
1

Device Variability Analysis for
Memristive Material Implication

Simon Michael Laube and Nima TaheriNejad

Abstract—Currently, memristor devices suffer from variability
between devices and from cycle to cycle. In this work, we
study the impact of device variations on memristive Material
Implication (IMPLY). New constraints for different parameters
and variables are analytically derived and compared to extensive
simulation results, covering single gate and 1T1R crossbar
structures. We show that a static analysis based on switching
conditions is not sufficient for an overall assessment of robustness
against device variability. Furthermore, we outline parameter
ranges within which the IMPLY gate is predicted to produce
correct output values. Our study shows that threshold voltage
is the most critical parameter. This work helps scientists and
engineers to understand the pitfalls of designing reliable IMPLY-
based calculation units better and design them with more ease.
Moreover, these analyses can be used to determine whether a
certain memristor technology is suitable for implementation of
IMPLY-based circuits and systems.

Index Terms—Memristor, ReRAM, Material Implication, IM-
PLY, Logic, In-Memory Computation, Variation, Robustness,
Analytical Studies, Simulations.

I. INTRODUCTION

Memristors are used for memory applications [1]–[5], where
even storage of multiple bits per device is feasible [6]–[9].
In addition, memristors have become increasingly popular for
neural network and learning applications [10], [11], by exploit-
ing their analog, synapses-like nature. Another application of
memristors is implementing digital (in-memory) logic [12]–
[14], such as IMPLY, for various computations [15]–[20].
At the moment these applications – more often than not –
are not verified by physical implementation and experimental
data [21]. This imbalance leads to many problems when actual
physical implementation is desired. While material sciences
have certainly progressed in this field [22]–[24], the circuit-
level interface to higher abstraction levels is not yet ready to
provide a reliable base for proposed applications [21]. Some of
the fundamental problems, that need to be considered at design
time, are inter-device variability and cyclic variability. In larger
structures, usually implemented within crossbar arrays, sneak
paths and wire resistance are an even bigger issue [25], [26].
While the two latter have received an acceptable level of
attention from the community, the two former have been less
explored and addressed by the community. We hope that this
work encourages and provides pointers to the community to
move in that direction.

S. M. Laube and N. TaheriNejad are with the TU Wien, 1040 Vienna,
Austria

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Here, we aim to provide a better insight into the operation of
a single memristive IMPLY logic gate by considering device
variations. Similar works on that topic already exist, such
as [27]–[29], which mainly focus on other types of memristor-
based logic. The most relevant work to ours is [29], where the
focus is set on the design of the IMPLY circuit itself, and
an alternative operation “NOT IMPLY (NIMP)” is proposed
to mitigate certain problems. In contrast, our work explores
regular IMPLY in more detail, particularly regarding the effect
of device variations on the IMPLY operation, and leaves the
NIMP approach for future works. We note that there is a
variety of memristors based on different physical effects [22].
From the perspective of this work, the internal mechanism is
to a large extent inconsequential. Hence, we use the general
term, memristor, to refer to resistive switching elements or
Resistive Random Access Memorys (ReRAMs) and, when
needed, specify what may make the internal mechanisms
important. The main contribution of this work to the field of
memristor-based logic, is an in-depth mathematical analysis
of memristive IMPLY regarding its constraints due to device
variation. Plausibility of the proposed constraints is verified
via simulations using a popular model.

The rest of this paper is organized as follows: Section II,
particularly Section II-A, reviews memristive IMPLY logic
and shows its limitations. An introduction to the crossbar
architecture is given in Section II-B and the device model
is described in Section III. In Section IV, we formulate new
constraints for the IMPLY gate, before comparing them to the
single gate simulation results in Section V. The results of the
crossbar simulations are presented in Section VI and compared
against the single gate simulation and constraints. We conclude
the paper in Section VII.

II. MATERIAL IMPLICATION (IMPLY)

The truth table of IMPLY, and its four different cases,
are shown in Table I. It takes two input states p and q and
outputs q′. Not every type of memristor is suitable for material
implication. The devices have to exhibit voltage threshold
behavior. Moreover, all devices used for an operation shall
have the same parameter values (resistance range, threshold
voltages, switching speed).

A. Gate structure and constraints

Two memristors and a resistor are necessary for a single
memristive IMPLY gate. Figure 1(b) shows such a gate, with
abstracted drivers and sense circuitry. Each memristor can be
set (forced to Low Resistance State (LRS)) by applying a

ar
X

iv
:2

10
1.

07
23

1v
1 

 [
cs

.E
T

] 
 1

8 
Ja

n 
20

21



2

Table I
TRUTH TABLE OF MATERIAL IMPLICATION AND ITS FOUR CASES

Cases p q q′

Case 1 0 0 1
Case 2 0 1 1
Case 3 1 0 0
Case 4 1 1 1

voltage |Vset| > |von| with appropriate (in our case negative)
polarity; and can be reset (forced to High Resistance State
(HRS)) by applying |Vreset| > |voff | with an opposite polarity1.
If a memristor is set, it represents logic state ‘1’; if it is reset,
it represents logic state ‘0’ [12]. During initialization, these
voltage amplitudes are applied to each device, while the other
is kept floating. For the actual logic operation both devices are
driven at the same time: Vcond is applied to node R and Vset

to node T of Figure 1(b). For a correct operation

|Vset| > |von| (1)
|Vset − Vcond| < |von| (2)

|Vreset| > |voff | (3)

must hold. Moreover, the circuit designer needs to select a
valid value for RG, as described in [30].

It is important to note that only in Case 1 of Table I the
output memristor Q is actually changing its state. However,
during this process the voltage across each device changes
too. It is valid to ask if this has an effect on the result
of the operation, and the answer is yes. Using Kirchhoff’s
circuit laws (KCL), Chen et al. [29] showed that there are two
possible final steady states of the operation:

1) The normalized state variable s reaches the upper bound-
ary of 1 (RQ = Ron) before the voltage across Q
falls below the threshold von. The final steady state is
RQ = Ron.

2) VQ falls below the threshold von before s reaches 1. In
this case the steady state resistance can be expressed as2:

Rmin =
−vonRGRoff

(RG +Roff)(Vset + von)−RGVcond
(4)

1This is true for bipolar switching mechanisms. Phase Change (PC) based
devices, for example, may use the same voltage polarity for set and reset.

2Note that in our convention von < 0.

i

+ v −

(a)

RG

P

R

Q

T

Driver & Sensing

+

VP
−

+

VQ

−
+

VG

−

(b)

Figure 1. (a) Memristor symbol and defined voltage polarity used in this
work. (b) A single IMPLY gate.

An important point to mention is that this calculation is based
on the premise, that the driving voltages of P and Q are chosen
such that there is no state drift in P during operation.

B. Crossbar principles

Crossbar architectures are a natural candidate for memristor-
based logic, as high integration density can be reached. In so
called 1R (or 1M) crossbars, a memristor device is fabricated
at each intersection of bit- and word-lines, which act as the
access medium for the cell. 1R crossbars are very difficult to
handle [31]–[33], even if parasitics are not considered. Many
works have been carried out to study effects [25], [34]–[36],
or solve them [14], [26], [34], but thus far 1T1R has been the
preferred implementation [31]–[33]. 1T1R (or 1T1M) cross-
bars,consist of a transistor and a memristor in each cell. The
transistor in each cell cost extra area but they prevent the cells
from switching state when a cell is not part of an operation (not
selected). One possible, readout scheme is provided by [26],
which we use in this work. The chosen readout scheme [26]
provides a closed-form solution. Moreover, it introduces very
little additional complexity, which enables this work to remain
focused on issues regarding IMPLY itself. In Section VI we
compare crossbar simulation results against single gate results
and outline the differences.

III. DEVICE MODEL

There are a range of different simulation models for memris-
tors [37]–[40]. For the simulations presented in this paper, the
TU Wien LTSpice implementation [21], [41] of VTEAM [38]
was used. An overview of the model is given in Equations (5)
to (9), with a memristor polarity as shown in Figure 1(a).

In VTEAM, w acts as the state variable and represents a
length between the extrema won and woff (w ∈ [woff , won]).
Here, we define the relation of these state variable boundaries

won > woff (5)

and define the normalized state variable (s ∈ [0, 1]):

s(w) = w′ =
w − woff

won − woff
(6)

These definitions may be changed, as long as the model
equations are updated, too. The rate of change of the state
variable, w, is defined by

dw

dt
=


koff

(
v
voff
− 1
)αoff

foff(w) 0 < voff < v

0 von < v < voff

kon

(
v
von
− 1
)αon

fon(w) v < von < 0

(7)

which is the essential building block of the model [38]. In
this equation kon, koff , von, voff , αon and αoff represent
fitting parameters, while fon(w) as well as foff(w) are window
functions that limit dw/dt.
I/V -characteristics and window functions are not defined

in the model and thus can be freely chosen. We chose a linear
current/voltage dependency:

R(w) = Roff + (Ron −Roff) · s(w) (8)



3

By rearranging the equation we can further express s(R) for
any (measured) R:

s(R) =
R−Roff

Ron −Roff
(9)

The same expressions as for the Simmon’s Tunnel Barrier
model in [37] were chosen as window functions. In addition,
w is bounded and thus cannot exceed won or woff .

The studies presented in this paper are kept as general as
possible, however, simulations need model parameters. Rather
than introducing arbitrary parameter values, we experimentally
fitted [18] our VTEAM model to Knowm BS-AF-W [42]
memristors we had at the time. Parameters shown in Table III,
represent a best effort fitting we conducted previously [18].

IV. FORMULATING CONSTRAINTS

This section marks the beginning of our new contributions.
In this section, we mathematically extract device variability
constraints which govern and limit operations of IMPLY. At
first, we define the notation: Each parameter involved in the
analysis is written as ξi,M , where ξ ∈ {R, v, k}, M ∈ {P,Q}
and i ∈ {off, on}. For example, the off-resistance of memristor
P in this notation would be denoted as Roff,P .

Logic thresholds determine the logic state of a device. They
are defined separately for input (I) and output (O), as well
as logic ‘1’ (H) and ‘0’ (L). Indices are used to denote the
respective logic thresholds, e.g. RIL is the input threshold for
logic ‘0’.

A. Static behavior

Each case in the truth table (Table I) imposes constraints
onto the voltage VQ across memristor Q, as certain switching
conditions must be met. They can be analyzed via KCL and
represent a static view of the circuit. The constraints can be
used to find limits for Ron,P , Roff,P , von,Q and voff,Q. They do
not provide limits for Ron,Q or Roff,Q, as RQ in this context
is the target output resistance state that Q must reach during
IMPLY. Therefore, RQ is later set according to the chosen
output logic threshold: RQ ≤ ROH or RQ ≥ ROL.Applying
KCL in Figure 1(b) gives us the voltage across Q as

VQ =
RQ(RP +RG)Vset −RQRGVcond

RPRG +RPRQ +RQRG
. (10)

First we solve Equation (10) with a generalized threshold
voltage, v, and the solution is specialized for each case
afterwards. The first switching condition is:

VQ > v. (11)

Plugging Equation (10) into Equation (11) and isolating RP
leads to

RP · b > a, (12)

where

a = RQRG(v + Vcond − Vset), (13)
b = RQVset−v(RG +RQ). (14)

At this point the relation in 12, is divided by b. Therefore,
depending on the value of b, we have

RP >
a
b if b > 0

RP <
a
b if b < 0

RP → ±∞ if b = 0

(15)

Next, the switching condition

VQ < v (16)

is examined. Following the same steps as before, we have
RP <

a
b if b > 0

RP >
a
b if b < 0

RP → ±∞ if b = 0

(17)

Since the third case (b = 0) in Equations (15) and (17) yields3

±∞, it is of no interest for the rest of the analysis. The first
two cases in Equations (15) and (17) both provide limits for
v and RP , respectively.

Here, the resulting equations (constraints) are specialized for
each of the four cases of the truth table using the respective
switching conditions. RQ is set to the associated output logic
threshold (ROH or ROL). Only the first case (b > 0) of
Equations (15) and (17) is considered, since the second case
(b < 0) only provides negative limits, and RP > 0. For every
case of the truth table, according to our notations, von < 0
and voff > 0. Hence, we have

Case 1 VQ > −von,Q

von,Q > −Vset
ROH

RG +ROH
(18)

Roff,P >
ROHRG(Vcond − von,Q − Vset)

ROHVset + von,Q(RG +ROH)
(19)

Case 3: VQ < −von,Q

von,Q > −Vset
ROL

RG +ROL
(20)

Ron,P <
ROLRG(Vcond − von,Q − Vset)

ROLVset + von,Q(RG +ROL)
(21)

Case 2/Case 4: VQ > −voff,Q

voff,Q > −Vset
ROH

RG +ROH
(22)

Roff,P >
ROHRG(Vcond − voff,Q − Vset)

ROHVset + voff,Q(RG +ROH)
(23)

Ron,P >
ROHRG(Vcond − voff,Q − Vset)

ROHVset + voff,Q(RG +ROH)
(24)

Equations (18), (20) and (22) directly result from b > 0,
whereas Equations (19), (21), (23) and (24) are the respective
relations derived from RP > a/b in Equation (15) and
RP < a/b in Equation (17).

3That is, as long as |a| is neither zero, nor ∞.



4

t

VQ

VQi

VQf

∆T

(a)

t

∆wQ

∆T

(b)

Figure 2. A symbolic voltage-time curve for VQ (a) an induced state
change ∆wQ (b) during a single IMPLY operation of duration ∆T . The
estimations for the formulation of constraints are drawn in orange, the
symbolic representations of the actual curves in black.

Some additional static constraints are given by the choice
of logic thresholds. That is,

Roff,P > RIL (25)
Roff,Q > RIL (26)
Ron,P < RIH (27)
Ron,Q < RIH. (28)

Similar to standard logic families, input and output thresholds
may differ. From the point-of-view of these constraints, only
input thresholds need to be considered, as they determine
whether or not the device states fed to the operation are valid
in the first place.

B. Dynamic behavior

With respect to the static analysis, the chosen timestep of
operation can introduce much stricter constraints. For exact so-
lutions, one would have to solve the differential state equation
of the chosen model (in our case Equation (7) from VTEAM).
This is not a trivial task and might not even be possible for
all models. Thus, in this section we derive a lower boundary
for von,Q, but not the infimum, which cannot be exceeded
by the exact (or numeric) solution. That way we take into
account the state change (dynamic behavior) of memristors
during the operation, using an acceptable estimation. We note
that in doing such an analysis, the chosen model is assumed to
be accurate. However, in practice no existing model represents
all the reality and physics involved.

The main idea of our estimation is to look at how VQ
changes over time in Case 1 of the truth table, while assuming
negligible state drift in P . As RQ changes from HRS to LRS,
VQ decreases. Thus, the initial voltage VQi is the highest
occurring value of VQ during that timestep, while the final
voltage VQf is the lowest – symbolically shown in Figure 2(a).
If the device characteristics are such that the highest VQ
corresponds to the maximum value of dw/dt – in our case
true due to Equation (7) – a hard limit can be expressed. KCL
can be used to describe the initial voltage

VQi =
Roff,Q(Roff,P +RG)Vset −Roff,QRGVcond

Roff,PRG +Roff,PRoff,Q +Roff,QRG
. (29)

Plugging VQi into Equation (7) gives the inital rate of state
change4:

dwQ
dt

∣∣∣∣
initial

=
∆wQ
∆T

= kon,Q

(−VQi

von,Q
− 1

)α
(30)

Now we set the actual dwQ/dt equal to the initial rate for the
whole timestep ∆T . Through this simplification a maximum
∆wQ for the given timestep ∆T can be found, which cannot
be exceeded:

∆wQ = kon,Q

(−VQi

von,Q
− 1

)α
∆T (31)

This is because the estimation provides a better overall situ-
ation towards the correct operation result, when compared to
the actual situation. That is, as we see in Figure 2(b), the
estimated ∆wQ is always larger than the actual value. To
obtain a correct result after the IMPLY operation, RQ must
at least reach the logic threshold ROH. Otherwise the result
would not be interpreted as logic ‘1’. Via Equation (9) we can
find s(ROH). In combination with Equation (6), the necessary
∆wmin can be expressed as

∆wmin =
ROH −Roff,Q

Ron,Q −Roff,Q
(won − woff) + woff , (32)

and

∆wQ ≥ ∆wmin (33)

shall be true. Plugging the previous terms into Equation (33)
gives

von,Q ≥
−VQi

α
√

∆wmin

kon,Q∆T + 1
, (34)

which is the newly found constraint. As this relation contains
multiple parameters of P and Q apart from von,Q, it provides
boundaries for all of them. For example, a certain von,Q

restricts Roff,P to a specific range, and in turn a certain Roff,P

restricts von,Q to a specific range.
Considering Equation (34), a question is whether the same

estimation could be used to find an upper limit for von,Q. Such
an analysis, however, is not meaningful for memristor Q. Both,
a minimum value of dw/dt and a maximum value ∆wmax,
must be specified. The later does not exist for Q since a high
wQ (ideally won) is desired in Case 1.

There is, however, a ∆wmax for memristor P , as a change
of RP is generally not desired. By definition the logic state
of P remains unchanged if RP > RIL. Only if this is true, it
can be used as an input for an operation. As RP drifts away
from Roff,P (ideal HRS), VP decreases. Thus, the minimum
value of dw/dt is the final value at the end of the operation,
in contrast to VQi being the initial value. The final value VP f

cannot be expressed easily, as RP f and RQf are unknown.
Hence, another simplification must be made: We evaluate VP f

using RP = Roff,P , as if there was no state drift in the first
place:

VP f,j =
Roff,P (RQ,j +RG)Vcond −Roff,PRGVset

Roff,PRG +Roff,PRQ,j +RQ,jRG
(35)

4fon is missing in Equation (30) because fon ≈ 1 for wQ < won



5

Due to this very rough estimation, we expect the constraint to
represent a fairly weak boundary. Therefore,

RQ,1 = Rmin,Q (36)

RQ,2 =
Roff,Q +Rmin,Q

2
(37)

RQ,3 =
√
Roff,Q ·Rmin,Q (38)

are used to evaluate VP f in Equation (35) and obtain a
range within which the circuit is less likely to fail. The
first value, Equation (36), is the theoretical minimum for
Ron,Q, which is the ideal RQf . However, the actual RQ,f can
take on any value between Roff,Q and Rmin,Q. Hence, in a
second estimation, Equation (37), we assume that RQf is the
arithmetic mean of Roff,Q and Rmin,Q. In other words, the
final state is halfway between the initial state and the ideal
endstate (Rmin,Q). However, if VP f is plotted over RQ on a
linear scale, it reveals that the dependence is non-linear. Thus,
RQ,2 might not be the best estimation either. The dependence
is, nevertheless, approximately linear on a semi-logarithmic
scale; so our third estimation, Equation (38), assumes RQf to
be the geometric mean of Roff,Q and Rmin,Q. If the timestep of
IMPLY operation is limited, we do not expect RQ,1 to provide
an appropriate estimation, since this is the overall optimum
scenario. RQ,2 and RQ,3 might both be of value to the circuit
designer, because they represent a non-ideal scenario, chosen
based on design parameters.

Following the same steps as before, we can formulate the
constraint for von,P :

∆wP = kon,P

(−VP f,j

von,P
− 1

)α
∆T (39)

∆wP ≤ ∆wmax (40)

von,P ≤
−VP f,j

α
√

∆wmax

kon,P ∆T + 1
(41)

Table II provides a summary of relevant constraints on memris-
tor parameters, that were derived in this section. Most of these
relations depend on multiple parameters of both memristors.
Thus, the permissible value range of one parameter is impacted
by the values of other parameters, and vice versa. Once the
value of a parameter is determined (either decided by the
designer or given by the technology) respective equations in
Table II determine the tolerable range of variation in others.
This bidirectional view enables us to define an operating area,
which, in turn, allows us to predict how the circuit will react
to variations in the concerned parameters.

V. SIMULATION – SINGLE GATE

A. Circuit design

The simulated circuit corresponds to the circuit shown in
Figure 1(b), with the addition that RG can be shorted by a
parallel switch. The driver circuits are ideal voltage sources
with serial switches for High-Z mode. Each switch is modeled
with an on-resistance of 1 nΩ and an off-resistance of 1 GΩ.
Given the memristor properties, especially Ron and Roff , five
circuit-level parameters have to be determined. These are
RG, Vset, Vcond, Vreset and Vread. Choosing Vreset is somewhat

Table II
SUMMARY OF RELATED CONSTRAINTS ON PARAMETERS OF P AND Q.

Constraint
Constrained
parameters

von,Q > f(RQ ≡ ROH)
von,QEquation (18)

Roff,P > f(von,Q, RQ ≡ ROH)
Roff,P , von,QEquation (19)

von,Q > f(RQ ≡ ROL)
von,QEquation (20)

Ron,P < f(von,Q, RQ ≡ ROL)
Ron,P , voff,QEquation (21)

von,Q > f(Roff,P , Ron,Q, Roff,Q, kon,Q) Roff,P , Ron,Q, Roff,Q,

Equation (34) von,Q, kon,Q

von,P < f(Ron,P , Roff,P , Roff,Q, kon,P ) Ron,P , Roff,P , Roff,Q,

Equation (41) von,P , kon,P

Ron,P < RIH, Equation (27) Ron,P

Roff,P > RIL, Equation (25) Roff,P

Ron,Q < RIH, Equation (28) Ron,Q

Roff,Q > RIL, Equation (26) Roff,Q

Table III
NOMINAL VALUES OF MODEL AND CIRCUIT PARAMETERS.

Parameter von voff Ron Roff kon
Value −0.7 V 10 mV 10 kΩ 1 MΩ 1 cm/s
Parameter αon αoff won woff koff
Value 3 3 3 nm 0 nm −0.5 nm/s
Parameter aon aoff wc

Value 3 nm 0 nm 0.1 nm
Parameter Vset Vcond Vreset Vread RG T
Value 1.0 V 0.9 V −1.0 V 0.1 V 40 kΩ 15µs

straightforward, as it is only used for initialization and not the
IMPLY operation per sé.

For this work, this voltage was set to Vreset = −1 V. Next,
Vset and Vcond are determined. We define Vset = 1 V, Vcond =
0.9 V, based on the memristor’s properties and Equations (1)
and (2). With the voltages set, the constraints on RG [30] can
be evaluated, which leads to: 5.000 kΩ < RG < 230.769 kΩ.
RG = 40 kΩ was chosen as the value of this resistor,
which is lower than the geometric mean (100 kΩ) proposed
by [43]. A summary of model and circuit parameters is shown
in Table III, where the former are based on experimental
results from previous works [18], [44].

Equations (4) and (9) are evaluated in order to get the op-
eration constraints imposed by the circuit. Namely, Rmin,Q =
101.449 kΩ and smin,Q = 0.908. We can see that, in Case 1
and assuming no state drift in P , the output memristor Q can
never reach a state higher than smin,Q or, equivalently, can
never have a resistance lower than Rmin,Q.

B. Methodology & Setup

Proper IMPLY operation results – with respect to the
output logic thresholds – are used to determine reliability.
Correct operation is ensured when state changes within the
memristors are occurring (switching conditions met) and are
fast enough to exceed the given logic thresholds. We apply
three different logic threshold schemes (shown in Figure 3) to
evaluate the operation results in relation to the chosen logic
threshold. Each scheme defines separate, normalized input
(sIH, sIL) and output (sOH, sOL) thresholds, as in conventional



6

Scheme: 1/2

0

0.5
sOH, sOL

sIH, sIL

1
1/3

0

0.333 sOL, sIL

0.667 sOH, sIH

1
TTL

0
0.08 sOL

0.16 sIL

0.40 sIH

0.48 sOH

1

Logic ‘1’ Logic ‘0’ Undefined
Output

Undefined
Input & Output

Figure 3. Different logic thresholds used in this paper.

P: von P: voff Q: von Q: voff

result

max

min

nominal

Example:

Figure 4. Four squares show the state of each variable in a simulation set
and the outline color (green or red) shows the simulation result (correct or
failed, respectively).

digital logic. Whereas the “1/2” and “1/3” scheme were
chosen arbitrarily, the “TTL” scheme is derived from standard
TTL (VCC = 5 V) [45]. This is done by normalizing the
threshold voltages VIH, VIL, VOH and VOL to VCC – e.g.
sIH = VIH/VCC. The range between high and low thresholds,
[sIL, sIH] and [sOL, sOH], is forbidden; in other words, the
logic values and states in those ranges are considered unde-
fined. Reasons for failures are not separately determined in
our setup. Hence, failures during initialization, which lead to
erroneous operation results, are counted as regular failures and
are not distinguished from errors during the operation itself.
Further, our simulation setup utilizes constant timesteps, so
actual switching time are not explicitly measured.

To obtain a nominal timebase for the IMPLY gate, a
transient analog simulation of the memristor model was con-
ducted. Examining the resulting waveform of the normalized
state s after the simulation showed that it takes 15µs to
switch from 1% to 99% of the state boundaries. Thus, the
timestep of circuit operation is set to T = 15µs. Every action
(initialization, IMPLY operation, readout) is executed using
this fixed timestep.

Analog transient simulations were conducted in LTSpice,
making use of this setup. Two memristor parameters per device
(Ron, Roff or von, voff or kon, koff ) were varied simulatenously
within the ranges reported in measurements [21] and relative
to the nominal state with a maximum deviation of ±50%.

C. Result Presentation Method

To display the numerous results, we have come up with a
presentation method of our own, which we introduce here.

Each parameter set is represented by a group of four
squares. The left two squares, as displayed in Figure 4, show

parameter values of memristor P , and the right two show that
of memristor Q. The filling of each square represents the state
of the corresponding parameter: empty means minimum, half-
filled nominal and fully filled maximum. Figure 4 shows this
concept and provides an example, too. The outline color of
the squares shows whether the simulation result for a set of
parameter variation (∆) was correct (highlighted by green) or
incorrect (highlighted by red). In general, any combination of
four parameters can be varied concurrently and displayed this
way. However, our approach was to use three parameter sets:
{Ron,P , Roff,P , Ron,Q, Roff,Q}, {von,P , voff,P , von,Q, voff,Q}
and {kon,P , koff,P , kon,Q, koff,Q}, as explained in Section V-B.
Figure 5 shows a complete set of simulations for the parame-
ters {von,P , voff,P , von,Q, voff,Q}. These resulting sets are then
used to quickly identify those parameters that are common
between different failed runs. For example, Figure 5 shows
that the IMPLY operation produces no correct output if either,
von,Q or von,P , is at its maximum value for variations greater
than or equal to 10%.

D. Results analysis

Combining the math provided in Section IV and the simula-
tion results obtained in Section V-C into joint graphs gives us
Figures 6 to 10. First, we take a closer look at Figures 6,
9 and 10, because they represent the most relatable logic
threshold scheme, derived from traditional TTL thresholds.
Figures 7 and 8 show the same equations as in Figure 6,
plotted for the 1/2 and 1/3 threshold scheme, respectively.
The other two graphs for these logic threshold schemes are
omitted as they lead to the same conclusions as Figures 7
and 8. Furthermore, the threshold voltages turned out to be
the most critical parameters, so special attention is given to
their results.

1) Graph structure: Here, we explain how these graphs
are composed. Parameters Ron,P and Roff,P of memristor
P are always shown on the y-axis since RP is crucial for
the outcome of the operation. We can also see that from the
fact that Roff,P or Ron,P are present in all of the constraints
described in Section IV. Different parameters are used in each
graph for the x-axes.

Colored curves and areas are used to show constraints and
important ranges:

Black, dashed lines indicate nominal parameter values
Light blue lines show input logic thresholds RIH (solid)
and RIL (dashed) for memristor P .
Colored curves show the constraints from Section IV.
Dotted parts indicate invalid plotting ranges, which do
not correspond to any real value in physical devices.
Arrows indicate how the constraints restrict the operating
area of a parameter, i.e., which side of the curve is
acceptable due to the given constraint.
Blue areas show valid ranges of Roff,P and the respective
parameters on the x-axes. For example, in Figure 6, this
area represents valid ranges of Roff,P versus von,Q, voff,Q,
von,P and voff,P . Note that for von,P our recommended
range was used to limit the valid area, as the three
different curves are only weak constraints.



7

∆10% 20% 30% 40% 50%

run

0

2

4

6

8

10

12

14

16

18

20

22

24

26

∆10% 20% 30% 40% 50%

run

28

30

32

34

36

38

40

42

44

46

48

50

52

∆10% 20% 30% 40% 50%

run

54

56

58

60

62

64

66

68

70

72

74

76

78

80

Figure 5. Results summary for different degrees of variation in von, voff of P and Q. The 1/3 logic thresholds scheme was used here.

von

Roff

Ron

−1.0−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0
102

103

104

105

106

107

von,Q/1V

R
P
/1

Ω

−1.0−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0

von,P /1V

Static Roff,P = f(von,Q, ROH) [eq. (19)] von,Q = f(ROH) [eq. (18)]

Ron,P = f(von,Q, ROL) [eq. (21)] von,Q = f(ROL) [eq. (20)]

Dynamic von,Q = f(Roff,P ) [eq. (34)] von,P = f(Roff,P , RQ,1)
[eq. (41)]

von,P = f(Roff,P , RQ,2) [eq. (41)] von,P = f(Roff,P , RQ,3)
[eq. (41)]

Logic thres. Roff,P = RIL [eq. (25)] Ron,P = RIH [eq. (27)]

Operating
area

Roff,P /v range Ron,P /v range

Roff,P

Ron,P

0 10 20
102

103

104

105

106

107

voff,Q/1mV

R
P
/1

Ω

voff

0 10 20

voff,P /1mV

Figure 6. Analytical constraints and logic thresholds for the TTL scheme
plotted over a range of memristor parameters {RP , vP , vQ}.

Purple areas show valid ranges of Ron,P and the respec-
tive parameters on the x-axes. For example, in Figure 10,
this area represents valid ranges of Ron,P versus kon,Q,
koff,Q, kon,P and koff,P . Note that restrictions on x-axis
parameters are inherited from the Roff,P operating area.
The bars at each side of the graphs overlay our simulation
results. Red sections show incorrect IMPLY results, green
sections show correct results and orange sections are used
for ranges in between, which are not explicitly covered
by the simulations.

2) Variation in voltage threshold: Figures 6 to 8 depict
voltage thresholds von,P , voff,P , von,Q and voff,Q of memristor
P and Q, as well as resistance parameters Ron,P and Roff,P

of P using different logic threshold schemes (Figure 3). For

the analysis we concentrate on the TTL scheme, Figure 6.
The logic thresholds (RIH, RIL) divide the plot into two

parts: The bottom part concerning Ron,P and the top part con-
cerning Roff,P . Adding the static constraints, Equations (18)
to (21), on top of the logic thresholds decreases the valid
range of Roff,P , von,Q and in particular Ron,P . The latter is
evident from the purple area in Figure 6, which is smaller
than the plotted range. However, regarding Roff,P and von,Q,
the dynamic constraint, Equation (34), is even stricter than the
static constraint.

There are no static constraints for von,P . A rough dynamic
estimation is provided by Equation (41), which depends on
VP f . As discussed in Section IV-B, Equation (41) is evaluated
three times, using RQ,1, RQ,2 and RQ,3, respectively. The
three curves are drawn in brown, dark green and light green.
No constraint for voff has been found (Section IV). Hence, the
valid ranges of RP over {voff,P , voff,Q} are only limited by
logic thresholds, Equations (25) and (27). As a consequence
of the above constraints, the valid range for each parameter
is decreased and thus the advisable operating area remains as
shown by the colored areas.

Simulation results for variation in von,Q show very good
agreement with the mathematical analysis, especially the dy-
namic estimation in Equation (34), which depends on Equa-
tions (29) and (32). At +10% variation of von,Q and nominal
Roff,P , the simulation fails (indicated by the thin red line),
as the analysis predicted. Figure 6 shows very clearly that
this failure is not accurately predicted by the static constraints
from Section IV-A alone. Hence, the dynamic estimation
(Section IV-B) is vital. Variation in von,P strengthens this point
further, since different methods of estimating the dynamic be-
havior leads to important changes regarding the agreement of
the simulations and the derived analytical constraints. On the
upper end of the von,P range, Equation (41) (evaluated using
RQ = RQ,3 for VP f , Equation (35)) provides good congruence
with our simulations, whereas Equation (41) (evaluated using
RQ = RQ,2 for VP f , Equation (35)) represents a more
conservative estimation. In contrast, evaluating Equation (41)



8

−1.0−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0
102

103

104

105

106

107

von,Q/1V

R
P
/1

Ω

von

Roff

Ron

−1.0−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0

von,P /1V

Static Roff,P = f(von,Q, ROH) [eq. (19)] von,Q = f(ROH) [eq. (18)]

Ron,P = f(von,Q, ROL) [eq. (21)] von,Q = f(ROL) [eq. (20)]

Dynamic von,Q = f(Roff,P ) [eq. (34)] von,P = f(Roff,P , RQ,1)
[eq. (41)]

von,P = f(Roff,P , RQ,2) [eq. (41)] von,P = f(Roff,P , RQ,3)
[eq. (41)]

Logic thres. Roff,P = RIL [eq. (25)] Ron,P = RIH [eq. (27)]

Operating
area

Roff,P /v range Ron,P /v range

Roff,P

Ron,P

0 10 20
102

103

104

105

106

107

voff,Q/1mV

R
P
/1

Ω

voff

0 10 20

voff,P /1mV

Figure 7. Analytical constraints and logic thresholds for the 1/2 scheme
plotted over a range of memristor parameters {RP , vP , vQ}.

using the theoretical minimum RQ = RQ,1 = Rmin,Q in
Equation (35), does not yield a good estimation. On the
lower end of the von,P range, simulation results indicate some
failures for von,P ≤ −0.84 V (+20%). This behavior cannot
be explained by any of the constraints from Section IV. Ac-
cording to the simulation results (Section V-C, Figure 5), these
specific failures only occur when von,Q ≥ −0.7 V(±0%),
which leads us to believe that the reason for failure is the 20%
mismatch between von,P and von,Q. Regarding both, voff,P and
voff,Q, there are almost no failures as expected, except for a
(minor) failure during initialization for voff,Q at +50%.

In terms of RP variation, the simulation results suggest
that Roff,P can lie within the uncertain range between logic
thresholds while the IMPLY operation still outputs correct
results. This stands to reason since the thresholds are artificial
limits not governed by the circuit behavior. Further, Ron,P is
fine up to the lowest simulated value of Roff,P , because at that
point Roff,P > Ron,P changes to Roff,P < Ron,P , and hence
the operation fails.

Combining all the simulation results and their respective
analytical constraints, we can identify the areas in which the
circuit is most likely to operate correctly. These are the areas
highlighted in Figures 6 to 8. Equations (34) and (41) and
their respective dependencies, Equations (29), (32) and (35)
(evaluated using RQ = RQ,3), are recommended for estimat-
ing the valid ranges of Roff,P versus {von,P , von,Q}; whereas
the static constraints Equations (18) to (21) are sufficient for
Ron,P versus {von,P , von,Q}.

3) Variation in resistance limits: There are no static con-
straints limiting Ron,Q or Roff,Q. Therefore, only logic thresh-
olds and the dynamic estimation of Equation (34) can be
applied. The latter depends on Equations (29) and (32) and is
evaluated in two ways: First, varying Ron,Q, but not Roff,Q;
and second varying Roff,Q, but not Ron,Q. It is interesting to

von

Roff

Ron

−1.0−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0
102

103

104

105

106

107

von,Q/1V

R
P
/
1
Ω

−1.0−0.9−0.8−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0.0

von,P /1V

Static Roff,P = f(von,Q, ROH) [eq. (19)] von,Q = f(ROH) [eq. (18)]

Ron,P = f(von,Q, ROL) [eq. (21)] von,Q = f(ROL) [eq. (20)]

Dynamic von,Q = f(Roff,P ) [eq. (34)] von,P = f(Roff,P , RQ,1)
[eq. (41)]

von,P = f(Roff,P , RQ,2) [eq. (41)] von,P = f(Roff,P , RQ,3)
[eq. (41)]

Logic thres. Roff,P = RIL [eq. (25)] Ron,P = RIH [eq. (27)]

Operating
area

Roff,P /v range Ron,P /v range

Roff,P

Ron,P

0 10 20
102

103

104

105

106

107

voff,Q/1mV

R
P
/
1
Ω

voff

0 10 20

voff,P /1mV

Figure 8. Analytical constraints and logic thresholds for the 1/3 scheme
plotted over a range of memristor parameters {RP , vP , vQ}.

Ron Roff

Roff

Ron

102 103 104 105 106
102

103

104

105

106

107

Ron,Q/1Ω

R
P
/1

Ω

Ron Roff

Roff

Ron

105 106 107
102

103

104

105

106

107

Roff,Q/1Ω
R

P
/
1
Ω

Dynamic Roff,P = f(Ron,Q) [eq. (34)] Roff,P = f(Roff,Q) [eq. (34)]

Logic thres. Roff,P > RIL [eq. (25)] Ron,P < RIH [eq. (27)]

Roff,Q > RIL [eq. (26)] Ron,Q < RIH [eq. (28)]

Operating
area

Roff,P /RQ range Ron,P /RQ range

Roff,P

Ron,P

Figure 9. Analytical constraints and logic thresholds for the TTL scheme
plotted over a range of memristor parameters {RP , RQ}.

see that – for any of the three schemes of Figure 3 – the logic
thresholds limit the operating areas (blue and purple) much
more than the actual analytical constraints. Simulation results
for Ron,P and Roff,P are identical to Figure 6, however, Roff,Q

cannot reach as low as Roff,P without causing a failure. This is
solely due to the chosen logic thresholds, as an IMPLY output
of Roff,Q < ROL is considered as failure.

Overall, resistance variation does not seem to hold as much
potential for failures as variation in threshold voltage(s) does.
Equation (34) and its dependencies, Equations (29) and (32),
can be used to identify valid parameter ranges, but – based on
our simulation results – it is most likely not necessary. This
is true for all three logic threshold schemes listed in Figure 3.



9

kon

Ron

Roff

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
102

103

104

105

106

107

kon,Q/1
mm
s

R
P
/1

Ω

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

kon,P /1
mm
s

Dynamic kon,Q = f(Roff,P ) [eq. (34)] von,P = f(Roff,P , RQ,2) [eq. (41)]

von,P = f(Roff,P , RQ,3) [eq. (41)]

Logic thres. Roff,P > RIL [eq. (25)] Ron,P < RIH [eq. (27)]

Operating area Roff,P /k range Ron,P /k range

koff

−1.0 −0.5 0.0

koff,Q/1
nm
s

Roff,P

Ron,P

−1.0 −0.5 0.0

102

103

104

105

106

107

koff,P /1
nm
s

R
P
/1

Ω

Figure 10. Analytical constraints and logic thresholds for the TTL scheme
plotted over a range of memristor parameters {RP , kP , kQ}.

4) Variation in switching speed: The dynamic constraint
in Equation (34) can be used to extract limits of kon,Q,
while Equation (41) provides the basis for the analysis of
kon,P . Figure 10 shows the plotted equations and logic thresh-
olds. Equation (41) (evaluated using Equation (35), where
RQ = RQ,1) is omitted, as well as all constraints containing
koff,P and koff,Q, since they are far outside of the plotted
range. The graph in Figure 10 shows that kon,P is hardly
restricted by any constraint. Only at relatively high values,
greater than +50% variation, Equation (41) (evaluated using
Equation (35) with RQ = RQ,2) comes into effect, but cannot
be compared to simulation results, as our simulated range ends
at +50%, in compliance with our methodology (Section V-B).
In contrast, Equation (34) provides a reasonable constraint for
kon,Q. Nonetheless, our simulated range only reaches down to
−50% and thus results cannot be compared to the constraint.
The other two logic threshold schemes show similar behavior.
As before, the colored areas indicate the merged, predicted
functional range of both, kon,P and kon,Q.

In conclusion, switching speed k of both memristors can
vary at least by ±50% without performance issues, according
to our simulation. Analytical constraints suggest that there is a
lower boundary for kon,Q at approximately 2 mm/s (−80%).

VI. SIMULATION – CROSSBAR

A. Setup

Analogous to the single IMPLY gate simulation setup (Sec-
tion V-A), the circuit in Figure 1(b) is the basis for the crossbar
simulation. A complete 128× 128 cell 1T1R crossbar circuit
was used. The IMPLY gate is formed by two memristors
arbitrarily located within the crossbar. Each memristor has
its own access device, in our case an ideal switch, and
is connected to adjacent cells via resistors that model the
nanowire resistances. The ideal switch is modeled using an
on-resistance of 1µΩ and an off-resistance of 100 MΩ. Line
resistances were chosen to be 10 Ω each, according to the worst
case in [26]. Figure 11 shows the structure of a single cell.

. . .word y

..
.bit x

. . .

..
.

Rxy/x(y+1)

Rxy/(x+1)y

M
xy

T x
y

Figure 11. Structure of a single cell within the 1T1R crossbar, including line
resistances.

Circuit parameters of the IMPLY gate are identical to
Section V-A, Table III. Bit-line drivers are attached at the top
and bottom for symmetry. The readout strategy described in
Section II-B was implemented. Analog transient simulations
were conducted in Cadence Spectre. The method of param-
eter variation is the same as defined for the single gate in
Section V-B, except that only relative parameter variations
(±50%) were conducted for the crossbar.

B. Methodology

IMPLY gates can be formed by any two memristors in the
crossbar. Both, the worst case scenario in terms of parasitic
resistance between the two memristors forming a gate, and
the worst case voltage drop, were considered. Hence, four
separate simulations were conducted with P and Q at different
{bit,word} positions.

1) Memristor P at position {0, 0}, Q at position {127, 127}
2) Memristor P at position {127, 127}, Q at position {0, 0}
3) Memristor P at position {0, 0}, Q at position {63, 63}
4) Memristor P at position {63, 63}, Q at position {0, 0}
Instead of using idealized (s = 0 or s = 1) or manually

fixed initial memristor states, each cell is assigned a different
initial state during (automated) netlist generation. The states
are generated via Octave and follow a Gaussian distribution
which has been cut in half as shown in Figure 12. Although
this approach requires a greater effort, it represents a more
realistic scenario than ideal initial states.

C. Results analysis

In this section we compare the crossbar simulation results
against the single gate results. As before, to be efficient, results
are represented using our technique introduced in Section V-C.
Figure 13 shows a complete set of crossbar simulations for the
parameters {von,P , voff,P , von,Q, voff,Q}. Figure 14 depicts the
combined, i.e. worst case, results of all crossbar simulation

0 0.25 0.5 0.75 1

0
200
400
600
800

s

n
pe

r
bi

n

Figure 12. Histogram of initial (normalized) device states, s, within the 128×
128 crossbar, plotted using 100 bins.



10

∆10% 20% 30% 40% 50%

run

0

2

4

6

8

10

12

14

16

18

20

22

24

26

∆10% 20% 30% 40% 50%

run

28

30

32

34

36

38

40

42

44

46

48

50

52

∆10% 20% 30% 40% 50%

run

54

56

58

60

62

64

66

68

70

72

74

76

78

80

Figure 13. Crossbar results summary for different degrees of variation in von, voff of P and Q. Logic thresholds for ‘1’ and ‘0’ were set according to the
TTL threshold scheme (Figure 3). Memristor P was at position {0, 0}, while Q was at the center, {63, 63}.

Single gate koff,P/1 nm
s

kon,P/1 mm
s

koff kon

-1.0 0.0 4.0 8.0 12.0 16.0 20.0 24.0

Crossbar koff,P/1 nm
s

kon,P/1 mm
s

Single gate koff,Q/1 nm
s

kon,Q/1 mm
s

Crossbar koff,Q/1 nm
s

kon,Q/1 mm
s

von,P/1 V voff,P/1 mV

von voff

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 10 20.0

von,P/1 V voff,P/1 mV

von,Q/1 V voff,Q/1 mV

von,Q/1 V voff,Q/1 mV

Single gate Roff,P/1 kΩ

Roff

400 600 800 1000 1200 1400 1600

Crossbar Roff,P/1 kΩ

Ron,P/1 kΩ

Ron

2 4 6 8 10 12 14 16

Ron,P/1 kΩ

Single gate Roff,Q/1 kΩ

Crossbar Roff,Q/1 kΩ

Ron,Q/1 kΩ

Ron,Q/1 kΩ

Figure 14. Comparison of single gate and (combined) crossbar simulation results. A range of ±50% around the nominal value is plotted for each parameter.
The results are color-coded: Green for correct IMPLY output, red for false output and orange for ranges inbetween, that are not covered by the simulation.

setups explained in Section VI-B, and the results of the single
gate simulation, where the TTL threshold scheme was applied.
The bars and color coding are identical to Figures 6 to 10,
Section V-D. While the conclusions from Section V-D remain
true, unless noted otherwise, here we highlight the differences.

1) Variation in voltage threshold: Given that the circuit is
in a crossbar architecture, an increased number of errors due
to threshold voltage variation can be expected in the crossbar
simulation, when compared to the single gate simulation.
Surprisingly, however, it is not significantly worse.

There are three main differences: First, the initialization
failure of voff,Q (initially shown in Figure 6) does not arise
in the crossbar simulation. However, there were initialization
failures in the crossbar for 8 mV ≤ voff,P ≤ 9 mV (−20%
to −10%). Having said that, as voff is of minor interest
to the IMPLY operation, this can neither be considered an
improvement, nor a degradation compared to the single gate.
Second, results indicate failures if both von,P and von,Q are
above −0.63 V (−10%) at the same time. Based on the single
gate simulation results (Section V-D) and our recommendation
to use Equation (41) – in combination with RQ = RQ,3 in
Equation (35) – for device variability evaluation, this failure
is predictable. As for the exact reason of this error, we assume

that it is due to the increased state drift in P , as |von,P | is so
low. In terms of operational range, the valid values for von,P

and von,Q are drastically restricted to the nominal value von,
as shown in Figure 14. It is only then that correct operations
can be guaranteed. However, if von,P < −0.63 V (−10%)
is ensured, a much greater range for von,Q is admissible,
similar to the case of the single gate in Section V-D. Finally,
the third difference is that the IMPLY operation fails for
von,P < −0.77 V (+10%) while von,Q = von, as compared
to +20% in the single gate simulation. Thus, the tolerable
mismatch between von,P and von,Q shrinks to 10% within the
crossbar.

Apart from these differences the results of both simulations
are identical, although Figure 14 might not reveal it at the first
look. This means that the proposed constraints for von and voff

from Section IV can be applied to get a basic understanding
of threshold voltage variability within crossbar architectures.

2) Variation in resistance limits: Varying the resistance
limits of the memristors within the crossbar reveals some
interesting results, as we can see in Figure 14. While IMPLY
operations in the single gate simulation fail for Roff,Q ≤
800 kΩ (−20%), the crossbar simulation shows correct results
down to Roff,Q = 700 kΩ (−30%). We believe that this is



11

due to the readout strategy applied to the crossbar, since the
measured RQ after executing Case 3 (Table I) is almost 1 MΩ
in a majority of the −30% simulation runs. Failures start
occuring below Roff,Q ≤ 600 kΩ (−40%). The range between
−30% and −40% variation is not explicitly covered by our
simulation steps.

Furthermore, false IMPLY results within the crossbar come
about at the upper and lower end of our simulated Roff,Q

range, as well as at the upper and lower end of the sim-
ulated Roff,P range. This is a combined effect, since those
errors only occur if both, Roff,P ≤ 500 kΩ (−50%) and
Roff,Q ≥ 1.5 MΩ (+50%), or vice versa, are present at the
same time. Interpreting this scenario based on the 1/2 or TTL
logic thresholds from Figure 3, one can see that if either Roff,P

or Roff,Q are below 500 kΩ, they are not interpreted as logic
‘0’, but logic ‘1’. Thus, they do not fulfill Case 1 of the truth
table, where p = 0 and q = 0 must be true. Applying the 1/3
logic threshold scheme, an off-resistance of 500 kΩ yields an
undefined logic state. Therefore, none of the cases in the truth
table is fulfilled. Hence, such errors are predicted via logic
thresholds alone and do not require further evaluation using
the constraints defined in Section IV.

Lastly, we should remark that simulation results for Ron,P

and Ron,Q in the crossbar are identical to the the single gate
simulation results.

3) Variation in switching speed: Swichting speed variation
does not pose a threat to single IMPLY gates, as deduced
in Section V-D. However, based on our simulation results
(Figure 14), behavior within a crossbar is very different. For
variations in kon,P and kon,Q larger than ±20%, the IMPLY
operation fails. Further analysis of those failures reveals that
it is the mismatch between P and Q which causes most
errors. If either ∆kon,P ≤ −20% while ∆kon,Q ≥ +20%,
or ∆kon,P ≥ +20% while ∆kon,Q ≤ −20%, the operation
result is wrong. This mismatch cannot be predicted by our con-
straints. Further, the simulation indicates failures for variation
in koff,P larger than ±20%, as well as for ∆koff,Q = ±40%.
As koff,P and koff,Q are never relevant during IMPLY, we
infer that these are initialization errors. They can, however, be
resolved by using a different initialization scheme than the one
we applied. For example, using an additional readout cycle to
confirm written initial states. Such a scheme provides feedback
to resolve initialization errors before IMPLY is executed.

VII. CONCLUSION

Device variability is one of the main challenges when imple-
menting memristor-based logic. In this paper, we formulated
novel constraints based on static switching conditions and
state change dynamics. We note that the underlying causes
of variation in device parameters are not differentiated by our
methodology. Hence, environmental effects (such as tempera-
ture) causing parameter variation are taken into account by our
constraints, just as process variations are. IMPLY operation
results after a fixed timestep of execution were used as the
metric to assess gate performance. In addition, different logic
threshold schemes were considered. The derived constraints
were put to the test in an extensive analysis for single gate

and 128×128 1T1R crossbar and their simulation results were
compared. An efficient simulation results presentation method
was introduced and applied to find critical parameters.

As a result of our analysis, variability in threshold volt-
ages, especially von,Q, was identified as a major root of
concern regarding correct operations. We conclude that the
most dominant reasons for failure are predictable by our
theoretical analysis for both the single gate and the crossbar.
Therefore, our analysis and recommendations can be used for
designing a reliable IMPLY gate. More specifically, we suggest
to choose design parameters away from the borders of the
recommended areas. Ideally, this distance should be chosen
such that the typical (or maximum) variations, do not lead
to crossing the borders of recommended area. Nonetheless,
accompanying studies or simulations should be conducted to
understand the non-deterministic errors, especially regarding
voltage threshold- and switching speed mismatch within the
crossbar, as well as state drift phenomena.

Lastly, we note that our analysis can be used to decide
whether a specific memristor technology and IMPLY logic are
compatible. To that end, technology parameters need to be as-
sessed based on the constraints for reliable IMPLY operations
we extracted in this work. Further, considering technology-
dependent parameter variation, an acceptable margin from the
borders of the operating area must be ensured. Otherwise,
chances for failures in IMPLY operations are increased. Hence,
it would be better to use other technologies to implement the
intended IMPLY-based circuits, or use other logics to imple-
ment the intended functionalities on the given technology.

REFERENCES

[1] D. Niu et al. Low-power dual-element memristor based memory design.
In Proceedings of the 16th ACM/IEEE International Symposium on Low
Power Electronics and Design, ISLPED ’10, pp. 25–30, New York, NY,
USA, 2010. ACM.

[2] Y. Ho et al. Dynamical properties and design analysis for nonvolatile
memristor memories. IEEE Transactions on Circuits and Systems I:
Regular Papers, 58(4):724–736, April 2011.

[3] B. Mohammad et al. Robust hybrid memristor-CMOS memory: Mod-
eling and design. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 21(11):2069–2079, November 2013.

[4] V. S. Baghel and S. Akashe. Low power memristor based 7T SRAM
using MTCMOS technique. In Fifth International Conference on Ad-
vanced Computing Communication Technologies, pp. 222–226, February
2015.

[5] D. Radakovits and N. TaheriNejad. Implementation and characterization
of a memristive memory system. In 2019 IEEE 32nd Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1–5,
May 2019.

[6] M. Zangeneh and A. Joshi. Design and Optimization of Nonvolatile
Multibit 1T1R Resistive RAM. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 22(8):1815–1828, Aug 2014.

[7] H. Kim et al. Memristor-based multilevel memory. In CNNA2010, pp.
1–6, Feb 2010.

[8] N. Taherinejad et al. Memristors’ potential for multi-bit storage and
pattern learning. In EMS2015, pp. 450–455, Oct 2015.

[9] N. Taherinejad et al. Fully digital write-in scheme for multi-bit
memristive storage. In CCE2016, pp. 1–6. IEEE, 2016.

[10] Y. Pershin and M. Di Ventra. Neuromorphic, digital, and quantum
computation with memory circuit elements. Proceedings of the IEEE,
100(6):2071–2080, June 2012.

[11] A. Thomas. Memristor-based neural networks. Journal of Physics D:
Applied Physics, 46(9):093001, 2013.

[12] J. Borghetti et al. ‘Memristive’ switches enable ‘stateful’ logic opera-
tions via material implication. Nature, 464:873–876, April 2010.



12

[13] N. Talati et al. Logic Design Within Memristive Memories Using
Memristor-Aided loGIC (MAGIC). IEEE Transactions on Nanotech-
nology, 15(4):635–650, July 2016.

[14] E. Linn et al. Complementary resistive switches for passive nanocrossbar
memories. Nature Materials, 9:403–406, May 2010.

[15] S. Gupta et al. FELIX: Fast and energy-efficient logic in memory.
In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–7, November 2018.

[16] G. Papandroulidakis et al. Crossbar-based memristive logic-in-memory
architecture. IEEE Transactions on Nanotechnology, 16(3):491–501,
May 2017.

[17] S. G. Rohani and N. TaheriNejad. An improved algorithm for IMPLY
logic based memristive full-adder. In 2017 IEEE 30th Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1–4,
April 2017.

[18] N. TaheriNejad et al. A semi-serial topology for compact and fast
IMPLY-based memristive full adders. In 2019 IEEE New Circuits and
Systems symposium (NewCAS), pp. 1–5, 2019.

[19] L. Guckert and E. E. Swartzlander Jr. System design with memristor
technologies. Institution of Engineering & Technology, 2018.

[20] D. Radakovits et al. A memristive multiplier using semi-serial imply-
based adder. IEEE Transactions on Circuits and Systems I: Regular
Papers, pp. 1–12, 2020.

[21] N. TaheriNejad and D. Radakovits. From behavioral design of mem-
ristive circuits and systems to physical implementations. IEEE Circuits
and Systems Magazine, 19(4):6–18, Fourthquarter 2019.

[22] R. Waser et al. Redox-based resistive switching memories – nanoionic
mechanisms, prospects, and challenges. Advanced Materials, 21:2632–
2663, 2009.

[23] S. Menzel et al. Switching kinetics of electrochemical metallization
memory cells. Physical Chemistry Chemical Physics, 2013. Cite this:
Phys. Chem. Chem. Phys., 2013, 15, 6945.

[24] S. Menzel et al. Physics of the Switching Kinetics in Resistive
Memories. Advanced Functional Materials, 25:6306–6325, 2015.

[25] Y. Cassuto et al. Sneak-Path Constraints in Memristor Crossbar Arrays.
IEEE International, pp. 156–160, 2013.

[26] M. A. Zidan et al. Memristor multiport readout: A closed-form solution
for sneak paths. IEEE Transactions on Nanote, 13(2):274–282, March
2014.

[27] N. Wald and S. Kvatinsky. Understanding the influence of device, circuit
and environmental variations on real processing in memristive memory
using Memristor Aided Logic. Microelectronics Journal, 86:22–33,
February 2019.

[28] L. Xie et al. On the robustness of memristor based logic gates. In
2017 IEEE 20th International Symposium on Design and Diagnostics
of Electronic Circuits Systems (DDECS), pp. 158–163, April 2017.

[29] Q. Chen et al. A Logic Circuit Design for Perfecting Memristor-Based
Material Implication. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 36(2):279–284, February 2017.

[30] S. Kvatinsky et al. Memristor-based imply logic design procedure. IEEE
29th International Conference on Computer Design (ICCD), pp. 142–
147, 2011.

[31] H. Wan et al. In situ observation of compliance-current overshoot and
its effect on resistive switching. EDL2010, 31(3):246–248, 2010.

[32] C. Li et al. In-memory computing with memristor arrays. In IMW2018,
pp. 1–4. IEEE, 2018.

[33] C. Li et al. Analogue signal and image processing with large memristor
crossbars. Nature Electronics, 1(1):52, 2018.

[34] A. Chen. A comprehensive crossbar array model with solutions for line
resistance and nonlinear device characteristics. IEEE Transactions on
Electron Devices, 60(4):1318–1326, April 2013.

[35] S. Shin et al. Analysis of passive memristive devices array: Data-
dependent statistical model and self-adaptable sense resistance for rrams.
Proceedings of the IEEE, 100(6):2021–2032, 2012.

[36] S. Shin et al. Data-dependent statistical memory model for passive array
of memristive devices. IEEE Transactions on Circuits and Systems II:
Express Briefs, 57(12):986–990, December 2010.

[37] S. Kvatinsky et al. TEAM: ThrEshold Adaptive Memristor Model. IEEE
Transactions on Circuits and Systems I: Regular Papers, 60(1):211–221,
January 2013.

[38] S. Kvatinsky et al. VTEAM: A General Model for Voltage-Controlled
Memristors. IEEE Transactions on Circuits and Systems II: Express
Briefs, 62(8):786–790, August 2015.

[39] J. P. Strachan et al. State dynamics and modeling of tantalum oxide
memristors. IEEE Transactions on Electron Devices, 60(7):2194–2202,
July 2013.

[40] Z. Jiang et al. A compact model for metal–oxide resistive random access
memory with experiment verification. IEEE Transactions on Electron
Devices, 63(5):1884–1892, May 2016.

[41] D. Radakovits et al. Second (v2.0) LTSpice implementation of VTEAM,
September 2019. https://www.ict.tuwien.ac.at/staff/taherinejad/projects/
memristor/files/vteam2.asc, https://www.ict.tuwien.ac.at/staff/
taherinejad/projects/memristor/files/vteam2.asy.

[42] Knowm. Knowm Self Directed Channel Memristors, October 2019.
Rev. 3.2, https://knowm.org/downloads/Knowm_Memristors.pdf, Last
accessed: 11 March 2020.

[43] S. Kvatinsky et al. Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 22(10):2054–2066, October
2014.

[44] S. G. Rohani et al. A semiparallel full-adder in imply logic. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1–5,
2019.

[45] Texas Instruments. Logic Guide, 2017. http://www.ti.com/lit/sg/
sdyu001ab/sdyu001ab.pdf, Last accessed: 11 March 2020.

Simon Michael Laube is currently a B.Sc. student
of electrical engineering and information technology
at the TU Wien, 1040 Vienna, Austria. His B.Sc.
thesis is on examining the robustness of memristor-
based material implication at the circuit/gate level.

Nima TaheriNejad (S’08-M’15) received his Ph.D.
degree in electrical and computer engineering from
The University of British Columbia (UBC), Van-
couver, Canada, in 2015. He is currently a “Uni-
versitätsassistant” at the TU Wien (formerly known
as Vienna University of Technology as well), Vi-
enna, Austria, where his areas of work include self-
awareness in resource-constrained cyber-physical
systems, embedded systems, in-memory computing,
systems on chip, memristor-based circuit and sys-
tems, health-care, and robotics. He has published

two books and more than 55 peer-reviewed articles. He has also served
as a reviewer, an editor, an organizer, and the chair for various journals,
conferences, and workshops. Dr. Taherinejad has received several awards and
scholarships from universities, conferences, and competitions he has attended.
In the field of memristive circuits and systems, his focus has been on physical
implementations, reliability, memory, logic (particularly IMPLY), and in-
memory computations.


	I Introduction
	II Material implication (IMPLY)
	II-A Gate structure and constraints
	II-B Crossbar principles

	III Device model
	IV Formulating Constraints
	IV-A Static behavior
	IV-B Dynamic behavior

	V Simulation – Single Gate
	V-A Circuit design
	V-B Methodology & Setup
	V-C Result Presentation Method
	V-D Results analysis
	V-D1 Graph structure
	V-D2 Variation in voltage threshold
	V-D3 Variation in resistance limits
	V-D4 Variation in switching speed


	VI Simulation – Crossbar
	VI-A Setup
	VI-B Methodology
	VI-C Results analysis
	VI-C1 Variation in voltage threshold
	VI-C2 Variation in resistance limits
	VI-C3 Variation in switching speed


	VII Conclusion
	References
	Biographies
	Simon Michael Laube
	Nima TaheriNejad


