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A Semiparallel Full-Adder in IMPLY Logic
Shokat Ganjeheizadeh Rohani, Nima Taherinejad , and David Radakovits

Abstract— Passive implementation of memristors has led to several
innovative works in the field of electronics. Despite being primarily
a candidate for memory applications, memristors have proven to be
beneficial in several other circuits and applications as well. One of the
use cases is the implementation of digital circuits such as adders. Among
several logic implementations using memristors, IMPLY logic is one of
the promising candidates. In this brief, we present a new architecture
for a digital full-adder, which is up to 41% faster than existing IMPLY-
based serial designs while requiring up to 78% less area (memristors)
compared to the existing parallel design.

Index Terms— full-adder, IMPLY, in-memory computation,
material implication, memristive, memristor, ReRAM, semi-
parallel, stateful logic.

I. INTRODUCTION

A natural application of memristors is their use in memory systems
[1]–[5]. Application of memristors has been explored in several other
fields too. Learning [6]–[8], digital circuits [8]–[10], quantum com-
puting [8], and cancer detection [11] are some of those applications.
In this brief, we focus on the use of memristors in digital circuits.
In particular, full-adder is one of the fundamental blocks of many
computing systems. There have been several efforts made in devising
memristor-based logics [12]–[20]. Among them, Material Implication
(IMPLY) [9], [21], [22] is one of the well-known logics which is
compatible with crossbar structure [9], [21]. An important feature of
IMPLY is that it allows presenting the logical values in the memory
domain as well as performing logic operations inside memory within
the crossbar array structure, thus colocating storage and processing.
We note that IMPLY is not the only logic with such properties and
there are other logics that have similar features. However, in the rest
of this brief, we use IMPLY logic for our design and simulations.

In IMPLY [9], [21], [22], the resistance of the memristor represents
the logical state, where Rof f or high-resistance state (HRS) is
considered as logic “0” and Ron or low-resistance state (LRS) as
logic “1.” In a → b, IMPLY yields for all combinations of the two
variables, a and b, the value of “1”, except for a = “1” and b = “0”.
The result will be saved in b, i.e., b loses its initial value. IMPLY
logic can be implemented with memristors as it is shown in Fig. 1.
In Fig. 1, the inputs are the initial states of memristors a and b.
These two are connected to a resistor, RG . The output is the final
state of memristor b after applying two fixed voltages, VSET and
VCOND, to memristors b and a, respectively. Basic conditions for
building IMPLY gates are as follows [22]: Ron << RG << Rof f ,
VCOND < VC < VSET, and VSET − VCOND < VC , where VC is
the critical voltage (i.e., memristor threshold voltage), under which
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Fig. 1. (a) Circuit implementation of IMPLY logic gate. (b) Corresponding
switch representation [9].

Fig. 2. Memristor connection in an 8-bit serial topology.

the memristor holds its initial state. This determines the voltages
that should be applied to memristor. For further details on IMPLY
operation, we refer the reader to [9], [21], and [22].

In the literature, two main approaches have been used for imple-
menting IMPLY-based full-adders: serial (shown in Fig. 2) and
parallel (shown in Fig. 3). In these figures, a and b represent the
input, c the carry, and wi the work memristors. In serial topology,
Vm corresponds to the applied voltage for each individual memristor,
whereas in parallel topology, where each section corresponds to a
different bit, in Vn,m , n represents the bit index and m corresponds
to the applied voltage for each individual memristor within the section
for the nth bit.

The serial approach is the most common topology based on cross-
bar structure, in which all of the memristors including work, input and
output stand in the same row, all connected to ground via a resistor
(Fig. 2). In this approach, only one operation (IMPLY or FALSE)
can be performed at a time. Consequently, this increases the total
operation time. Many research works [21]–[25] use this structure.

The other approach, parallel topology [22], uses parallelism for
reducing the operation time at the cost of increasing the total number
of memristors. In this design, each bit stands in a different row with
its related work memristors. The advantage of this model is that all
independent operations can be executed simultaneously. However,
there are many operations that are dependent, e.g., each bit needs
to wait for the previous bit to provide its carry-out as the carry-in of
the next bit. Moreover, each row works in serial, i.e., parallelism is
possible only between independent operations of different bits, which
do not require input from the previous bit. This restriction is one
of the issues that we try to address differently in our semiparallel
approach. Our contributions in this work can be summarized into
a new topology (semiparallel), its respective new algorithm and
equations, as well as six new equivalencies in IMPLY logic.
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TABLE I

EXECUTION STEPS OF ADDITION IN THE PROPOSED SEMIPARALLEL TOPOLOGY. THE STATE OF SWITCHES IN EACH STEP IS DENOTED BY A “0” FOR AN
OPEN SWITCH AND “1” FOR A CLOSED (SHORT CIRCUIT) SWITCH

Fig. 3. Memristor connection in an 8-bit example using parallel topology.
Each row calculates 1 bit.

II. PROPOSED FULL-ADDER DESIGN

Our main objectives for the new design are improvements in two
aspects: reducing operation time and implementation area. However,
the design process often comes down to a tradeoff between the two.
For example, one way of reducing the delay time of a memristive
IMPLY-based full-adder is increasing the number of memristors
(enabling more parallelism). The latter is in conflict with the area
reduction goal. Hence, given the disadvantages of the serial and par-
allel approaches, we were inspired to propose a new topology, which
we call semiparallel. The idea of this design is to take advantage of
the parallelization within 1 bit. This means that we divided operations
needed for 1 bit of calculation (e.g., a0 + b0 or generally for the i th
bit, ai + bi ), into two independent sections, which can work parallel
to each other as long as possible.

A. Sum and Carry-Out Logical Statements

In our algorithm, Sum (S) and Carry-out (Cout) are calculated
using

S = [(a → b) → ((a → b) → c)] → ((a ⊕ b) → c) (1)

Cout = (a → b) → ((a → b) → c) (2)

where a and b are the inputs and c is the Carry-in. To obtain
them, we performed our heuristic logic minimization natively in
IMPLY logic using the equivalencies in [25] and the following new
equivalencies:

1. a → a ≡ a and a → a ≡ a

2. (a → c) → b ≡ c → (a → b)

3. b → (a → c) ≡ (b → a) → c

(Similar to De Morgan’s law in Boolean logic)

4. (a → b) → (a → b) ≡ a → b

5. (a → b) → (a → b) ≡ a → b

6. (a → b) → (Cab) ≡ (a → b) → (a → b).

B. Semiparallel Topology

The proposed topology is illustrated in Fig. 4 for an 8-bit addition,
where w1 and w2 are the work memristors and c is the carry bit.
First, all input memristors will be set to their initial values, then the
first bit is calculated. Within each bit, independent steps (such as
FALSE operation of the two work memristors, w1 and w2) can be
parallelized. In this model, each section can work autonomously as
long as possible. Then, they can be connected through a switch (S2) to
perform operations which involve memristors from both sections. The
efficiency of this topology increases when the executed algorithm for
1 bit has less dependence between different steps. The exact execution
steps of the algorithm are detailed in Table I. The proposed algorithm
requires 17 steps for calculating Sum and Carry-out. We note that
in this structure, not every bit needs to be fully parallelized. That
is, as shown in Fig. 4, all a memristors can be on the same line
(Section I) in series, and all b memristors and c on the same line
(Section II) in series. That makes the proposed structure crossbar
compatible, where each section constitutes a column (or a row), and
for each step, respective columns (or rows) are connected to the
RG or each other via external CMOS switches (S1, S2, and S3).
The three drivers of each section (VSET, VCOND, and VRESET) are
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Fig. 4. Multi-bit semiparallel. Parallelization within 1 bit and calculating
each bit after the other.

TABLE II

PARAMETER VALUES USED IN VTEAM

externally multiplexed between memristors of that section to apply
appropriate voltages to the intended memristor.

C. Evaluation

1) Simulations Setup: To validate the proposed algorithm, we sim-
ulated it in LTSpice using the Voltage ThrEshold Adaptive Memris-
tor (VTEAM) model [26]. The parameters used for the VTEAM are
given in Table II and the SPICE implementation of the VTEAM
can be found in [27]. Parameters for the IMPLY logic were set to
{VSET, VCOND, VRESET, RG , tpulse} = {1V, 900 mV, −5 V, 40 k�,
50 μs}. In each step, VCOND is applied to the antecedent memristor
and VSET to the consequent memristor. No voltage is applied to
memristors which are not involved in the operation of the respective
step, i.e., they are disconnected from the source.

2) Results: We tested all the cases for a full-adder, all of which
led to correct calculations. For example, in Fig. 5 we inserted
the simulation of a 1-bit addition using the proposed semiparallel
algorithm which shows the changes at each step. Input values in this
example are a = 1, b = 0, Carry-in = c = 1, which results in Sum
= a = 0 and Carry-out = c = 1. Fig. 6 shows the simulation of a 4-bit
addition. Using the built-in power integration function of LTSpice,
the energy consumption of the proposed adder was calculated to be
9.98 nJ per bit.

We note that as shown in Figs. 5 and 6, state variables sometimes
undergo drift or do not reach 100% of their state (be it “0” or “1”).
These two correlated cases occur mainly due to the fact that mem-
ristors experience small state changes even if the voltage applied to
them is not larger than their threshold voltage. Moreover, crossing
the threshold by itself does not guarantee a full state change. The
difference between the applied voltage and the threshold as well
as the duration of the applied voltage affect the extent of a state
change. This phenomenon is observed, tested using four models, and
discussed in [28] as well.

3) Crossbar Simulation: Although 1R crossbars are the most
desired structures, currently they face many challenges which could
be alleviated by using 1T1R crossbar architecture [29]–[31]. Given
the advantages of 1T1R [29]–[31], this is the structure that we also
chose for the proposed adder topology. Therefore, we simulated the
addition of two 4-bit numbers with our proposed adder design in

Fig. 5. 1-bit full addition using the semiparallel algorithm, where each 50μs
represents one step in the algorithm. In this example, input a = 1, b = 0,
c = 1 results in c = 1, S = a = 0, where 1 is LRS and 0 is HRS..

Fig. 6. 4-bit addition using the semiparallel algorithm, where each 850 μs
represents calculation of 1 bit. In this example, input a4−1 = 1101, b4−1 =
1010, Carry-in = c = 1 results in Carry-out = c = 1, s = a4−1 = 1000.

a 16×16 1T1R crossbar. In this particular simulation, based on the
work in [13], [33], and [34], we considered the crossbar connections
between individual memristor nodes to have an ohmic impedance
of 10�. This ohmic impedance represents the resistance of the nano-
wires in the crossbar. The results of this simulation (i.e., the state
of the involved memristors after the calculation is completed) have
shown a difference of only 0.52% on average and less than 2% in all
cases compared to the stand-alone simulation. In other words, there
is only a negligible difference between crossbar simulation and the
one using only the 11 necessary memristors for the addition of two
4-bit numbers.

4) Sensitivity Analysis: In light of unideal behaviors such as those
mentioned above, we ran a sensitivity analysis on our adder regarding
changes in the threshold voltage of the memristor. Our simulation
results show that the proposed adder functions correctly for positive
and negative threshold ranges of [595, 775] mV and [−95, 0] mV,
respectively.

5) Limitations: Our current simulation is at the behavioral level.
Certain practical considerations such as parasitic models are not
fully considered since we have not targeted a specific fabrication
technology nor have access to a more comprehensive realistic model
which includes those factors. We acknowledge that we need to
consider such issues and many more [28] in order to ensure the full
practicality of the design. However, due to the lack of access to better
simulation tools or fabrication, following many other state-of-the-art
works which are validated similarly, these aspects are left out and
are considered as future works.
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TABLE III

SUMMARY OF COMPARISONS BETWEEN THE PROPOSED ALGORITHM AND OTHER IMPLY-BASED WORKS FOR n = 32 (A 32-Bit FULL-ADDER)

III. COMPARISON

To have a better understanding of the advantages and disadvantages
of the proposed algorithm, we compared our design with the best
existing works in the literature. In Table III, we have summarized
the design characteristics for the proposed design and the compet-
ing designs. Percentages of improvement are calculated based on
(Pbase − Pbetter/Pbase) × 100, where Pbetter is the better design and
Pbase is the base for comparison.

A. Speed

The proposed semiparallel design needs only 544 steps to finish
a 32-bit addition, which is 19% better than the iterative design [33],
23% better than our previously published serial design [25], 26%
faster than [24], and 41% better than Kvatinsky’s serial design [22].
However, the 544 steps are 67% slower than fully parallel designs
of Kvatinsky [22]. For n → ∞, this number would approach 70%.
This loss of speed comes with the advantage of a considerable (78%)
improvement in the required number of memristors, which we will
discuss in the following.

B. Area

Chip area directly translates to the production cost and, therefore,
plays an important role in determining the merit of a design and
its potential for widespread use and implementation. Hence, with
extra attention to this factor, we have managed to propose the most
compact design thus far. For example, in the case of a 32-bit full-
adder, our design—similar to our previously published serial design
[25]—only needs 67 memristors (2n+3), whereas other serial designs
[22], [24] need 99 memristors (3n + 3). By increasing the number
of bits, this improvement approaches 33%. Regarding the number of
memristors, the iterative design in [33], even though based on its
name it may sound as if it were a serial design, is more similar to
parallel designs, since it needs 256 memristors. This design requires
75% more memristors than our proposed design. Compared to parallel
designs, 67 memristors needed in our design is significantly (78%)
lower than the 288 memristors (9n) needed in Kvatinsky’s fully
parallel design [22], which justifies the smaller (70%) degradation
in the number of steps.

C. Complexity

The additional complexity of this structure compared to a serial
structure is only the three CMOS switches which connect the two
sections to the IMPLY load resistors and to each other. This is a
minimal overhead for the traditional serial structure. Compared to
the parallel topology, which requires two switches for each row of
memristors, the proposed structure requires a significantly smaller

number of switches. In particular, consider that the number of
switches in the parallel structure increases in proportion to the width
of the adder (2n in an n-bit adder), whereas in the proposed structure
this number is a constant (only three switches for any n-bit adder).
Furthermore, the proposed adder algorithm runs in serial steps one bit
after the other. Hence, the state machine and the control necessary
to run this algorithm are similar to the serial topology, with three
additional outputs for controlling the switches in each state. On the
other hand, a smaller number of steps denotes a smaller number of
states and a state machine simpler than the traditional serial topology.
We expect the required control circuit to be much less complex than
the parallel topology.

D. Limitations

We notice that our comparisons have certain restrictions. For exam-
ple, the actual computation time and energy consumption heavily
depend on the type of used memristors and in our case the used model
and its parameters. With regard to the actual computation time, it is
reasonable to assume that in the exact same technology, an algorithm
with a smaller number of steps is going to require a shorter absolute
calculation time as well. Although the number of memristors is a
good indicator for the required area, additional factors such as the
area used by the control circuit and switches need to be considered
for a comprehensive comparison. The details of the memristive
technology and the peripheral circuits are even more important for a
fair comparison of energy consumption. To achieve a comprehensive
and fully fair comparison, fabrication or a postlayout simulation—
in the same technology—is required. None of the references have
fabricated or reported postlayout simulation results to form the base
of such a comparison. This is not possible for us either.

IV. CONCLUSION

In this brief, we proposed a new full-adder structure that differs
from both serial and parallel topologies, which are common in the
literature. We call this topology semiparallel. Our adder managed to
surpass serial designs by up to 78% in area and up to 41% in speed.
Although our design is 70% slower than its parallel counterpart,
it achieves 78% of smaller area advantage. Therefore, in a generic
condition, where area and speed are of equal importance, we contend
that this design is better than the existing fully parallel design.
Otherwise, the design situation at hand needs to be considered to
evaluate whether the proposed algorithm is more suitable or not.
However, it is fair to say that this algorithm provides a good
compromise between the speed and area (compared to each of the
serial or parallel designs).

It is worth noting that till date IMPLY-based adders are designed
heuristically. Even though there is no formal guarantee regarding
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the optimum number of steps or memristors, the state of the art
seems very close to a saturated state which could be (close to) its
optimum. This observation is backed by the trend of improvements,
e.g., in serial adders. The algorithm proposed in [21] required a total
of 89 steps and four work memristors for a single bit addition. After
a relatively big jump in 2014 to 29n steps and three work memristors
for an n-bit addition [22], next improvements have been minor. This
presents the challenging nature of the task at hand. The number of
steps was reduced to 23n without changing the number of memristors
in 2014 [24] and to 22n steps with the reduction of memristors from
3n+3 to 2n+3 in 2017 [25]. In this relatively optimum and saturated
state, every reduction is of considerable value. Hence, we contend
that our proposed algorithm which requires 17n steps and 2n + 3
memristors for an addition has a noteworthy contribution.
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