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Abstract—The Line Segment Detector (LSD) algorithm is an
underlying step of many image processing systems. Hence, its
performance has a significant on the upper layers using the
detected line segment for various purposed. In this paper, we
propose a fast LSD algorithm. This method approximates several
floating point operations, including the logarithmic Gamma
function, by a series of lookup table searches. Due to the
simplicity of such approximation (lookup table search) compared
to the naı̈ve implementation (calculation-based), this method is
considerably faster. The proposed method has implications on
reduction of the necessary efforts to implement and enhancement
of the performance of the LSD hardware accelerators. Our
experiments show that the proposed method reduces the run-time
of the algorithm by 13% on average, with no considerable quality
loss in the detection results. This improvement further propagates
through other image processing algorithms using LSD.

I. INTRODUCTION

Due to a rising research interest in topics like autonomous
driving, there is an increasing demand for real-time com-
puter vision algorithms. Line segment detection algorithms
are low-level tasks commonly used in many computer vision
applications, such as stereo matching [1], target tracking [2],
odometry [3] and detection of barcodes [4], power lines [5],
road lanes [6] [7], sea-sky lines [8] and airports [9] [10]. A
line segment is a locally straight contour on the image, that is,
a zone of a sharp change from a light to dark area (or vice-
versa) [11]. Line segments are finite and can be characterized
by the coordinates of the two end points.

One of the prominent line-segment detection algorithms is
the Line Segment Detector (LSD) algorithm published by von
Gioi in 2010 [11], featuring the a contrario method by Deol-
neux et. al [12] [13] to validate each line-segment candidate,
which allows the algorithm to produce stable detection results,
even under the presence of image noise. We have summarized
all the processing steps of the algorithm in the following.
Internal parameters of the algorithm are introduced with the
default or recommended values.

1) Using Gaussian sub-sampling, the input image is scaled
down to 80%. This is done to deal with image noise and
quantization artifacts (for example, the staircase effect).

2) The image gradient (magnitude and angle) is calculated.
If the gradient magnitude of a pixel is below a threshold
(denoted by ρ = 2

sin 22.5◦ ), the gradient magnitude is set
to zero instead.

3) All pixels are binned according to their gradient magni-
tude into n buckets (default value for n is 1024).

4) Using the pseudo-ordering introduced in the binning, a
high-magnitude pixel is selected for region growth. Iter-
atively, neighboring pixels with a gradient angle within a
tolerance (denoted by τ = 22.5◦) of the whole region’s
angle are added to the region.

5) Once none of the neighboring pixels meet the criteria
to join the region, a rectangle to encase the region is
calculated. If the ratio of region pixels to the number of
all pixels inside the rectangle is below a certain threshold
(denoted by D = 0.7), certain optimization steps are
applied to the region/rectangle to increase this ratio. If
the threshold D is still not met afterwards, the region is
rejected and the algorithm goes back to Step 4, picking
a different pixel.

6) The algorithm tries to verify the rectangle as a valid line-
segment, by iteratively calculating the Number of False
Alarms (NFA) as well as performing certain optimization
steps. This is described in more detail below.

7) If the verification is successful, the 2-dimensional rectan-
gle is transformed to a 1-dimensional line-segment. All
pixels from the corresponding region are marked as used
and can no longer be selected during future iterations of
region growth. The algorithm now returns to Step 4, until
all pixels are marked as used, at which point the algorithm
terminates.

During the line-segment verification step, the NFA for the
respective rectangle is calculated. The rectangle is verified
once the NFA value is smaller than or equal to a threshold
(denoted ε = 1). The NFA value is calculated as

NFA(n, k, p) = (N ·M)5/2 · γ ·
n∑

j=k

(
n

j

)
pj(1− p)n−j (1)

where n denotes the number of pixels in the rectangle, p
denotes the precision value (initialized with p = 0.125, later
reduced during the rectangle refinement step). k denotes the
number of pixels in the rectangle with gradient angle equal
to the rectangle’s angle up to a tolerance of pπ. Finally, γ
denotes the number of different values used for p (in the
default implementation, γ = 11).

The algorithm recalculates the NFA repeatedly in what is
referred to as the rectangle refinement, with different values
for p as well as decreasing the width of the rectangle. This is
done in five different steps, where each step modifies either p
or the width of the rectangle up to 5 times each. If none of
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the calculated NFA values is smaller than or equal to ε, the
configuration with the lowest NFA value is kept and carried
into the next step. Therefore, per line-segment candidate, the
NFA value is calculated up to 26 times. If none of these
results is smaller than ε, the candidate is rejected. Otherwise,
the candidate is verified. The implementation by Gioi et. al.
calculates the decadic logarithm of the NFA value, using
approximations by Windschitl and Lanczos, and check this
value against log10(ε). This is computationally very expensive,
and implementing the algorithm in hardware would be either
slow or result in a long pipeline with high usage of area.

Hence, instead of calculation the logarithms, we aim to
approximate log10(NFA(n, k, p)) utilizing a series of lookup
table entries, decreasing the complexity of the algorithm as
well as increasing its speed, while maintaining its accuracy.

II. PROPOSED METHOD

1) Requirements: As mentioned above, in this work, we
propose to use a lookup table instead of calculating the loga-
rithm values. To keep the size of the lookup table reasonable,
a few assumptions have to be made: For one, the resolution of
the scaled image N ·M has to be known in advance and cannot
be changed during operation. In most applications, the input
data uses a fixed format with a predefined resolution. In case
multiple resolutions are to be supported, a duplicate lookup
table for each supported resolution should be employed. Also,
this restriction only applies to the number of pixels in the
image and not the aspect ratio - for example, input images
with resolutions 640× 480, 480× 640 and 1280× 240 can be
handled using the same lookup table.

Additionally, γ and ε must be fixed - while the former
is based on the algorithm itself and will not change at all,
the latter is a parameter that, according to the authors of the
original work has only a small impact on the detection results
[11] and is therefore from now on assumed to use the default
value of ε = 1. For the sake of readability, we introduce a new
constant t, that incorporates the aforementioned parameters
(excluding ε) that are from now on regarded as constants:

t := (N ·M)5/2 · γ (2)

Moreover, since the lookup table creates entries for every
pair of (n, p), the value range for n has to be limited by
the introduction of a parameter, which we call nmax. The
size of the lookup table scales linearly with nmax, and the
optimization will only be applicable to candidates where
n ≤ nmax. For this reason, either nmax must be picked very
conservatively after extensive experimentation, or a fail-safe
must be implemented to ensure the operation of the algorithm
if n > nmax. In our current implementation we switch to
the original implementation of the NFA calculation (instead
of using the lookup table), if n > nmax. Usage of heuristics
or extrapolation of the lookup table values might be viable
strategies as well, although this is a topic of future research.

2) Description: For each pair of (n, p), the Equation 1 can
be interpreted as a function of k:

NFAn,p(k) = t ·
n∑

j=k

(
n

j

)
pj(1− p)n−j (3)

log10(NFAn,p(k)) converges towards log10(t) for k → 0,
and as shown in Figure 1, is monotonically falling with rising
k.

Our proposed approach is to provide values in a lookup table
to approximate log10(NFAn,p(k)) for every pair of (n, p).
This approximation is done piece-wise in three sections, with
the breakpoints (being denoted as klow(n, p) and kmin(n, p))
being part of the lookup table. kmin(n, p) is the breakpoint
between the second and third section, and is defined to be
the lowest k that would yield a successful verification (i.e.,
Equations 4a and 4b hold):

log10(NFAn,p(kmin(n, p))) ≤ log10(ε) (4a)

log10(NFAn,p(kmin(n, p)− 1)) > log10(ε) (4b)

For any k greater than or equal to kmin(n, p),
log10(NFAn,p(k)) is approximated to an arbitrary value
smaller than or equal to log10(ε). This is justified by the fact
that the LSD algorithm does not require the exact NFA value
in case the verification of the line-segment is successful.
klow(n, p) is the breakpoint between the first and sec-

ond section. For any k below klow(n, p), log10(NFAn,p(k))
is approximated by log10(t). For any k greater than or
equal to klow(n, p), given that it is smaller than kmin(n, p),
log10(NFAn,p(k)) is approximated by a quadratic polynomial
function with coefficients c1(n, p), c2(n, p) and c3(n, p). A
quadratic polynomial was selected since it fits function’s form
in this section well, allowing for an accurate approximation if
the right coefficients are chosen. klow(n, p) is picked so that
the total squared approximation error in the first and second
section is minimzed, assuming the best polynomial is used
for the approximation in each case. If klow is selected too
small, the selected polynomial will have to account for the
slowly converging area for small k-values, leading to a poor
approximation in this area. A too high klow will lead to a good
polynomial in the range k ≥ klow, but high error in the range
of k-values slightly below klow. An example demonstration
of the relation between klow and the approximation error is
shown in Figure 2. The approximation scheme for the different
sections is summarized in Table I.
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Fig. 1. Plot of log10(NFAn,p(k)), for n = 42, p = 0.125 and N =
M = 410
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Fig. 2. Total squared approximation error and maximum local error
depending on klow, assuming n = 216, p = 0.125, N = M = 960.

TABLE I
APPROXIMATION SCHEME FOR log10(NFAn,p(k))

Approximation Section
log10(t) 0 ≤ k < klow(n, p)

c1(n, p)k2 + c2(n, p)k + c3(n, p) klow(n, p) ≤ k < kmin(n, p)
log10(ε) kmin(n, p) ≤ k ≤ n

3) Lookup table generation: Each lookup table entry is a 5-
tuple of kmin(n, p), klow(n, p), c1(n, p), c2(n, p) and c3(n, p).
To generate them, the following steps are performed for every
pair of (n, p):

1) Calculate log10(NFAn,p(k)) starting from k = 1 until the
result is smaller than or equal to log10(ε). The index of
the last result is kmin(n, p), which is to be stored in the
lookup table. All results except for the last one should
be stored in an array. If no such kmin(n, p) ≤ n exists,
assume kmin(n, p) := n+ 1.

2) For all klow(n, p) ∈ [1, kmin(n, p)], perform steps 3 and
4.

3) Find a quadratic polynomial to approxi-
mate log10(NFAn,p(k)) in the range k ∈
[klow(n, p), kmin(n, p) − 1], using polynomial
regression on the values in the array. Skip this
step if klow(n, p) = kmin(n, p).

4) Calculate the sum of the squared error values of the ap-
proximation for all k ∈ [1, kmin(n, p)]. If the approxima-
tion quality improved (the total squared error decreased),
update c1(n, p), c2(n, p), c3(n, p) and klow(n, p) in the
lookup-table.

Algorithm 1: Optimized NFA calculation
inputs : n, k, p
constants: log10(ε), log10(t)
output : The approximated NFA value

1 if n = 0 or k = 0 then
2 return log10(t);

3 (kmin, klow, c1, c2, c3)← get_from_LUT(n, p)
4 if k ≥ kmin then
5 return log10(ε);

6 if k < klow then
7 return log10(t);

8 ret← c1 · k2 + c2 · k + c3;
9 if ret ≤ log10(ε) then

10 return log10(ε) + ∆;

11 return ret

TABLE II
COMPARISON OF AVERAGE PROCESSING TIME BETWEEN THE

ORIGINAL AND THE PROPOSED ALGORITHM.

Original Proposed with nmax =
5000 10000 20000

Processing time 422 ms 365 ms 368 ms 359 ms
Largest improv. - 27.54% 27.14% 28.8%
Smallest improv. - 3.48% 1.93% 4.95%
Mean improv. - 11.46% 10.91% 13.08%

4) Proposed algorithm: Algorithm 1 calculates a single
NFA value, given the variables n, k, p, and using the LUT
entries kmin(n, p), klow(n, p), c1(n, p), c2(n, p) and c3(n, p).
The function get_from_LUT() fetches an 5-tuple entry
from the lookup table. Its implementation depends on the
layout of the lookup table, and how it is indexed. Lines 9
and 10 are in place to prevent a false-positive verification,
which might happen if the NFA value is approximated by
the polynomial to a value below log10(ε), usually for a
k slightly below kmin. Instead, a value of log10(ε) + ∆
will be returned, where ∆ is the smallest positive value so
that log10(ε) 6= log10(ε) + ∆ using the given floating-point
arithmetic.

III. PERFORMANCE RESULTS

1) Processing Time: To measure the performance and the
effect of the proposed method, over a wide array of images, the
computation time of both the original LSD and the proposed
algorithm has been measured on the TESTIMAGES SAM-
PLING set [14] [15], consisting of 40 photographed images.
For our experiments, we used a grayscale version of the data
set with 1200×1200 resolution and 8 bit intensity depth, with
subsampling method labeled T01R01. A sample result of the
original and proposed algorithm is shown in Figure 3.

The set of images was processed a total of 101 times,
with the first processing run of each test image being omitted
from the results to account for initial cache misses, branch
mispredictions and other transient effects. The mean of the
processing time for every image was then calculated. The
measurement of the proposed algorithm was repeated for three
different values of nmax (nmax ∈ {5000, 10000, 20000}), to
evaluate the effect this parameter has on the performance.

The quantitative results are shown in Table II. For all
test cases, the proposed algorithm performed better than the
original one. The proposed algorithm performed best using
nmax = 20k, with a mean performance increase of 13.08%
and offering the largest increase in 39 of the 40 test images
(only Test Image #3 performed better using nmax = 5000).
However, the performance difference for the testedvalues of
nmax is relatively small, with the majority of test cases
showing the performance being within ±3% of each other.

2) Detection Quality: Due to the approximation error of
the optimization, the rectangle refinement routine of the LSD
algorithm potentially selects different precision or width values
when advancing through the optimization steps, which can
cause detected line-segments to be changed or omitted, as well
as new line-segments to be detected.

To measure the impact of the optimization on the detection
results, our approach is to try to match each line-segment
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detected by the proposed algorithm with an equivalent line-
segment detected by the original algorithm, and categorize
them using the following metrics:

• Identical: Line-segments are categorized as identical
if they appear in the results of both the original and
proposed versions of the LSD algorithm, with identical1

endpoints.
• Changed: Line-segments are categorized as changed if

a line-segment appears in the results of both the original
and proposed versions of LSD algorithms, but the end-
points differ slightly in the results. We qualify a pair of
line-segments as changed if the sum of distances between
their endpoints1 is smaller or equal to 4 pixels.

• New: All line-segments in the results of the proposed
algorithm that do not have an identical or changed match
are categorized as new.

• Lost: All line-segments in the results of the original
algorithm that do not have an identical or changed match
are categorized as lost.

This categorization was performed on the detection results
of both the original and proposed algorithm, using our test
image set as the input. For the proposed algorithm, nmax =
20000 was used, since this version is considered the worst case
scenario because it maximizes the usage of the approximated
NFA value, and is therefore expected to deviate the most from
the original algorithm with regards to the detection results.

On our test image set, the number of changed line-segments
was 0.11% on average, and 0.66% at most. On average, the
results of the proposed algorithm contained 0.05% new line-
segments, and only four test images suffered from lost line-
segments, resulting in less than 0.01% lost line-segments on
average across all images, and 0.13% at most. The proposed
algorithm yielded only identical results for 19 of the 40 test
images. Altogether, on average, 99.84% of the line-segments
detected by our algorithm were categorized as identical.

The reason for which new line segments are present in
the proposed algorithm while missing from the output of
the original algorithm is that different steps are performed
in the rectangle refinement heuristic. Due to approximation
error, different sets of rectangle width and precision are used
when progressing through the steps of rectangle refinement,
which in turn would allow for a successful verification. The
approximated verification is designed to never verify a line
segment that would not be verifiable using the original cal-
culation. Therefore, since the number of new line-segments
in our test-image set is higher than the number of lost line-
segments, we contend that the approximation proposed here
actually improves the detection quality of the original LSD
algorithm.

IV. HARDWARE IMPLEMENTATION

While hardware implementations of line-segment detection
algorithms have been proposed [16] [17], their detection mech-
anisms differ from LSD - for example, in [16] detection of

1The coordinates of the line-segment endpoints were rounded to the nearest
integer beforehand.

(a) (b)

Fig. 3. Detection result of LSD (a) without and (b) with LUT-based
approximation (Test image 38).

line-segments within curved structures is drastically different
compared to LSD. For this reason, software applications
using LSD for line-segment detection cannot easily switch to
a different algorithm for hardware implementation, without
incurring considerable engineering effort and testing. There-
fore, we are working on hardware accelerated line-segment
detection algorithms which are based on LSD and offer a high
degree of parity on the detection results.

One of the major issues that make hardware acceleration
of LSD difficult is the usage of mathematical operations
are considered to be costly to implement in hardware, both
regarding area usage as well as latency they introduce. While
sine and cosine functions are used in the earlier stages of the
algorithm (e.g. the creation of the regions), the math used to
calculate the NFA value is the most complex, employing the
hyperbolic sine, logarithm and exponential functions, with the
latter two of them being used in a loop that is executed up to
n times per NFA calculation. In our proposed algorithm, these
operations are replaced by fetching values from a lookup table
as well as a series of comparisons, additions and multiplica-
tions, resulting in faster operation and less combinatorial logic
required. However, the proposed algorithm does introduce a
strict requirement on memory to store the lookup table. This
can be either on-chip, off-chip or both. For instance, if the on-
chip memory is not large enough to contain the entire table,
storing values for low n values that are more commonly used
on-chip, and storing values for high n values that are only
rarely accessed off-chip, would be sufficient.

V. CONCLUSION

In this paper, we proposed an improved version of the LSD
algorithm. Te proposed algorithm approximates the calculation
of the NFA value by a series of lookup table searches,
improving the processing time by 13.08% on average. We
have shown that over 99.8% of the detected line-segments are
identical in both the proposed and original LSD algorithm,
and that the detection quality slightly increased in the pro-
posed algorithm. Finally, we have discussed implications of
the proposed algorithm on reducing the efforts to develop a
hardware implementation of LSD.
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