
User-centric Resource Management for Embedded
Multi-core Processors

Elham Shamsa1, Anil Kanduri1, Nima TaheriNejad2, Alma Pröbstl3, Samarjit Chakraborty3,

Amir M. Rahmani4, Pasi Liljeberg1

1Department of Future Technologies, University of Turku, Turku, Finland
2Institute of Computer Technology, TU Wien, Vienna, Austria

3Institute of Computer Technology,Technical University of Munich, Munich, Germany
4Department of Computer Science, University of California, Irvine, USA

{elsham, spakan, pakrli}@utu.fi, nima.taherinejad@tuwien.ac.at,

{alma.proebstl, samarjit}@tum.de, a.rahmani@uci.edu

Abstract—Modern battery powered Embedded Systems (ES)
must provide a high performance with minimal energy con-
sumption to enhance the user experience. However, these two are
often conflicting objectives. In current ES resource management
techniques, user behavior and preferences are only indirectly
or not at all considered. In this paper, we present a novel
user- and battery-aware resource management framework for
multi-processor architectures that considers these conflicting
requirements and dynamic unknown workloads at run-time to
maximize user satisfaction. Proposed technique learns user’s
habits to dynamically adjust the resource management schemes
based on the data it collects regarding user’s plug-in behavior,
battery charge status, and workloads variability at run-time. This
information is used to improve the balance between performance
and energy consumption, and thus optimize the Quality of Expe-
rience (QoE). Our evaluation results show that our framework
enhances the user experience by 22% in comparison with the
existing state-of-the-art.

Index Terms—Resource Management, Personalization, Quality
of Experience, User-awareness, Battery-awareness, Performance,
Energy Consumption, Heterogeneous, Multi-processor

I. INTRODUCTION

Increasing usage of battery powered mobile embedded

systems such as smart phones and wearable devices rises

the importance of maximizing Quality of Experience (QoE)

of users. In addition to graphical interface and performance

of applications, QoE depends on user’s satisfaction with the

device in terms of battery life [1]. However, battery charging

patterns vary among different users, resulting in different

energy utilization dynamics and battery drain for each given

user [2]. For example, some users prefer to charge their phones

over night with long plug-in times while others charge their

phones ad-hocly and immediately unplug once the full charge

level has been reached. Battery plug-in pattern and State of

Charge (SOC), i.e., the amount of battery life remaining at

a given time are intertwined factors which affect the QoE.

For example, consider a user who trivially prefers energy

saving mode of operation at SOC=20%. However, the same

user would alter the preference to high performance if the

device is plugged in to a battery source, even at the same SOC

of 20%. A user’s preference on performance versus energy

saving mode of operation depends on i) the current SOC at any

given time, ii) availability of energy source (device is plugged-

in/out) and iii) the likelihood of plugging in the battery source,

given the current SOC. While SOC is subjective to workload

characteristics of applications being run, the likelihood of

battery source being plugged in is user specific.

Run-time resource management policies can improve bat-

tery life by exploiting application characteristics [3], schedul-

ing [4], power knob actuation [5], and/or a combination of

the above. Resource management policies that are designed

generically do not consider user-specific parameters such as

device usage history, and charge and discharging patterns [1],

[6], [7], limiting their efficiency in maximizing QoE [8]. Other

techniques that are user-specific do not consider battery plug-

in patterns and target maximizing a generalized Quality of

Service (QoS) model [9], [10]. A comprehensive method that

monitors dynamic workload characteristics, current SOC and

battery plug-in status, and learns the likelihood of battery being

charged at an SOC can maximize QoE by adapting resource

allocation decisions. To this end, we propose a user-centric

resource management framework for maximizing the QoE of

embedded devices’ users, specifically considering personalized

battery plug-in patterns and SOC.

We use Naive Bayes classifier to model the user plug-in time

and predict the available energy budget to make appropriate

resource allocation decisions that maximize QoE. We initially

train our prediction model offline with data from different

users and update the model at run-time to customize the

resource management for each specific user. We use Dynamic

Voltage and Frequency Scaling (DVFS) and task migration

knobs to actuate performance and energy budgets. We use the

real statistical usage data for simulating the user and battery

state in our framework. Our contributions are as follows:

• Analysis of statistical battery data of each individual user

and its effect on resource management.

• A user- and battery- aware energy optimization approach

that efficiently adapts to the workload variation, individ-

ual user behavior, and performance requirements.

• A user and battery model by using online and offline

learning based on real statistical data.

• A quantified model for QoE which is compatible with

SOC and individual users.

43

2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems (VLSID)

2380-6923/20/$31.00 ©2020 IEEE
DOI 10.1109/VLSID49098.2020.00025

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 07,2021 at 09:56:03 UTC from IEEE Xplore.  Restrictions apply. 



• A resource management framework which customizes it-

self for each individual user to maximize user satisfaction.

• Evaluation of the framework on a real heterogeneous

platform, namely Odroid XU3, over realistic workloads.

We provide significance of using user-centric resource man-

agement in Section II. Our framework is described in Section

III. The evaluation of the resource management method over

MiBench benchmark suite on Odroid XU3 HMP platform and

comparison against state-of-the-art approaches is presented in

Section IV. Finally, Section V concludes the paper.

II. SIGNIFICANCE

In this section, we motivate the importance of considering

battery awareness and user-behavior in resource management

and provide an overview of the state-of-the-art approaches.

A. Motivation

To understand the significance of battery-awareness and

user behavior patterns, we collected data of battery SOC and

plug-in for 10 different real mobile users over 15 days. Each

subplot on Figure 1 shows the probability distribution of plug-

in at a certain initial SOC for a user. As shown in Figure 1,

each user has a specific plug-in probability pattern, while the

pattern varies among different users. For each individual user,

there is at least one SOC in which the plug-in event has the

highest probability. For example, User1 and User2 plug in the

device more frequently in two different SOCs (SOC = 40%
and SOC = 20%, respectively). These different patterns

result in different user expectations, which affect resource

management. We demonstrate this effect through an example

in Figure 2. In this example, we consider User1 and User2 in

Figure 1, and customize two different resource management

policies based on their preference between performance and

energy. The resource management policy implicitly changes

the weight of energy and performance as per the corresponding

user preference, which depends on the SOC and user plug-in

pattern. User1 usually plugs in the device at SOC = 40%,

and User2 usually plugs in the device at SOC = 20%.

As a test case, we use sha and qsort application from

the MiBench benchmark suit [11]. The sha is running and

the qsort arrives after 10s. In Figure 2 (a), the resource

management is customized for User1 - thus it recognizes with

a high probability that there will be a plug-in event soon.

Hence, it is permissible to consume more energy to satisfy

performance, which results in higher QoE for User1. The same

resource management action leads to lower QoE for User2, as

shown in Figure 2(a). At t = 10s, when the second application

arrives, the resource management, which is customized for

User1, causes a reduction in QoE for User2. This is due

to the fact that the behavior of User1 and User2 have been

historically different at that similar SOC. In Figure 2(b), when

SOC = 20%, User1 prefers energy saving because the SOC

is lower than the expected (SOC = 40%) thus resource

management adapts to satisfy user expectation. The reduction

at t = 10s shows arrival of a new application, which has

lower performance to conserve more energy. At t = 27s

Fig. 1: Probability distribution of plug-in event in different initial
SOC level for 10 different users.

Fig. 2: QoE for two different users with two different resource
management which are customized for each user.

the second application leaves the system, consequently, QoE

increases again. Figure 2 (c), (d) show QoE for User1 and

User2 at SOC = 40% and SOC = 20%, using customized

resource management for User2. They show QoE for User2 is

higher than User1 thanks to using a resource management that

is personalized for that user. User2 frequently plugs in their

phone at SOC = 20%, and expects higher performance than

User1 at this SOC.

B. Related Work

Several works on run-time resource management have been

proposed to optimize performance and energy for embedded

multi-core processors [12]. They use control-based model [13],

offline optimization techniques [14], online machine learning

[12] or a combination of these techniques [15]. However, these

approaches do not consider user experience as a factor in

resource management. Some works consider user experience

and quantify QoE to minimize battery life and improve QoS

for mobile users [9], [10], [16]. In [10], authors focus on

mobile device with low SOC and characterize the QoE by

capturing various users experience when the SOC is low.

The approach in [16] presents the concept of energy-efficient

QoS to optimize the energy under QoS constraints. In [9] an

approach for optimizing energy of applications running on

smartphone devices is presented that ensure a specified level of

user satisfaction. These approaches consider user satisfaction,

however, they use a general model for QoE and do not consider

44

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 07,2021 at 09:56:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Overview of the user-centric resource management framework

the user-specific data, history of the phone usage and charge

and discharging behavior. These approaches quantify the QoE

by averaging limited usage patterns of users and ignore the

individual behavior of each user. They do not customize

user-centric resource management to maximize the QoE. The

resource management that is presented in [1] propose a new

definition for QoE, however does not consider the plug-in

behavior and battery SOC, which play an important role in

changing QoE. To address the aforementioned limitations, we

propose a user-centric resource management approach that

considers battery SOC and user history for plug-in and plug-

out to maximize the QoE.

III. USER-CENTRIC RESOURCE MANAGEMENT

FRAMEWORK

In this section, we present our user-centric resource man-

agement framework, which considers user’s battery charging

patterns and SOC. Figure 3 shows the overview of the pro-

posed approach, which is split into three phases viz., i) off-

line training for SOC and user models, ii) on-line inferring

for resource allocation decisions based on the trained user

and SOC models, and iii) virtual user and SOC simulation

for evaluation. We first build analytical models for predicting

user’s charging pattern - to determine the probability of plug-

in/out, charging/discharging behavior of battery - to estimate

current SOC. We infer to these models at run-time to make

appropriate resource allocation decisions that effect perfor-

mance and energy consumption of the device. To emulate

a realistic battery plug-in/out and battery draining patterns,

we build a virtual user and SOC agents for test cases. Our

proposed approach, analytical modeling, resource allocation

controller and virtual simulation environments are described

in the following.

A. User and SOC Modeling

Our resource allocation decisions depend on current SOC

and user’s action i.e., battery plugged-in/out. This requires i)

prediction of user’s action, ii) estimation of the rate at which

the battery charges (upon the event that battery is actually

plugged-in), and iii) estimation of the rate at which the battery

discharges.

Data Collection: To predict the user plug-in pattern and

battery charging rates, we record smartphone usage data for

three different users. The data are collected over a period of

1 year for User1 and 6 months for User2 and User3 using the

Battery Log app [17]. The gathered data contains a timestamp,

SOC, battery temperature, voltage and the battery status such

as plugged, unplugged, charging, and full. This data is split

into a training and testing set, half of the collected data are

used to train the user model as described in the following, and

half of that is used to evaluate the experimental results.

User Model: User model is built to predict whether the

user will plug-in the battery to a source of charging in the

subsequent time stamp, given the current SOC. The user model

is trained offline based on collected data and is updated online

with new user data, for prediction accuracy. A fast and reliable

algorithm for building a probabilistic model based on a set of

data is Naive Bayes. By using Naive Bayes, the model can

be also build completely on-line, because of fast convergence

of this algorithm. We need to predict the probability of a

user plugging-in to a source at run-time, thus using a fast

algorithm such as Naive Bayes is important. The model is

used to first calculate the probability of a user plugging-

in to a source at run-time. Naive Bayes is a method for

probabilistic classification that calculates a set of probabilities

by considering the frequency of observing different values in a

given set of data [18]. Bayes theorem can expressed as follows:

P (A|B) =
P (B|A)× P (A)

P (B)
(1)

where P (A|B) is the probability of event A happening, when

event B is true (has happened). In the context of this work,

we predict the probability of plug-in for different SOCs, i.e.,

P (A) = P (Plug-in==true), P (B) = P (SOC==b) (2)

where b is the SOC level. We use the calculated probability

to generate a constrained random number, which predicts the

required binary outcome on whether the user may plug-in at

the next time step or not.

SOC Charging Model: Upon the event of a user-plug-in,

we use the charging model to estimate the current SOC. A

linear model based on regression analysis over the real user

data collected is used for representing the rate of charging.

The model is expressed as follows:

SOCt = γ × t+ SOC0 (3)

where SOC0 is the initial value of the SOC when the device

is plugged in, t is the time which is passed after plug-in (in

seconds), and γ is the regression coefficient which is set to

0.016 in our model.

SOC Discharging Model: When the device is not plugged-in,

we use the discharging model to estimate SOC. We monitor

the instantaneous power consumption of the device over a time

period to calculate the energy drained during this period.

Ec = Pt ×Δt, (4)

where Ec is the energy consumption, Pt is the power con-

sumption at the current time step and Δt is the time duration

of each time step. We calculate the current SOC of the battery

by considering previous SOC and the energy drained during

the current time interval, as follows:

SOCt = SOCt−1 − Ec × 100

ET
, (5)

45

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 07,2021 at 09:56:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: High level architecture of resource management framework.

where SOCt and SOCt−1 are SOC of the battery in current

and previous time steps, Ec is the consumed energy of the

current time step, and ET is total energy of the battery.

The battery simulated in our study has nominal capacity of

2000mAh and average voltage of 4V (i.e., ET = 28800J).

B. Resource management

Figure 4 shows the architecture of the resource manage-

ment framework, which integrates user and battery models,

current set of applications running, resource actuation knobs

and the Heterogeneous Multi-Processor (HMP) system. HMP

platforms have more controlling knobs than homogeneous

platforms, thus the presented controller is also applicable

on homogeneous systems. The controller is responsible for

making resource allocation decisions that maximize QoE. The

actuation settings are guided by the predicted user’s action

((P/UP )) and estimated SOC from the user and SOC models.

QoE Estimation: As proposed in [1], we quantify QoE as

a weighted function that combines energy and performance,

expressed as follows:

QoE = λ× PerfN + (1− λ)(1− eN ). (6)

where λ is a user specific weight that shows user’s preference

between high performance and energy saving, PerfN is the

average normalized performance for running applications, and

eN is normalized energy consumption of the system. This

model implicitly corresponds to a higher QoE with higher

performance and lower energy consumption. We calculate the

user’s preference on performance versus energy (λ) based on

the user and SOC models that are described above. While the

user model predicts the current status of the battery (plug-

in/out), the SOC (charging/discharging) model estimates the

current SOC. λ varies at run-time based on predicted SOC

and plug-in and plug-out probabilities, which were learned for

each individual user. When the user plugs in the device, λ = 1,

which corresponds to the highest weight for performance since

when the device is plugged in the user does not need energy

saving. When the device is not plugged in, the λ is calculated

using:

λ = α× SOC

100
(7)

where α is determined at run-time based on the prediction of

the plug-in event. This preference is used to determine the

settings of resource actuation knobs, in order to maximize the

QoE within the selected preference. We used Naive Bayes

classifier to calculate the probability of plug-in, in different

SOCs (described in Section III-A), and predict the plug-in

event for the next cycle for each individual user. When the user

model predicts a plug-in, the value of α increases which leads

to a higher λ. Higher λ shows higher preference of the user for

performance, rather than energy. In our framework, when there

is not any prediction for a plug-in event, α = 1. When the user

model predicts a plug-in for a user, α is experimentally set to

1.6 to reflect a higher performance priority.

Knob Settings: We assume an HMP as the baseline where

DVFS and task migration between different types of cores (big

- high performance/LITTLE - energy efficient) can be used

to scale up/down performance and energy consumption. The

voltage and frequency settings and choice of an appropriate

(set of) core(s) depends on the predicted user action and SOC,

measured SOC and power consumption, and applications’

requirements. The Controller unit allocates resources in order

to maximize QoE by mapping new applications to proper cores

and perform DVFS and task migration based on the calculated

λ at run-time. When a new application enters the system, it

is mapped on a LITTLE core, if the weight of performance is

less than the energy (i.e., λ < 0.5); otherwise it is mapped

on a big core. During the run-time, when (λ < 0.3), the

applications migrate from big cores to LITTLE cores to save

more energy (applications with lower requirements migrate

first), and when (0.3 < λ < 0.5) the resource management

changes the frequency by DVFS actuation. The frequency is

related to the λ and is calculated as follows:

Freq = λ× 1000 + 1000. (8)

The frequency step for DVFS actuation in our platform is

100 MHz, thus we round the value of Freq in Equation (8)

to its closest quantized level, then actuate the DVFS. When

(λ > 0.5), if there is any application on LITTLE cores which

does not satisfy the performance requirement, the application

migrates to the big core; otherwise the DVFS actuates and

the frequency which is related to the λ is set. The Controller
unit continuously monitors the power consumption at run-time

and if the power is more than the Thermal Design Threshold

(TDP), the frequency is reduced by 100 MHz in order to

prevent power violation.

Virtual User and SOC: For experimental evaluation, we

design a virtual user and SOC model which interact with the

resource management framework to emulate the behavior of

the user and battery. Figure 3 shows these components in high

level architecture of our framework. We created a virtual agent

to model the user plug-in behavior, based on the real data case

study of mobile users (explained in Section III-A). This agent

receives the current SOC of the battery and simulates plug-in

behavior of the user based on the collected statistical data of

the user. By analyzing the collected data, the probability of

plug-in of each user at each SOC is determined. Then, using

a roulette wheel associated with the calculated probability, a

random number determines whether the user plugs in at that

46

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 07,2021 at 09:56:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5: Comparison of QoE for two fixed objective resource man-
agement approaches which focus on energy and performance against
proposed framework.

instant or not. To model the battery, its charge level, and its

changes, we use the same models presented in Section III-A.

IV. EXPERIMENTAL EVALUATION

In this section, we describe the experimental setup, and

present the evaluation of our approach against state-of-the-art

resource management strategies.

A. Experimental setup

We evaluate our framework by running applications on

an Odroid XU3 board with a Samsung Exynos processor (4

big and 4 LITTLE cores) [19]. The LITTLE cores provide

energy efficiency whereas the big cores deliver high perfor-

mance. We measure instantaneous power consumption using

on-board power sensors and integrate it over time to calculate

the energy consumption. For performance measurement, we

annotate each application with the Application Heartbeats

API [20], to periodically log the performance in terms of

heartbeats/time. Our framework is implemented as a Linux

daemon on top of MARS framework [21]. The controller is

invoked periodically every (parametrizable) epoch, which is

set to 500ms in our evaluation. We use a set of applications

from real MiBench benchmark suite and create an unknown

and dynamic workload scenarios. These set of applications

were chosen to represent the behavior frequently encountered

in heterogeneous embedded systems. These contain three

instances of sha, two instances of qsort, one instance of

dijkstra-large, and patricia which enter and leave

the system in an unknown manner. The experiments start with

SOC = 100% and show at least four cycles of charging and

discharging of the battery.

B. Evaluation

We evaluate our proposed approach over 3 different baseline

case studies viz., i) comparison of our approach against non-

QoE aware resource management strategies, ii) comparison of

our approach against non-user-centric resource management

approach, and iii) evaluation of our approach for 3 different

users. We use QoE as the metric to evaluate the efficiency of

our approach, which is measured as described in Equation 6.

Figure 5 demonstrates the effect of using our user-centric re-

source management framework in comparison with two other

resource management schemes which focus only on either

energy or performance optimization. These two schemes are

identical to our proposed approach, except that their priority

Fig. 6: Comparison of the personalized battery-aware resource man-
agement with DyPO [14] technique.

TABLE I: Comparison of proposed solution with state-of-the-art

Technique Energy (J) Perf. (HB) Time QoE

DyPO [14] 0.5 13.1 1 0.65

User-aware 0.87 17.3 0.89 0.83

on performance and/or energy are fixed manually (λ set to 0

or 1). This limits them from satisfying the overall QoE model,

in addition to the lack of user action and SOC estimation. As

shown in Figure 5, the overall QoE in our proposed resource

management which is adaptable to user preference is higher

than two other schemes with fixed objectives. The other two

schemes are efficient only in satisfying either of the two

parameters among performance and energy.

Next, we compare our framework against another relevant

state-of-the-art resource management approach, namely DyPO

[14]. DyPO minimizes energy consumption under performance

constraints by finding the optimized configuration for each

application based on offline characterization. However, this

approach does not consider user specific and battery state

for resource management. To compare our approach against

DyPO, we simulated one user’s charging patterns and corre-

sponding battery status (as described in Section III-A). Figure

6 presents the measured QoE of the user using both DyPO

resource management approach and the proposed user-centric

approach. At the beginning, when the SOC of the battery

is high, DyPO has a low QoE. When SOC decrease during

the run-time, QoE for DyPO increases which shows DyPO

is a useful approach for saving energy in lower SOCs. Using

DyPO, in every cycle of charging and discharging the QoE

decrease and increase in a similar pattern. However, our

framework adapts to the changes in the SOC of the battery

and considers user plug-in behavior, which leads to relatively

more persistent and higher QoE. Although QoE decreases in

some points because of the variation of workload intensity, the

average QoE with our approach is 0.83, which is higher than

that of DyPO. Table I lists the average energy consumption

in each time step, average performance metric (Heartbeat) for

running applications, normalized execution time, and QoE for

each approach. Table I shows our approach maximizes the

QoE and provides a higher performance and lower execution

time. The DyPO approach, on the other hand, minimizes

energy by compromising on performance and QoE, which

leads to 22% lower QoE in comparison with our framework.

For evaluating the efficiency of per-user customization of

47

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 07,2021 at 09:56:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: Comparison of QoE for three different users. Resource
Management personalized for (a) user1, (b) user2 and (c) user3.

resource management, we experimented with 3 different users

with different performance and energy preferences. Our pro-

posed resource management framework adapts to the QoE

requirements of each user by customizing resource actuation

knobs accordingly. Figure 7 shows the measured QoE for

the three different users when running three versions of our

proposed resource management, each of them customized for

an individual user. The QoE remains higher than 0.8 for

every user, over a larger chunk of simulation time. In some

periods the QoE for one user is higher than the others. This

difference of QoE for each individual user is caused due to

the plug-in events which are predicted by our framework for

each user. The user-centric resource management predicts the

plug-in event for each user, and adjusts the resource man-

agement based on this prediction, which leads to an increase

in QoE for that user. These points which are highlighted in

Figure 7 show the efficiency and advantage of the proposed

personalized resource management. The prediction accuracy

of our framework is 83%, which is high enough to improve

the QoE for each user. In the case of a wrong prediction,

resource management increases the weight of performance on

the predicted plug-in event. However, the user does not expect

high performance at that time, thus the QoE decreases by 22%

in the worst case. Table II shows the average QoE of each user

during plug-in times when the resource management scheme

is personalized for the user. The highlighted cells show that

the highest QoE for each user is obtained when the resource

management is personalized for that particular user. These

highlight the advantage of customizing resource allocation per

each individual user in maximizing QoE, and the significance

of user action prediction and SOC estimation.

V. CONCLUSION

In this paper, we proposed a user-centric resource man-

agement framework for HMP architectures. The proposed

framework, learns the behavior of user and maximizes the QoE

for each individual user. The proposed framework dynamically

adjusts the resource management schemes based on the data

TABLE II: The average QoE of each user during plug-in time when
the resource management scheme was personalized for each user.

QoE User1-RM User2-RM User3-RM

User1 0.85 0.80 0.77

User2 0.8 0.86 0.77

User3 0.79 0.76 0.82

it collects regarding user plug-in behavior, battery charge

status, and workload variability at run-time. In particular, it

uses the history of each user to learn about their personal

habits and thus predict when a particular user may plug

in their device. This information is then used to improve

the balance between performance and energy consumption,

and thus optimize the QoE. Our evaluation results show our

proposed resource management improves the QoE for each

individual user compared with the state-of-the-art.

REFERENCES

[1] K. Yan et al., “Redefining QoS and customizing the power management
policy to satisfy individual mobile users,” in Proc. of MICRO, 2016.

[2] H. Falaki et al., “Diversity in Smartphone Usage,” in Proc. of MobiSys,
2010.

[3] A. Kanduri et al., “Approximation-aware coordinated
power/performance management for heterogeneous multi-cores,”
in Proc. of DAC, 2018.

[4] Q. Zhang et al., “A double deep Q-learning model for energy-efficient
edge scheduling,” Trans. on Services Computing, 2018.

[5] E. Shamsa et al., “Goal-Driven Autonomy for Efficient On-chip Re-
source Management: Transforming Objectives to Goals,” in Proc. of
DATE, 2019.

[6] X. Li et al., “SmartCap: user experience-oriented power adaptation for
smartphone’s application processor,” in Proc. of DATE, 2013.

[7] D. Shingari et al., “DORA: optimizing smartphone energy efficiency
and web browser performance under interference,” in Proc. of ISPASS,
2018.

[8] W. Lee et al., “BUQS: battery-and user-aware QoS scaling for interactive
mobile devices,” in Proc. of ASPDAC, 2018.

[9] B. Gaudette et al., “Improving smartphone user experience by balancing
performance and energy with probabilistic QoS guarantee,” in HPCA,
2016, pp. 52–63.

[10] K. Yan et al., “Characterizing, modeling, and improving the QoE of
mobile devices with low battery level,” in Proc. of MICRO, 2015.

[11] M. R. Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite,” in Workload Characterization, 2001, pp.
3–14.

[12] U. Gupta et al., “STAFF: online learning with stabilized adaptive
forgetting factor and feature selection algorithm,” in proc. of DAC, 2018.

[13] J. Chen et al., “Modeling program resource demand using inherent
program characteristics,” in Proc. of the ACM SIGMETRICS, 2011.

[14] U. Gupta et al., “DyPO: Dynamic pareto-optimal configuration selection
for heterogeneous MpSoCs,” TECS, p. 123, 2017.

[15] N. Mishra et al., “CALOREE: Learning control for predictable latency
and low energy,” Proc. of ACM SIGPLAN Notices, 2018.

[16] Y. Zhu et al., “Event-based scheduling for energy-efficient qos (eqos)
in mobile web applications,” in HPCA, 2015, pp. 137–149.

[17] T.-R. Hwang, “Battery log, version 2.0.3,” https://play.google.com, 2013.
[18] T. R. Patil et al., “Performance analysis of Naive Bayes and J48

classification algorithm for data classification,” IJCSA, pp. 256–261,
2013.

[19] Hardkernel. ODROID-XU. [Online]. Available:
http://www.hardkernel.com/main/main.php

[20] H. Hoffmann et al., “Application heartbeats: a generic interface for
specifying program performance and goals in autonomous computing
environments,” in Proc. of ICAC, 2010.

[21] T. Muck et al., “Adaptive-Reflective Middleware for Power and Energy
Management in Many-Core Heterogeneous Systems.” in Many Core
Computing: Hardware and Software, IET, 2019.

48

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 07,2021 at 09:56:03 UTC from IEEE Xplore.  Restrictions apply. 


