic approaches were
proposed based on LD [24], pseudo-random [5], and unary
bit-streams [8]. All these methods produce completely accurate
output when processing bit-streams with a specific length (i.e.,
2N×M bits where N is the number of inputs and M is the
precision of data) and decrease in accuracy when shorter
bit-streams are processed. Among these, Sobol-based LD
methods [20] [25] have shown minimum random fluctuations
and fastest convergence to the expected output [5]. The authors
in [5] showed exact and fast converging multiplication with

0 0.32 0.45 0.55 0.63 0.71
0

0.5

1

4 Inputs
(N=2)

exact←

0 0.18 0.26 0.32 0.37 0.41
0

0.5

1

12 Inputs
(N=6)

exact←

0 0.2 0.29
0

0.5

1

24 Inputs
(N=12)

exact←

MAC Inputs

Non-scaled ref.
New UnaryOR
OR-based
MUX-based

M
A

C
O

ut
pu

t

Fig. 7: MAC outputs for OR-based and MUX-based as well as
the proposed UnaryOR as a function of input value and number
of inputs. Up to the vertical line (thresholds from Table I), the
proposed UnaryOR is exact and provides the same output as a
non-scaled MAC, shown as diagonal line.

AND gates and scaled addition with MUX when processing
Sobol-based bit-streams. The required independence between
Sobol bit-streams is provided by generating each bit-stream
based on a different Sobol sequence. When used with OR
gates, Sobol bit-streams produce the union of the inputs with
improved latency compared to pseudo-random and unary bit-
streams. We compare our proposed MAC design with three
baseline designs processing bit-streams of this form.

Fig. 7 presents the outputs for approximate OR-based
MAC, scaled MUX-based MAC and the proposed UnaryOR
to show the input-ouput behavior of each method. Note that
the number of MAC inputs is twice that of N due to the
pairwise multiplication before summation. The 5-bit precision
(n = 32, k = 31) input values are marked on the X-axis
and are equally increased until the reference MAC output,
shown on the y-axis, reaches 1 (z =

∑N
i=1 xiyi

!
= 1). The

non-scaled reference MAC output is a diagonal line because
MAC is a linear operation. While each of the implemented
methods exhibits some degree of deviation compared to the
reference, MUX-based methods diverge the most from the
non-scaled reference, because a MUX unit performs scaled
rather than normal addition. Traditional OR-based methods
perform comparably to the proposed UnaryOR design for small
input values but falls behind at larger ones. UnaryOR is closer
to the non-scaled reference MAC than MUX-based and OR-
based designs regardless of the number of inputs (e.g., 4, 12,
and 24) and is the only method that can provide completely
accurate results for small input values. The thresholds in which
the proposed method stops producing exact result is marked by
vertical lines in Fig. 7. These match the thresholds from Table I
after quantization. For example, the computed threshold for
n = 32 and N = 2 is 0.52 that, after rounding to the next
representable value, becomes 0.5. A 32-bit unary bit-stream
represents 0.5 with 16 1s followed by 16 0s. For input values
greater than the threshold, the proposed method guarantees the

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

9

upper-error bound (5) discussed in Section V.

B. Practical Implementation

So far we distinguished the individual methods by their
summation technique (OR-based or MUX-based) and the
SNGs used. In this section, we further refine our MAC
techniques and introduce SobolMUX/TFF, UnaryOR/REG and
UnaryOR/SEQ. The latter two are alternative designs for the
proposed MAC technique, which achieve the same accuracy
results as UnaryOR, but require different resources. Hence, we
will not discuss them in accuracy comparisons. However, their
differences will be discussed in the resource comparison sec-
tion (Section VII). SobolMUX/TFF is a specific implementation
of MUX-based addition that does not require an additional
select input. The method is extensively discussed in [14].
Both, the accuracy and the resource requirements differ from
SobolMUX, so it will be separately discussed in our accuracy
and resource comparisons. The three UnaryOR methods reflect
three examples of making relative delays between summands:

1) UnaryOR uses a separate SNG (consists of a counter and
a comparator) for each MAC input. The SNGs are enabled
pairwise at the clock cycles calculated with Algorithm 1 for nk
clock cycles. Two SNGs that are connected to the same AND
gate form one pair. The counters have relative prime periods
n and k = n − 1. The bit-streams are 0, when the SNGs are
disabled. The computation architecture is equal to Fig. 2(b).
Fig. 3 visualizes the concept of summing delayed bit-streams.
Each SNG is enabled for 240 clock cycles in unique intervals
and disabled (logic 0) for the remaining time.

2) UnaryOR/REG differs in both bit-stream generation and
cause of relative delays. It uses a pair of two counters instead
of one per MAC input (i.e., a total of 2N counters). The values
of the two counters are compared with each pair of factors.
The relative delays are caused by bit-shift registers of different
lengths between the outputs of the AND gates and the inputs of
the OR gates. The length of the shift-register for summand i is
equal to Delays(i) computed with Algorithm 1. In Fig. 2(b),
the length of the shift-register after AND gate with inputs x1, y1
is Delays(1) (always 0), after AND gate with inputs x2, y2 is
Delays(2), and so on. It is important that the output bit stream
of a SNG is 0, when the bit-stream generation is finished.

3) UnaryOR/SEQ uses one SNG pair (one for each relatively
prime length bit-stream) and the architecture in Fig. 2(a).
The MAC works sequentially and the summands are added
to the accumulator one after another. To achieve the same
accuracy and output sequence the following two properties
are required. First, the inputs to the SNG pair must change
N times during MAC operation (once for each summand).
Second, the SNG pair must be disabled for the correct number
of cycles between generating bit-streams for different inputs,
so that the new summand is added to the accumulator at
the right time. The accumulator is a shift register of length
nk+Nmajor·vn+ Nminor·v (the LCM of inputs plus the
maximum delay from Algorithm 1). The SNGs must be stalled
for Nmajor ·vn+Nminor ·v cycles between generating the bit-
streams of two subsequent input pairs. Simulations show that
it is possible to use a different buffer size and avoid stalling

T Q

x
y

clk

s

1

0
z

Fig. 8: Toggle flipflop based scaled adder implementation
(SobolMUX/TFF) that does not need an additional RNG for the
select input of the MUX [14].

the bit-stream generation (i.e., immediately generate the next
bit-stream when the previous is done). However, finding a
formula for optimal buffer sizes or proofing 100% accuracy
for sequential computation without separately controlling the
bit-stream generation requires further investigation and is part
of our future work.

All Sobol-based methods use the architecture in Fig. 2(b),
but could also be adapted to use the sequential architecture of
Fig. 2(a).

1) SobolOR approximates non-scaled summation with a
multi-input OR gate and requires N SNGs, because the AND
gates as well as the OR gate require uncorrelated inputs.

2) SobolMUX uses a multi-input MUX unit for scaled sum-
mation. The select input comes from a separate RNG that
produces uniformly distributed random integer variables in
the [0,N − 1] interval. The inputs of each multiplication
operation need to be uncorrelated, but the MUX inputs can be
correlated [3]. Hence, two RNGs can be shared to generate all
inputs of multiplication operations [5]. This method therefore
requires three uncorrelated streams of random numbers. Two,
to make the factor bit-streams (connected to AND gates)
uncorrelated and one for the select input of the MUX.

3) SobolMUX/TFF uses multiple 2-to-1 multiplexer stages
shown in Fig. 8 for scaled summation without requiring an
additional input (and RNG) for the select bit-stream. The cir-
cuit consists of a toggle flipflop and an XOR gate. SobolMUX/TFF
requires two streams of random numbers, which is the least
of all methods in the parallel architecture.

C. Accuracy Comparison

a) SobolMUX and SobolMUX/TFF: The accuracy of a
stochastic MUX-adder decreases when the length of bit-stream
is fixed but the number of inputs increases [26]. For input
values close to 1, the 1

N factor in (91) helps keeping the result
in the [0, 1] interval. For input values close to zero, however,
the result tends to be too small for accurate representation.
SobolMUX produces additional occurs if the select input of the
MUX is correlated to its inputs. As argued in [24], different
Sobol sequences should be used to generate independent bit-
streams and avoid the correlation error.

b) SobolOR: The accuracy of the OR-based adder is low
when input values are close to one (xi ≈ x2

i) and is high
when input values are close to zero (xi >> x2

i). Additional
error occurs if input bit-streams are correlated; any overlap
between the location of 1s in the input bit-streams decreases
the accuracy.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

10

TABLE II: Mean Absolute Error (MAE) (%) comparison of the proposed UnaryOR with state-of-the-art design approaches for
different number of summands N and different ranges of (5 bit precision) uniformly distributed random input values. The
result of MUX-based methods is rescaled by constant N in a second processing step to compensate the MUX scaling

Mean Reference MAC Output 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

4 Inputs
(N=2)

Range of Input Values
[0,0.31] [0,0.54] [0,0.71] [0,0.84] [0,0.95] [0,1.05] [0,1.14] [0,1.22] [0,1.31] [0,1.38]

UnaryOR 0.0 0.0 0.3 1.4 3.2 5.5 8.1 10.0 12.4 14.4
SobolOR 0.1 0.5 1.5 3.1 5.1 7.5 10.1 12.1 14.4 16.4

SobolMUX/TFF-rescaled 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
SobolMUX-rescaled 0.4 0.7 0.9 1.0 1.2 1.3 1.4 1.4 1.5 1.5

12 Inputs
(N=6)

Range of Input Values
[0,0.18] [0,0.31] [0,0.41] [0,0.48] [0,0.55] [0,0.60] [0,0.66] [0,0.71] [0,0.75] [0,0.80]

UnaryOR 0.0 0.0 0.2 1.0 2.6 4.6 7.2 10.5 14.8 19.6
SobolOR 0.4 1.1 2.5 4.7 7.7 10.9 15.1 19.6 25.1 30.9

SobolMUX/TFF-rescaled 0.5 1.5 2.6 3.6 4.6 5.5 6.6 7.6 8.7 9.8
SobolMUX-rescaled 0.9 1.6 2.1 2.4 2.8 3.1 3.3 3.5 3.8 4.0

24 Inputs
(N=12)

Range of Input Values
[0,0.13] [0,0.22] [0,0.29] [0,0.34] [0,0.39] [0,0.43] [0,0.46] [0,0.50] [0,0.53] [0,0.56]

UnaryOR 0.0 0.0 0.0 0.6 1.8 3.6 6.1 9.0 12.5 16.5
SobolOR 0.8 1.6 3.3 5.6 8.7 12.1 16.6 21.3 26.7 32.5

SobolMUX/TFF-rescaled 0.8 1.4 2.0 2.7 3.4 4.1 4.8 5.5 6.3 6.8
SobolMUX-rescaled 1.3 2.4 3.1 3.7 4.1 4.6 4.9 5.3 5.7 5.9

c) UnaryOR: The proposed method is accurate (4) for
input values less than

v

k
≤
⌊

n

d
√
4N+1−1

2 e+ 1

⌋
1

k
. (92)

The accuracy decreases for input values greater than this
threshold. A requirement for exact computation is applying
the relative delays from Algorithm 1 before summation. The
proposed method has a maximum error of (5) for input
values greater than (92). As shown in Table I, this threshold
highly depends on N , the number of summands. Note that
Algorithm 1 must be modified for input values closer to 1.
We restrict our modifications to decreasing v until Algorithm 1
returns enough delays. It is likely that a better adaption exists,
but we leave the study of this aspect for future works.

D. Evaluation Results

In this section, we use 5-bit precision (n=32, k=31) unary
bit-streams of length nk=992 and 10-bit precision Sobol-based
bit-streams of length 210 = 1024, unless stated otherwise. We
stop processing of bit-streams in the MUX-based and SobolOR
designs after n2 cycles (here, 1024 cycles). Although this
introduces some truncation inaccuracy [5] in the computation,
the required number of processing cycles to produce high ac-
curacy results with these MAC designs exponentially increase
with increasing the number of inputs, which is not feasible in
practice. We discuss the differences in the latency of different
SC MAC designs in more detail in Section VIII.

Table II compares the mean absolute error (MAE) (in
percent) of the implemented MAC designs for different ranges
of input values. We stop increasing the range of input values
when the reference output reaches 1. The reference computes
on double precision and is listed in the first row. SobolMUX-
rescaled is equivalent to SobolMUX but with compensation of
the scaling inherent to the MUX-based adder. In a second
processing step, after converting back to positional binary
representation, the result of the scaled SobolMUX is multiplied

by N to get the correct order of magnitude (SobolMUX-rescaled
= SobolMUX ·N). The same is true for SobolMUX/TFF-rescaled.
All listed designs perform the multiplication part of the MAC
operation accurately. Their summation part, however, can
cause error. SobolOR calculates the union of inputs and suffers
from a systematic error when compared to reference sums. The
MUX-based designs implement scaled MAC operations and
hence have a systematic deviation to non-scaled MAC results.
Random fluctuations in the select input [15] of SobolMUX and
the fact that the MUX unit discards N − 1 bits (through
multiplexing) each clock cycle leads to further accuracy loss.
In general, SobolMUX-rescaled has the potential to produce
accurate results for all input values and number of inputs as the
systematic deviation of the SobolMUX gets compensated when
multiplying with N . However, it would take more than 1024
processing cycles to converge to the correct result.

As can be seen in Table II, the proposed UnaryOR design is
the only MAC design that can compute completely accurate
results. It is significantly more accurate than the traditional
OR-based approaches. When compared to SobolOR, the error
decreases between 10% to 100% depending on the range
and number of input values. The proposed design achieves
a minimum error decrease of 37% for the case of processing
four inputs in the [0, 0.95] interval (5.1−3.25.1 ×100 ≈ 37%) and
100% decrease when the proposed method is exact.

When comparing the UnaryOR technique to rescaled MUX-
based methods the table shows two trends. The proposed
UnaryOR design performs better for small input ranges, and
for medium input ranges with large number of inputs. For
24-input MAC the proposed method has lower error for input
values in the [0, 0.43] interval. The MAC error decreases by
100% for input values in the [0, 0.29] interval and decreases
by a minimum of 4.1−3.6

4.1 × 100 = 12% for input values
in range [0.0.43]. In contrast, higher error is observed for
input values greater than 0.45. For 12 inputs, UnaryOR is
more accurate than both MUX-based MAC designs for input
values less than 0.55. For four inputs, SobolMUX/TFF-rescaled,

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

11

in most cases, computes more accurate results than UnaryOR
and SobolMUX-rescaled. The proposed UnaryOR is more accu-
rate than SobolMUX-rescaled for inputs values less than 0.71.
Nevertheless, considering the first row of Table II, if the mean
reference result is below 0.25, our proposed technique achieves
either exact results or a mean absolute error close to zero.

To give an example for one table entry, a mean reference re-
sult of 0.125 with two summands (N = 2) requires uniformly
distributed random variables in range of 0 to 0.5 as input. In
that case, the inputs have an expected value of E(x) = 0.25.
Since the maximum input for this case is 0.5, the proposed
method will be exact as shown in Table II and Fig 7.

z = E(x1)E(y1) + E(x2)E(y2)
!
= 0.125 (93)

→ x1, y1, x2, y2 ∼ U(0, 0.5) (94)

z = 2 · 0.252 = 0.125 (95)

In the last four columns of Table II, the range of inputs
for N = 2 exceeds the [0, 1] interval. The upper bound (i.e.,
1) gives a maximum input mean of E(x) = 0.5, when the
input values are uniformly distributed. The maximum mean
reference of the MAC output is therefore z =

∑N
i=1 xiyi =

0.52 + 0.52 = 0.5. However, we need outputs of greater than
0.5 to evaluate the accuracy for full possible range of the
results. To provide inputs with mean value greater than 0.5, we
generate uniformly distributed random values in the [0, 1.05],
[0, 1.14], [0, 1.22],[0, 1.31] and [0, 1.38] intervals, and round
the values down when the generated input is greater than 1.
This way, the mean of inputs increases to values greater than
0.5 as input values close or equal to 1 occur more often. For
example, when we generate 13 uniformly distributed random
values within the [0, 1.2] interval we get a mean of 0.6, with
on average two values greater than 1.0. If we clip the input
values to 1.0, the mean value becomes 0.57. The disadvantage
of clipping is a deviation from equal spreading of input values.
However, it allows using the same RNG in all evaluations.

Fig. 9 shows the MAE of the proposed technique for
different period lengths (n) and number of summands (N)
over the expected reference result (marked on the X-axis).
The inputs are scaled, uniformly distributed random values
equal to the numbers in Table II. As it can be seen, the
period length and the number of summands have negligible
impact on the accuracy. The MAC error primarily depends
on the value of the reference result. Note that, the input-
output relation of MAC is linear, due to the linearity of both
multiplication and addition. We recall the threshold (92) for
input values and accurate computation derived in Section IV.
Fig. 9 shows that the accuracy threshold for the MAC result
is approximately 0.25. This can also be seen in the third
column of Table II, with the mean reference MAC output
listed in the first row. Beyond this exact threshold the error
increases quadratically. This matches the quadratic increase
of Eupper derived in Section V. When the number of inputs
increases, the input ranges need to be decreased to keep
the mean reference result in the same interval and achieve
a similar accuracy with the case of fewer inputs. We show
the impact of increasing the number of inputs on accuracy in
Table III, where we compare UnaryOR, SobolOR, SobolMUX/TFF-

TABLE III: MAE (%) comparison for different number of
summands (N) and input bit-stream lengths (n). One sum-
mand is in [0,1] interval and N -1 summands are below 0.252.

Reference MAC Output 0.26 0.33 0.33 0.42 0.43 0.55 0.55 0.70

n 16 32 64 128
Inputs (2N) 4 12 12 24 24 40 40 60

UnaryOR 0.5 1.5 1.3 2.4 2.4 4.1 4.3 7.6
SobolOR 0.5 2.9 2.3 5.7 5.3 10.3 10.3 17.7
SobolMUX/TFF-rescaled 0.5 7.9 8.0 8.0 8.0 14.9 15.0 3.4
SobolMUX-rescaled 2.2 5.3 2.7 4.5 2.2 3.3 1.6 2.3

0 0.2 0.4 0.6 0.8 1
0
10
20
30

4 bit (n=16)
4 Inputs (N=2)
12 Inputs (N=6)

0 0.2 0.4 0.6 0.8 1
0
10
20
30

5-bit (n=32)
12 Inputs (N=6)
24 Inputs (N=12)

0 0.2 0.4 0.6 0.8 1
0
10
20
30

6-bit (n=64)
24 Inputs (N=12)
40 Inputs (N=20)

0 0.2 0.4 0.6 0.8 1
0
10
20
30

7-bit (n=128)

Mean Reference MAC Output

40 Inputs (N=20)
60 Inputs (N=30)
M

ea
n

A
bs

ol
ut

e
E

rr
or

(%
)

Fig. 9: The MAE (%) of UnaryOR versus the mean reference
output for different relative prime period lengths (n and k =
n − 1) and number of MAC inputs. The inputs of the MAC
are scaled, uniformly distributed random variables.

rescaled and SobolMUX-rescaled for different bit-stream lengths
and number of inputs. For the purpose of not exceeding an
output of 1 we limit the input range for 2N−2 MAC inputs to
the [0, 0.25] interval (the total number of MAC inputs is 2N).
The remaining two inputs have values in the [0, 1] interval.
As a result, the MAC circuit needs to sum one summand
with average of 0.52=0.25 with N -1 summands with average
of 0.1252. As can be seen in Table III, all implementations
except SobolMUX/TFF-rescaled achieve a comparable MAE as
in Table II. SobolMUX/TFF-rescaled produces error if the input
values are significantly different (x >> y, or y << x). For
example, in Fig. 8, assume that x is close to 0 and y close
to 1. Since the select input is 0 most of the time, the result
is z ≈ y rather than z = x+y

2 . UnaryOR halves the MAE
of conventional OR-based approaches and in most cases has a
higher error than SobolMUX-rescaled. However, the MUX-based
approaches require adjustment of the scaling factor, whereas
UnaryOR already provides a non-scaled result. Our evaluations
confirm that the proposed method is accurate, even with large
number of inputs, as long as the input values are small enough.

E. A Case Study: Gray-scale

To evaluate the proposed technique in an end-application,
we perform gray scaling on true color images. Gray scaling is
an image processing task that requires a MAC operation for
each pixel. RGB values are converted to gray scale values by

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

12

(a) (b) (c) (d)

Fig. 10: (a) Original RGB image. Gray-scale using (b) refer-
ence design (c) UnaryOR and (d) SobolOR

forming a weighed sum of the R, G and B components as in

Gray = 0.2989 ·R+ 0.5870 ·G+ 0.1140 ·B. (96)

Grayscale is well-suited for unipolar SC. All inputs and results
are positive values in the [0,255] interval that be scaled to the
[0,1] interval (as Q8 number format with eight fractional bits).
The MAC circuit has six inputs (N = 3 summands), with three
of them being constant and the other three changing with each
pixel. The images are shown in Fig. 10 with sizes 512×512×3
for RGB and 512×512×1 for gray-scale. Fig. 10(a) shows the
original image and Fig. 10(b) is the reference gray-scale result.
The reference uses 5-bit precision inputs and exact arithmetic.
Fig. 10(c) and (d) show the gray scale results for UnaryOR,
and SobolOR that also use 5-bit precision inputs and therefore
ignore the three least significant bits of the 8-bit color values.
Fig. 10(c) has a MAE of 1.6% and Fig. 10(d) has a MAE
of 10.8% when compared to the output of the reference. The
image in Fig. 10(d) appears darker than Fig. 10(c) as OR-
based MAC result values are smaller than the results of the
new UnaryOR (as shown in Fig. 7 too) and smaller values mean
less brightness. The average value of the pixels in the reference
gray-scale image is 125 (=0.49 in Q8 number format). Table II
lists a MAE of 2.6% for the proposed method in the case of
six summands at a mean reference MAC output of 0.45. Since
gray-scale only uses three summands instead of six, we can
halve this table entry 2.6/2=1.3%. A MAE of 1.3% is close to
the 1.6% error of the proposed UnaryOR in this case study.

UnaryOR and SobolOR require almost the same number of
clock cycles per pixel. UnaryOR finishes after 1012 cycles
while SobolOR stops after n2 = 1024 cycles. The results
in Fig. 10(c) can be computed efficiently with UnaryOR and
UnaryOR/REG. We refer the readers to Section VI-B and Sec-
tion VII for an analysis of both implementations and a resource
consumption comparison.

VII. RESOURCE COMPARISON

In this section, we compare area and power consumption
of the state-of-the art methods with different implementations
of the proposed MAC technique. A SC system often consists
of some SNGs, a stochastic circuit that does the actual
computation and a probability estimator (for bit-stream to
binary conversion). We exclude the overhead of SNGs in
our evaluations as they are already discussed in the literature
extensively [2], [3], [5]. We also exclude the overhead cost
of compensating the scaling for the MUX-based methods
(multiplying by N). Therefore, we don’t differentiate between
SobolMUX and SobolMUX-rescaled (same for SobolMUX/TFF and
SobolMUX/TFF-rescaled). The resource comparison includes the

stochastic circuit, a minimal control logic (receives start sig-
nals and transmits a done signal after completion) and the
probability estimator unit. All flipflops are synchronous with
synchronous resets. We synthesized the designs using the
Synopsys Design Compiler v2018.06 with a 45nm gate library.
The designs were synthesized for 100MHz frequency.

Table IV lists the area and power consumption of all
six implementations, with three of them being based on the
proposed MAC, for different number of inputs and input preci-
sions. The comparison shows that the implementations without
delay registers are significantly more efficient in both area
and power than implementations with registers (UnaryOR/REG
and UnaryOR/SEQ). The exception is UnaryOR/REG with four
inputs, as it requires comparable area and power but can be
implemented with fewer RNGs (see Section VI-B). Note that,
UnaryOR/REG is also viable for six inputs, because for four and
six inputs the proposed method only requires minor relative
delays. We refer to Section III-B for the definition of minor de-
lays and to Fig. 3 (first tree subplots) for an example of minor
delayed summands. All implementations except UnaryOR/SEQ
require approximately the same computation time. So, the
ratio of the required energy is similar to the ratio of the
required power. However, this is not true for UnaryOR/SEQ.
HDL simulations show that the sequential implementation
requires 2×, 7.8×, and 17.9× more computation time than
the Sobol-based methods for 4, 12 and 24 inputs, respectively.
This is primary due to the sequential processing of inputs and
secondary due to the stalled bit-stream generation, which is
required to achieve the same accuracy as UnaryOR/REG and
UnaryOR. As a result of the longer processing time, the energy
consumption is significantly higher for the UnaryOR/SEQ design
than for the other implementations. The resource consumption
of SobolOR, SobolMUX, and UnaryOR hardly changes for differ-
ent accumulator sizes and bit-stream lengths. The reason is that
the reported numbers does not include the cost of the SNGs,
and the changes only show different counter bitwidths, addi-
tional parallel AND gates for multiplication, and more inputs to
the OR gate (or the MUX unit) for summation. SobolMUX/TFF
shows more resource consumption with increasing MAC size.
This is because it needs additional toggle flipflops and XOR
gates to compute the MUX’s select bit-stream (see Fig. 8).
The required delay registers of UnaryOR/REG increases heavily
with the input count as each additional summand requires a
larger delay register. In contrast, UnaryOR/SEQ has a high base
resource consumption which barely changes with the number
of inputs as the overall feedback buffer size is similar for
all input counts. Since the number of delay elements heavily
depends on the bit-stream lengths, both UnaryOR/SEQ and
UnaryOR/REG, require significantly less resources for n = 16
than for n = 32.

Between the three implementations of the proposed tech-
nique (i.e., UnaryOR, UnaryOR/SEQ, UnaryOR/REG), UnaryOR is
selected if the number of MAC inputs is greater than six
and counters for bit-stream generation can be shared between
multiple parallel MAC units. If counters can not be shared,
or the number of MAC inputs is less than or equal six,
UnaryOR/REG could be more efficient, when taking bit-stream
generation into account. UnaryOR/SEQ uses the MAC architec-

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

13

TABLE IV: Area (µm2) and Power consumption (µW) for three state-of-the-art SC MAC designs and for three implementations
of the proposed MAC technique.

4 Inputs 12 Inputs 24 Inputs 40 Inputs 60 Inputs
Area Power Area Power Area Power Area Power Area Power

n=32

SobolOR 413 1.24 429 1.67 450 2.16 487 2.74 521 3.52
SobolMUX/TFF 434 1.52 525 3.15 660 5.55 840 8.77 1069 12.7
SobolMUX 428 1.46 461 1.85 528 2.82 574 3.43 643 4.65
UnaryOR 451 1.44 520 1.75 542 1.71 664 2.07 743 2.01
UnaryOR/REG 596 1.48 11026 15.5 33755 47.9 62586 89.5 103730 0.147
UnaryOR/SEQ 10891 14.7 14355 19.6 16435 22.6 17154 23.4 17878 24.6

n=16

SobolOR 385 1.21 389 1.50 403 2.32 426 2.75 481 3.92
SobolMUX/TFF 405 1.62 495 4.11 585 4.93 765 8.16 993 12.4
SobolMUX 389 1.20 416 1.64 439 2.25 506 3.26 581 4.59
UnaryOR 444 1.40 502 1.76 502 1.72 557 1.94 640 2.49
UnaryOR/REG 490 1.39 3246 5.26 9114 14.1 16606 27.9 16470 28.9
UnaryOR/SEQ 3025 4.09 4012 6.35 4465 5.31 4717 6.87 4572 6.70

ture in Fig. 2(a) and is not efficient enough to compete with
the parallel architecture in Fig. 2(b), as the cost for large shift-
registers outweighs potential savings. The proposed UnaryOR
design requires, on average, 21% more area than SobolOR due
to the overhead of stalling the SNGs to make relative delays
between bit-streams. Further, UnaryOR and SobolOR require
similar power and energy due to similar processing time. The
main difference is their distinct bit-stream generation. Both
UnaryOR and SobolOR require N SNGs, but UnaryOR requires
counters as RNG while SobolOR requires costly Sobol se-
quence generators [20]. Without the costs for SNGs, SobolMUX
consumes slightly less and SobolMUX/TFF more resources than
UnaryOR. However, we emphasize that MUX-based circuits
compute scaled results. Rescaling by N is not possible in
unipolar SC and the resource consumption of the weighed
binary multiplier is not included in this analysis.

VIII. FURTHER DISCUSSIONS

In this section, we discuss three properties of the proposed
technique in more detail. First, we examine the implications of
N (the number of possible summands) being pronic. Second,
we discuss the consequences of requiring bit-streams with
relative prime period lengths as inputs. Finally, we take a
closer look at the convergence behavior of the proposed
technique compared to the state-of-the-art methods.

1) In Section IV, we derived that the maximum al-
lowed number of summands is a pronic number (N =
2, 6, 12, 20, 30 . . .). The maximum allowed number of inputs
for the MAC unit is twice of that (2N = 4, 12, 24, 40, 60 . . .).
The number of inputs is often given by the application. The
proposed method also works for the number of inputs that
are not pronic. In that case, it is possible to use parts of the
delays from Algorithm 1 and leave the other unused. Then,
the accuracy threshold (92) and error (Table II) is similar as
if all possible inputs are used. Compared to prior methods,
the proposed design performs best when the number of inputs
equals the maximum allowed from (3).

2) The proposed MAC technique of this work guarantees un-
correlated inputs by using relatively prime bit-stream lengths.
The input bit-streams to the AND gates use relative prime
period lengths of n and k (n = k+ 1). Thus, one input value
needs to be converted to a unary bit-stream with a slightly
higher resolution than the other one. This difference in the

representation introduces a systematic quantization inaccuracy
during bit-stream generation particularly for small values of n
and k. For example, the bit-stream representation for 0.5 with
period lengths n = 8 and k = 7 is 11110000 and 1111000,
respectively. When converting back to positional binary the
values are v

n = 4
8 = 0.5 and v

k = 4
7 = 0.5714. We claim

that the proposed MAC design is deterministic and accurate
because its inaccuracy is predictable, systematic and occurs at
the bit-stream generation and not in the computation circuit.

The maximum number of 1s in a stochastic bit-stream is
limited by the length of bit-stream. A relative delay between
input bit-streams increases the length of the output bit-stream.
In the proposed MAC design, the output bit-stream has up to n·
k (the LCM of input lengths) plus Nmajor ·vn+Nminor ·v (the
maximum delay from Algorithm 1) bits. Assuming that the
maximum value (i.e., 1.0) is represented by n ·k bits of 1s, the
expanded bit-stream result may represent a value greater than
1, which needs to be considered when converting the output
back to the conventional weighted binary representation.

3) The number of processing cycles (i.e., latency) is dif-
ferent for different stochastic MAC designs. The first stage
of MAC operation is multiplication which is similarly im-
plemented in all MAC designs using standard AND gates.
Different MAC designs, however, are different in the second
stage of MAC operation which accumulates the multiplication
results. The inputs of each AND gate are two uncorrelated
bit-streams. For highest accuracy the inputs are 22B bit long
when multiplying two B-bit precision input values [5]. In
Section VI, we choose B = 5, so the multiplication latency is
210 = 1024 cycles (assuming each bit of the input bit-streams
are processed in one cycle) for the Sobol-based designs and
n · k = 992 cycles for the proposed design.

In SobolOR, the OR-based addition converges to the union
of its inputs after 2N ·2B = 2N ·10 cycles where N is the
number of summands. MUX-based MAC converges to the
scaled addition of the summands after 22×2B = 22×10 cycles
because the select input of the MUX must be uncorrelated to
the outputs of multiplications. The summation stage of the
proposed UnaryOR MAC technique does not introduce any
additional latency besides the extra cycles from the relative
delays. UnaryOR requires exactly nk, the LCM of inputs, plus
Nmajor · vn + Nminor · v cycles, the maximum delay from
Algorithm 1 to reach its maximum accuracy (the maximum

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2021.3087027, IEEE
Transactions on Computers

14

latency is less than 2nk cycles). The MAE results of the MUX-
based methods in Section VI improve with longer processing
times. In contrast, running the proposed MAC technique for
the exact number of cycles is important, because the accuracy
decreases if the computation is stopped too early or too late.

IX. CONCLUSIONS

In this work, we proposed a novel SC MAC technique
based on deterministic unary bit-streams. We showed that the
proposed design can compute completely accurate non-scaled
MAC and calculates overall more accurate results than the
OR-based MAC design fed with Sobol-based LD bit-stremas.
It also achieves lower error compared to the rescaled MUX-
based MAC designs, except for the case of processing a small
number of large inputs where the inherent scaling of MUX
units is beneficial. We provided practical implementations that
show the proposed technique is suitable for applications with
low input counts that require exact computation as well as
large accumulator sizes that can tolerate small errors. Modi-
fication of the proposed algorithm and using additional logic
gates are potential solutions to further increase the threshold
for exact MAC operation and to enhance the accuracy for
large input values. Such solutions however require further
investigation and are part of our future work.

ACKNOWLEDGEMENTS

This work was supported in part by the Louisiana Board
of Regents Support Fund no. LEQSF(2020-23)-RD-A-26 and
National Science Foundation grant no. 2019511.

REFERENCES

[1] B. Gaines. Stochastic computing systems. In Advances in Information
Systems Science, pp. 37–172. Springer US, 1969.

[2] A. Alaghi et al. The Promise and Challenge of Stochastic Computing.
IEEE Trans. on Computer-Aided Design of Integ. Circuits and Systems,
37(8):1515–1531, Aug 2018.

[3] W. Qian et al. An architecture for fault-tolerant computation with
stochastic logic. IEEE Transactions on Computers, 60(1):93–105, Jan
2011.

[4] W. Poppelbaum et al. Unary processing. In Advances in Computers,
volume 26, pp. 47 – 92. Elsevier, 1987.

[5] M. H. Najafi et al. Performing Stochastic Computation Deterministi-
cally. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
27(12):2925–2938, 2019.

[6] M. H. Najafi et al. Low-Cost Sorting Network Circuits Using Unary
Processing. IEEE Trans. on VLSI Systems, 26(8):1471–1480, Aug 2018.

[7] M. H. Najafi et al. Time-Encoded Values for Highly Efficient Stochastic
Circuits. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(5):1644–1657, May 2017.

[8] D. Jenson and M. Riedel. A deterministic approach to stochastic compu-
tation. In 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–8, 2016.

[9] S. R. Faraji and K. Bazargan. Hybrid Binary-Unary Hardware Acceler-
ator. IEEE Trans. on Computers, 69(9):1308–1319, 2020.

[10] S. A. Faraji et al. HBUNN - Hybrid Binary-Unary Neural Network: Re-
alizing a Complete CNN on an FPGA. In 2019 IEEE 37th International
Conference on Computer Design (ICCD), pp. 156–163, 2019.

[11] S. Mohajer et al. Parallel Unary Computing Based on Function
Derivatives. ACM Trans. Reconfigurable Technol. Syst., 14(1), October
2020.

[12] A. Alaghi and J. Hayes. Exploiting correlation in stochastic circuit
design. In Computer Design (ICCD), 2013 IEEE 31st International
Conference on, pp. 39–46, Oct 2013.

[13] V. T. Lee et al. Correlation manipulating circuits for stochastic
computing. In 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1417–1422, 2018.

[14] V. T. Lee et al. Energy-efficient hybrid stochastic-binary neural networks
for near-sensor computing. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 13–18, March 2017.

[15] P. Ting and J. P. Hayes. Eliminating a hidden error source in stochastic
circuits. In 2017 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2017.

[16] B. Li et al. Using stochastic computing to reduce the hardware require-
ments for a restricted boltzmann machine classifier. In Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, FPGA ’16, pp. 36–41, New York, NY, USA, 2016. ACM.

[17] B. Yuan and Y. Wang. High-accuracy fir filter design using stochastic
computing. In 2016 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pp. 128–133, 2016.

[18] P. Ting and J. P. Hayes. Stochastic logic realization of matrix operations.
In 2014 17th Euromicro Conference on Digital System Design, pp. 356–
364, 2014.

[19] H. Sim and J. Lee. Cost-effective stochastic mac circuits for deep neural
networks. Neural Networks, 117:152–162, 2019.

[20] S. Liu and J. Han. Energy efficient stochastic computing with sobol
sequences. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, pp. 650–653, 2017.

[21] Wong, Ming Ming et al. A new stochastic inner product core design
for digital fir filters. MATEC Web Conf., 125:05006, 2017.

[22] Y. Chang and K. K. Parhi. Architectures for digital filters using
stochastic computing. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 2697–2701, 2013.

[23] J. A. Dickson et al. Stochastic arithmetic implementations of neural
networks with in situ learning. In IEEE International Conference on
Neural Networks, pp. 711–716 vol.2, 1993.

[24] M. H. Najafi et al. Deterministic Methods for Stochastic Computing
using Low-Discrepancy Sequences. In Proceedings of the 37th Interna-
tional Conference on Computer-Aided Design, ICCAD ’18, 2018.

[25] S. Liu and J. Han. Toward Energy-Efficient Stochastic Circuits Using
Parallel Sobol Sequences. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(7):1326–1339, July 2018.

[26] B. Moons and M. Verhelst. Energy-efficiency and accuracy of stochastic
computing circuits in emerging technologies. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 4(4):475–486, Dec 2014.

Peter Schober received his B.Sc. degree in Elec-
tronics and Information Technology from Johannes
Keppler University, Linz, Austria, in 2017. He is
currently a Master’s student in Embedded Systems
at the TU Wien (formerly known as Vienna Univer-
sity of Technology as well), Vienna, Austria. From
September to December 2019, he was a visiting
research scholar at the School of Computing and
Informatics, University of Louisiana, LA, USA.

M. Hassan Najafi received the B.Sc. degree in Com-
puter Engineering from the University of Isfahan,
Iran, the M.Sc. degree in Computer Architecture
from the University of Tehran, Iran, and the Ph.D.
degree in Electrical Engineering from the University
of Minnesota, Twin Cities, USA, in 2011, 2014,
and 2018, respectively. He is currently an Assis-
tant Professor with the School of Computing and
Informatics, University of Louisiana, LA, USA. His
research interests include stochastic and approximate
computing, unary processing, in-memory comput-

ing, and machine-learning. In recognition of his research, he received the 2018
EDAA Outstanding Dissertation Award, the Doctoral Dissertation Fellowship
from the University of Minnesota, and the Best Paper Award at the ICCD’17.

Nima TaheriNejad (S’08-M’15) received his Ph.D.
degree in electrical and computer engineering from
The University of British Columbia (UBC), Van-
couver, Canada, in 2015. He is currently a “Uni-
versitätsassistent” at the TU Wien, Vienna, Austria,
where his areas of work include cyber-physical
embedded systems, computer architecture, compu-
tational self-awareness, in-memory computing, sys-
tems on chip, and health-care. He has published
two books and more than 60 peer-reviewed articles.
He has also served as a reviewer, an editor, an

organizer, and the chair for various journals, conferences, and workshops. Dr.
Taherinejad has received several awards and scholarships from universities
and conferences he has attended.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 28,2021 at 11:00:16 UTC from IEEE Xplore. Restrictions apply.

