
Received June 28, 2020, accepted July 8, 2020, date of publication July 29, 2020, date of current version August 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012824

RoSA: A Framework for Modeling Self-Awareness
in Cyber-Physical Systems
MAXIMILIAN GÖTZINGER 1,2, (Member, IEEE), DÁVID JUHÁSZ 2,5,
NIMA TAHERINEJAD 2, (Member, IEEE), EDWIN WILLEGGER2,
BENEDIKT TUTZER2, PASI LILJEBERG 1, (Member, IEEE),
AXEL JANTSCH 2, (Senior Member, IEEE), AND
AMIR M. RAHMANI3,4, (Senior Member, IEEE)
1Department of Future Technologies, University of Turku, 20014 Turku, Finland
2Institute of Computer Technology, TU Wien, 1040 Vienna, Austria
3Department of Computer Science, University of California at Irvine, Irvine, CA 92697, USA
4School of Nursing, University of California at Irvine, Irvine, CA 92697, USA
5Imsys AB, 194 61 Stockholm, Sweden

Corresponding authors: Maximilian Götzinger (maxgot@utu.fi) and Dávid Juhász (david.juhasz@tuwien.ac.at)

This work was supported in part by Federal Ministry Republic of Austria for Climate Action, Environment, Energy, Mobility, Innovation
and Technology (BMVIT)/Austrian Research Promotion Agency (FFG) under the program Production of the Future in the project SAVE
under Grant FFG 864883; in part by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under
Grant 674875 (oCPS Marie Curie Network); and in part by the Tekniikan Edistämissäätiö (Finnish Foundation for Technology Promotion).

ABSTRACT The role of smart and autonomous systems is becoming vital in many areas of industry and
society. Expectations from such systems continuously rise and become more ambitious: long lifetime, high
reliability, high performance, energy efficiency, and adaptability, particularly in the presence of changing
environments. Computational self-awareness promises a comprehensive assessment of the system state
for sensible and well-informed actions and resource management. Computational self-awareness concepts
can be used in many applications such as automated manufacturing plants, telecommunication systems,
autonomous driving, traffic control, smart grids, and wearable health monitoring systems. Developing
self-aware systems from scratch for each application is the most common practice currently, but this is
highly redundant, inefficient, and uneconomic. Hence, we propose a framework that supports modeling
and evaluation of various self-aware concepts in hierarchical agent systems, where agents are made up of
self-aware functionalities. This paper presents the Research on Self-Awareness (RoSA) framework and its
design principles. In addition, self-aware functionalities abstraction, data reliability, and confidence, which
are currently provided by RoSA, are described. Potential use cases of RoSA are discussed. Capabilities of the
proposed framework are showcased by case studies from the fields of healthcare and industrial monitoring.
We believe that RoSA is capable of serving as a common framework for self-awaremodeling and applications
and thus helps researchers and engineers in exploring the vast design space of hierarchical agent-based
systems with computational self-awareness.

INDEX TERMS Computational self-awareness, framework, agent-based, hierarchical, modeling, develop-
ment, monitoring, observe-decide-act.

I. INTRODUCTION
The number of Cyber-Physical Systems (CPSs) with embed-
ded sensors and actuators is growing exponentially [1], [2].
These systems enable a wide range of applications like
automated manufacturing plants [3], telecommunication sys-
tems [4], [5], autonomous driving [6], traffic control [7],
smart grids [8], and mobile health monitoring systems [9] —
just to name a few examples. Nomatter the actual application,

The associate editor coordinating the review of this manuscript and

approving it for publication was Mark Kok Yew Ng .

CPSs connect their physical environment (the real world)
with the digital (i.e., cyber) space under ever-increasing
expectations and requirements [10]. Some system properties
that are needed for meeting application requirements are
adaptivity, autonomy, reliability, robustness, long lifetime,
high performance, and energy efficiency. A controlled bal-
ance among those sometimes contradictory properties is a
must as well [11].

Because of these requirements, a complex interaction
between a CPS and its environment is necessary. The system
needs to know how its environment behaves and how its

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 141373

https://orcid.org/0000-0002-1112-141X
https://orcid.org/0000-0003-1166-1130
https://orcid.org/0000-0002-1295-0332
https://orcid.org/0000-0002-9392-3589
https://orcid.org/0000-0003-2251-0004
https://orcid.org/0000-0003-1465-0592


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

own actions may affect the environment. Besides, a CPS may
have limited resources and need to consider system properties
like the growing process variability, thermal limitations, and
wear-out effects of System on Chip (SoC) solutions. These
could lead to an unbalanced lifetime, overheating, hotspots,
rapid aging, and under-utilization [12]–[14], which requires
sophisticated resource management. Thus, a comprehensive
assessment of the system’s state and that of its environment is
needed and allows prediction of future events, better planning
of actions, and hence optimized operation [15].

Computational Self-Awareness (CSA) has been studied in
a wide range of applications [16]–[18], and proved to be
a key enabler of efficient resource management in differ-
ent domains (e.g., sensor networks [19] and health moni-
toring systems [20]). It has also been proposed to tackle
the challenges of comprehensive assessment in different
CPSs [18], [21]–[24]. However, the community research-
ing on self-awareness is fractioned, and research proceeds
rather slow. To the best of our knowledge, so far, there is
no satisfactory common tool to speed up research on self-
awareness. We propose a software framework, Research on
Self-Awareness (RoSA),1 for modeling self-awareness con-
cepts and applications. RoSA is based on a hierarchical
agent-based model and provides facilities to implement,
adapt, customize, and evaluate self-aware applications. The
framework itself is a three-fold software engineering exem-
plar [25]: it can be used in the engineering process to
model applications as well as it serves as a testbed and
library (i.e. infrastructure for conducting research and a set of
reusable models or code, respectively). We hope that RoSA
can serve as a common framework for the community to
explore uncharted aspects of self-awareness and speed up
development in the field.

This paper provides an overview of the framework, how it
works and how it can be used. The applicability and flexibility
of RoSA are demonstrated by two case studies from the fields
of human health monitoring [26]–[28] and industrial machine
monitoring [29]–[31]. The main contributions of the paper
are:

1) we propose a framework, RoSA, which facilitates the
modeling and evaluation of self-awareness concepts by
means of modeling self-aware applications as hierar-
chical agent systems and modeling agents based on
self-aware functionalities;

2) we provide an initial set of self-aware functionalities,
namely abstraction, data reliability, and confidence,
implemented in RoSA; and

3) we describe use cases for RoSA-based modeling, whose
utility has been proven by our case studies.

The rest of the paper is organized as follows. Section II
highlights the motivation and research challenges of this
study. Section III then summarizes the state of the art in the

1Open-source implementation is available at https://
phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.
git.

field of CSA with interest in modeling and implementation
frameworks. Section IV introduces terminology as well as the
architecture and implementation of RoSA. Possible use cases
of the framework are discussed in SectionV. Self-aware func-
tionalities that are currently available in RoSA are described
in Section VI, whereas Section VII presents case studies,
which use those functionalities and general RoSA facilities.
Section VIII discusses which lessons have been learned while
developing this framework, and finally, Section IX concludes
the paper. We include a list of abbreviations at the end of the
paper for the reader’s reference.

II. MOTIVATION AND RESEARCH CHALLENGES
CSA is a hot topic, and some approaches that make CPSs
intelligent exist [32], [33]. Still, the field is widely unex-
plored, and many aspects of self-awareness are yet to be
researched.

While studying open questions of self-awareness (case
studies in Section VII), we made an effort to implement
experiments in a sustainable modular fashion. It was possible
to separate a runtime system from application code and iden-
tify reusable components by systematizing our experimen-
tal codebases. A retrospective realization showed that much
work could have been saved if it were for a framework that
provided the application-agnostic parts of our custom code.

We also realized that lacking a reusable framework is not a
specific issue for us but must be a general one. Despite being a
hot topic, techniques and methods around self-awareness are
developed at a moderate pace and lack convergence. A major
obstacle that is to be overcome is the high cost (mostly devel-
opment time) of implementing self-aware systems. Lacking a
common frameworkmakes each system to be developed from
scratch. This results in a considerable amount of work being
done redundantly, inefficiently, and uneconomically. Using a
common framework would enable cooperation and synergy
among researchers and practitioners from a diverse spectrum
of expertise.

So we set off to make a framework based on our experience
and considering the following goals:

• use a compositional application model,
• provide reusable features and facilitate customization,
• support both simulation and deployment of applications,
• have a low-footprint realization to enable the framework
in resource-constrained Embedded Systems (ESs),

• make a future-proof and sustainable framework (e.g.,
standard and stable technology, platform independence,
low overhead, open architecture).

Selecting a proper architecture and implementation fitting
our goals was a fundamental question. We concluded with a
hierarchical agent-based architecture, whose details are dis-
cussed in Section IV-B. As none of the available agent-based
frameworks can fully cover our goals (detailed evaluation in
Section III-F), we implemented RoSA as a new framework.

Identifying and implementing self-aware functionalities
so that they can be reused in different applications is a

141374 VOLUME 8, 2020

https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git
https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git
https://phabricator.ict.tuwien.ac.at/source/SoC_Rosa_repo.git


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

storehouse of challenges. We spent the most time with func-
tionalities abstraction, data reliability, and confidence, whose
reusable implementations are featured in RoSA.

III. BACKGROUND AND RELATED WORK
Our work is motivated by the ever-growing importance and
relevance of self-awareness in CPSs and SoCs. In Section III-
A, we give a short inside of Autonomic Computing (AC),
while we throw a bridge to Self-Awareness in Section III-B.
Since we propose a modeling framework for self-aware sys-
tems to facilitate collaboration in the field and go beyond
the state of the art, we discuss existing self-aware architec-
tures in Section III-C and review frameworks implement-
ing self-aware systems in Section III-D. For the technical
background of our proposed implementation, decentralized
architectures are reviewed in Section III-E and available
implementations of our choice of architecture, agent-based
frameworks, in Section III-F.

A. AUTONOMIC COMPUTING
Smart systems require high degrees of automation and auton-
omy [34]. The word autonomy originates from ancient
Greece and means to be self-governing, in other words,
to have own laws [35]. In the context of computer sys-
tems, the concept of autonomy came up in the 1990s and
was inspired by biological systems [36]. Both academia and
industry started some initiatives at that time [35].

As often, very early attempts were made in the mil-
itary field. Defense Advanced Research Projects Agency
(DARPA) had a project in which they developed a commu-
nication and location device for soldiers [37], [38]. Soldiers
could give information about the situation of themselves
and their environment. Together with locating and sensing
abilities of the device, relevant details on the battlefield were
spread between the soldiers.

Besides, in the 1990s, the National Aeronautics and Space
Administration (NASA) started projects such as Mars Path
Finder and Deep Space 1. The goal of these projects was
that space crafts should become more autonomous to operate,
navigate, and manage deep-space probes with less interven-
tion of humans [39]. The fact of becoming more autonomous
was important because remote control of these space crafts is
associated with a clearly noticeable delay and therefore was
highly impractical.

The complexity and dynamic changing environments call
for autonomic systems [35]. In 2001, the International Busi-
ness Machines Corporation (IBM) declared that the com-
plexity of Information Technology (IT) systems would be
one of the biggest challenges for the progress of the indus-
try in the coming decades [40]. To make computer systems
autonomous and having less need for human interventions,
IBM started the AC initiative and introduced five levels
of maturity: basic, managed, predictive, adaptive, and auto-
nomic [41]–[44]. The lowest level (basic) describes a system
that is managed by highly skilled staff which monitor these
systems and manually modify them based on the gathered

information [37]. In contrast, the highest level describes
fully autonomic systems (or applications) that totally manage
themselves in order to fulfill high-level goals which could
be given by humans [36]. In other words, an AC system
manages itself according to high-level objectives given by
humans [45].

Furthermore, IBM introduced in [42] the four self-* prop-
erties of AC (often referred to as ‘‘self-chop’’ [10], [37]):

• self-configuration (autonomous configuration, such as
adjusting parameters or changing software, in order to
fulfill high-level goals),

• self-healing (autonomous detection and diagnostic
for discovering problems and trying to fix them
autonomously),

• self-optimization (autonomous resource usage opti-
mization), and

• self-protection (autonomous protection against mali-
cious attacks and unintentional misapplication by the
system’s user).

These self-* properties (in details described in [44], [46])
are the most cited ones in the AC domain, but the number
of them has continuously grown; for the most prominent
examples, we refer to [35], [36].

B. SELF-AWARENESS
Self-awareness, which is one of the self-* properties, was pro-
posed originally in the IBM initiative on autonomic comput-
ing [44], [47]. Computational reflection and self-awareness
are very close to each other. Computational Reflection is the
ability of a system to reason about its capabilities, limitations
and resources [45]. A self-aware system observes itself as
well as its environment and changes its behaviour accord-
ing to the observations it has made. Thus, self-awareness
could also be called computational reflection [48], [49].
A self-aware computer system needs sensors to sense the
internal as well as the external environment and actuators
to self-adapt to the changing environment [36]. In an effort
to improve flexibility and adaptivity of systems, the self-*
properties are organized into a hierarchy with self-awareness
and context-awareness at the base (Figure 1). In other
words, a system has to be self-aware to be self-adaptive
(or autonomous). A correlation between the usage of self-*
properties and the quality of complex software systems has
been shown in [50].

FIGURE 1. Pyramid of self-* properties.

VOLUME 8, 2020 141375



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

Self-awareness has recently moved up in prominence. Ini-
tially, it was at the bottom of the self-* pyramid (Figure 1)
as a supporting feature for more advanced adaptive behavior.
Recently, self-awareness is used quite often to encompass
all relevant self-* properties, including self-adaptiveness. The
pyramid has been turned upside down because of the realiza-
tion: self-awareness is not just a collection of state variables.
It must include the goals of the system and properly reflect
the effects of actions on itself and the environment. However,
in contrast to other self-* solutions or AC, a fully self-aware
system operates not only reactively but proactively. This
means that such a system needs to be able to learn, make
conclusions, and act accordingly [51].

For example, in the recent past, self-awareness showed
to be a key enabler to tackle many challenges SoCs face
such as growing process variability, thermal limitations,
and wear-out effects [17], [18], [21]–[24]. CSA has been
applied to both software [44] and hardware [52]. Fol-
lowing applications have benefited from CSA concepts
(some of them under other terms such as adaptivity,
autonomy, and goal-oriented systems): mobile applica-
tions [53], object tracking with smart cameras [24], [54],
artificial intelligence [55], cloud computing [56], net-
works [57], operating systems [58], web [59], adaptive
and dynamic compilation environment [60], Multi-Processor
System-on-Chip (MPSoC) resource management [61], [62],
(cyber-physical) SoC [52], mobile robots [63], industrial sys-
tems [64], [65], health monitoring [22] as well as single and
multi-user active music environments [66].

The different aspects of self-awareness — like self-
monitoring, situation-awareness, and attention— have been
shown to be essential for efficient embedded CPSs [15], [52],
[67]–[71]. Self-monitoring is the activity of sampling system
properties (e.g., chip temperature [71]) as well as transform-
ing and filtering sampled data in a system-specific way (see
the self-aware functionality abstraction in Section VI-A).
Situation-awareness assesses the observations and gives sig-
nificance to data. On the other side, attention balances the
competing tasks of data collection, processing, and responses
under tight resource constraints by dynamically prioritizing
goals and tasks. The overall system performance is moni-
tored in a dynamically changing environment by means of
self-awareness.

It has already been shown that self-awareness can help
solve many problems of CPSs and SoCs. Furthermore, dif-
ferent aspects of self-awareness are used to make CPSs
smarter [32], [33], [72]. However, the development of
self-aware systems and related methods is still a diffi-
cult and tedious process. Moreover, efforts are fragmented
among different communities because of the lack of a com-
mon framework to explore self-awareness and its properties.
We propose a framework, RoSA, to overcome that obstacle.
RoSA is based on principles and methods that have been pub-
lished in literature but have not been combined before. The
next few paragraphs overview various works that are related
to RoSA.

C. REFERENCE ARCHITECTURES FOR SELF-AWARENESS
There exist several reference architectures which concern
systems related to CSA [51]. One of them is the MAPE-K
loop (an autonomic control loop coming from the AC
field [42], [44])), which stands for Monitor, Analyze, Plan,
Execute, and Knowledge. Information is collected from sen-
sors in the monitor phase, and the gathered information is
analyzed in the analyze phase. Subsequently, the plan- and
execute phases are about planning and executing actions
in order to fulfill goals or solve problems [51]. All these
four phases share one common aspect: knowledge about
the context, the execution environment and the hardware
infrastructure. The MAPE-K loop is very similar to the
Observe-Decide-Act (ODA) loop we have implemented
(Section IV-B3).

The Learn, Reason, Act architecture is a model-based
learning and reasoning loop (LRA-M loop) [73]. The archi-
tecture describes a self-aware computing system that is driven
by its goals and its observations collected as empirical data.
The collected data are used in an ongoing learning process
that abstracts observations into models. The learned models
provide a basis for the reasoning process, which might trigger
actions affecting the system itself and possibly its environ-
ment. The LRA-M loop is a model-based formulation of the
ODA loop.

FIGURE 2. The reference architecture for self-managed systems from [74].

Another related architecture is the Reference Architecture
for Self-managed Systems from Kramer and Magee [74].
Figure 2 shows this architecture which consists of three dif-
ferent layers with different tasks. The Goal management (the
top layer of the architecture) is there for the planning. This
is where plans are initiated to meet the requirements of the
applications and to achieve their goals. Such plans may be
required by new goals from the user or by requirements of
the layer below. The Goal management layer usually has
some awareness models to be able to reflect on the layer
below and address it properly [51]. This underlying layer
contains Change management. This is where the various
plans are stored, which shall be processed. The best plan
for the respective current situation is selected in order to
adapt the layer below. The Change management layer is also
reflective and has typically an awareness model of the layer
below; the lowest layer [51]. This layer, the layer on the
bottom of the architecture, is calledComponent control. Here,
the actual functionalities of the application are implemented

141376 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

and accordingly adjusted by the instructions (based on vari-
ous plans) from the layer above (Change management layer).
The Component control layer is pre-reflective, and it sends
up status reports to the layer above. If the Component con-
trol layer reports an inability to meet the given application
goals, the Change management layer adapts it in a way
it can achieve them in the current (environmental) situa-
tion [51]. Besides the usage of various awareness models,
the hierarchical structure of this approach matches the RoSA
architecture IV-B2.

The Reference Architecture for Models@run.time Sys-
tems is proposed in [75], and its main characteristic is that
there is an explicit distinction between two systems often
called managing system and managed system, where the
first one manages the second one [51]. The managed sys-
tem can be divided again into the (actual) managed sys-
tem and its environment. The managing system often has
three layers accordingly to the above-mentioned Reference
Architecture for Self-managed Systems, where the lowest
layer has an interface to the managed system. While the top
layer is very similar to the previous architecture, the bot-
tom two layers are formulated much more precisely. The
bottom layer contains configuration models (reflecting the
current state of the managed system), plan models (control-
ling the managed system), capability models (covering the
managed system’s capabilities) and context models (focus-
ing on the managed system’s environment). The middle
layer consists of a learner synchronizing all models of the
lowest level with the managed system, a reasoner mak-
ing decisions based on the models of the lowest level, and
an analyzer abstracts the information provided by mod-
els of the base layer in order to enable a hierarchical
decomposition.

The ‘‘reference architecture for self-awareness’’ from
Lewis et al. [24] describes a psychology-inspired concep-
tual framework of self-awareness. The architecture defines
a number of different units that can be used to describe a
system with self-aware and self-expressive capabilities. The
components are sensor and actuator units, self-expression
unit, self-awareness unit, and meta-self-awareness unit.
The meta-self-awareness unit assesses the desirability of
maintaining a level of awareness. The self-awareness
unit consists of several subsystems for certain types of
awareness:
• stimulus awareness is the knowledge about stimuli
that act on the system and the ability to respond to
them;

• interaction awareness is the knowledge about the inter-
action between the system and its environment;

• time awareness is the knowledge about past states and
future phenomena;

• goal awareness is the knowledge about objectives, pref-
erences, and constraints as well as the ability to reason
about them or manipulate them;

• meta-self-awareness is the knowledge about possible
levels of awareness and the way they are executed.

The recommended use of the reference architecture is
described in a handbook [22]. A case study about implement-
ing a service selection application in the reference architec-
ture is available in [24].
Besides these reference architectures, a suitable modeling

method, which is similar to our work, is proposed in [76].
However, that model uses a vague definition of agents as
design abstraction, while RoSA provides facilities for the
definition of agents based on self-aware functionalities.

D. FRAMEWORKS FOR SELF-AWARENESS
There are frameworks that focus on particular self-* prop-
erties. SAPERE [77] and ACOSO [78] are middlewares
that support self-organization of autonomic nodes in dis-
tributed environments. Though they build on an agent-based
model like RoSA, they are focused on self-organization
(a self-awareness property that is not covered in RoSA yet)
and so provide complementary features to the current set of
self-aware functionalities of RoSA. The following examples
provide complementary features as well. BIONETS [79] is
based on similar concepts and supports self-adaptation of
autonomic nodes in distributed environments. The Collec-
tive Adaptive Systems approach of the ALLOW Ensembles
project [80] supports collaborative self-adaptation of agents
within groups called ensembles. SEEC [61] is a framework
for self-aware resource allocation based on the concept of
application heartbeats, which allows monitoring and adjust-
ing program performance. We did not base our work on any
of these frameworks because (i) SAPERE and ACOSO are
implemented on top of JADE, which does not fit most ESs
(Section III-F); (ii) the BIONETS concepts are implemented
only in simulation models, which limits its deployability
in real systems; (iii) the ALLOW Ensembles approach is
demonstrated by a case study in DeMOCAS [81], which
is a simulation framework implemented in Java and hence
has limited deployability; and (iv) the implementation of
SEEC does not match the agent-based architecture, which we
selected for flexibility and scalability (Section III-F).

Although these works offer more or less specific design
proposals for various self-aware systems, they do not consti-
tute a complete modeling framework.

E. DECENTRALIZED ARCHITECTURES
Decentralized architectures have already been proposed in the
early days of Artificial Intelligence (AI) [51]. A decentralized
system in this context consists of several agents (independent
modules) whichmay interact with each other andwork in par-
allel on their different tasks. According to [82], designing and
building rational agents is fundamental for AI. Russell et al.
further state that agents are rational entities that take the best
possible action according to the information and capabilities
they have at their disposal [82].

In [83], Wooldridge et al. define agents as software pieces
that are autonomous (can autonomously operate without
human intervention), social (can communicate with other
agents or humans), reactive (can respond to changes in

VOLUME 8, 2020 141377



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

TABLE 1. Multi-Agent modeling Systems.

the environment), and pro-active (can take the initiative
instead of just reacting). AMulti-agent System (MAS), in fur-
ther consequence, is a system consisting of multiple agents
that work together to fulfill one or more common goals [45].

An agent-based architecture (e.g., a MAS) implements the
actor model [84], which is a programming paradigm known
for scalable parallel and distributed computing. To better
handle complex applications, it is usually advantageous to
divide them into different tasks. Often these can be divided
into different levels to cover the big picture as well as small
details in particular. Accordingly, it can be helpful to have the
possibility of a hierarchical structure. This is similar to the
nature-inspired hierarchical system of the AC initiative from
IBM [85]. Applying a hierarchical agent-based approach to
self-aware systems has been studied in the literature [86].
An agent-based framework that facilitates self-awareness,
however, has been an open issue.

F. AGENT-BASED FRAMEWORKS
Some existing self-aware frameworks are built on agents (see
Section III-D). There are general agent-based frameworks,
which are ignorant of the internal workings of agents. These
are summarized in Table 1 and discussed in this section.

The two main use cases of the agent-based frameworks
are multi-agent simulation and deployable actor system.
Java-based frameworks have a high resource require-
ment beyond the typical capacity of ESs. The large-scale
multi-agent simulation systems are not suitable for ESs for
similar reasons, and they have limited capabilities for inter-
facing real hardware. Deployable actor systems with native

implementation (Mobile-C and CAF) can support execution
on ES hardware and are detailed as follows. Mobile-C is
a small-footprint distributed actor system. However, it has
a proprietary dependency and a custom native API, which
limits its applicability.
CAF is an open-source distributed actor system with stan-

dard C++ implementation and with the aim of working
on a wide spectrum of hardware platforms. Its extensive
non-configurable feature set, however, makes it less suitable
for ESs. A stripped-down version for resource-constrained
systems remains a promise to date.

IV. THE RoSA FRAMEWORK
RoSA combines the agent-based actor model with self-aware
properties in an ES-compatible fashion and is fully open-
source. In this section, we discuss the general facilities of
the RoSA framework, which are the agent-based architecture
and details of its implementation. Actual functionalities are
presented in SectionVI, and the implementation of self-aware
applications is showcased in Section VII by case studies.

A. TERMINOLOGY
Here, we define the following terms with the meaning we use
in the context of RoSA and the rest of this paper.
1) Agents are design abstractions that help decompose a

system into independent components. A classic defini-
tion of agents comes from the field of artificial intelli-
gence [82]: ‘‘an agent is anything that can be viewed as
perceiving its environment through sensors and acting
upon that environment through actuators.’’ RoSA agents

141378 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

comply with that definition. Section IV-B describes their
inner workings and interactions.

2) Data manipulation is the processing activity that is
done by any agent: observing its environment via input,
maintaining its internal state, and optionally generating
output to affect its environment. Individual RoSA agents
may realize different ways of data manipulation, which
is described in terms of functionalities.

3) Functionalities encapsulate self-awareness concepts in
reusable components. They are the basic tools that can
be put together to realize desired ways of data manipula-
tion in agents. An agent is designed by a careful selection
of functionalities for the required datamanipulation. The
self-aware functionalities that we have already imple-
mented are elaborated in Section VI.

B. RoSA ARCHITECTURE
The architecture of the RoSA framework is outlined in this
subsection, accompanied with a discussion on some design
decisions.

1) SCOPE
The RoSA architecture supports modeling self-aware appli-
cations, whose relevance is motivated in Section I and
Section II. The framework is intended to be a tool for mod-
eling and evaluating novel ideas in self-aware applications.
The applicationmodel (i.e., a hierarchical agent-based system
with functionalities within agents) is flexible enough to incor-
porate variations in different aspects of design and implemen-
tation. Those aspects are mostly related to the functionalities:
(i) what functionalities are there, (ii) how they are imple-
mented and interconnected, and (iii) how applications are
decomposed. The architecture provides a structured andmod-
ular way for defining self-aware applications: applications are
decomposed into agents, which are defined by functionalities.
Agents and functionalities are reusable components in RoSA.

2) HIERARCHICAL AGENT-BASED MODEL
An agent communicates with its environment (i.e., other
agents of the application) by message passing via input and
output channels. Semantics can be informally given as: the
agent receives messages on its input channels; manipulates
data (i.e., the received messages and its internal state), and
may send messages on its output channels.

Agents are organized into a hierarchical structure
(e.g., Figure 3). Agents on different levels of the hierarchy
process data on different levels of abstraction: the system
obtains fine- and coarse-grained knowledge according to
hierarchy levels. Such a detailed representation of knowledge
helps self-adaptive systems to operate more efficiently and
meet their goals [32].

Connected agents are in a master-slave relation. An agent
(e.g., Agent 2 in Figure 3) receives messages from its
slaves (Agents 5 and 6) and sends messages to its master
(Agent 1). That is, an agent acts as slave towards its only
master and as master towards its potentially multiple slaves.

FIGURE 3. A hierarchical agent-based model.

A slave sends messages to its master regularly according to
its configuration. A master may control the configuration of
its slaves by sending control messages to them whenever
appropriate.

A real-world application interacts with its environment
via sensors and actuators, which are modeled as agents in
RoSA. An agent that wraps a sensor is a data source (i.e., has
no slaves) and sends sensor input to its master. Dually,
an agent that wraps an actuator is a data sink (i.e., has no
master). An actuator is activated (‘‘controlled’’) by slave-
to-master data messages — rather than master-to-slave con-
trol messages.

3) OBSERVE-DECIDE-ACT LOOPS
AC systems consist of autonomic elements implementing
a control loop [36]. Thus, self-aware applications in RoSA
operate in an iterative manner implementing ODA loops [52].
ODA is our architecture of choice, however, other architec-
tures could be chosen and implemented as well. AnODA loop
(Figure 4) represents the way reactive systems operate: the
systemmonitors the behavior of itself and/or its environment,
decides about certain actions, and acts accordingly.

FIGURE 4. An agent implements an Observe-Decide-Act loop.

As shown in Figure 5, each RoSA agent operates in an
ODA loop: receives input messages, does data manipula-
tion, and optionally sends output messages. The composition
of individual ODA loops results in a behavior that can be
described as a compound ODA loop on the application level.

VOLUME 8, 2020 141379



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 5. An agent system based on individual Observe-Decide-Act
loops.

The RoSA architecture provides a way to implement
ODA-loop-based applications that are decomposed into inter-
acting ODA loops of lower complexity.

FIGURE 6. The behavior of an agent is defined by self-aware
functionalities.

4) FUNCTIONALITIES
An agent is defined by functionalities (Figure 6). What func-
tionalities an agent utilizes depends on its role in the applica-
tion. RoSA provides a library of pre-defined functionalities
(Section VI) and allows developers to implement new ones
either based on existing ones or from scratch.

As shown earlier, RoSA agents conceptually operate in
ODA loops. The functionalities that constitute an agent con-
tribute to different characteristics of observation and decision
making in the loop. For example, abstraction (Section VI-A)
improves the outcome of observation, and data reliability
(Section VI-B) helps decision making by providing meta-
information. Our approach is inspired by the hierarchical
agent-based model of Guang et al. [76]. While their model
uses a vague definition of agents as design abstraction,
RoSA agents are described as ODA loops that are based on
functionalities.

C. SOFTWARE IMPLEMENTATION
We have implemented the RoSA architecture as a software
framework. RoSA has a fully open implementation in stan-
dard C++ and can readily interface existing native soft-
ware components. The main characteristics of the software
implementation are (i) providing a high-level but safe mod-
eling interface for application developers, (ii) allowing the
same application code to be used for simulation and deploy-
ment, and (iii) realizing small-footprint software that can be
deployed in resource-constrained ESs.We have done our case
studies (Section VII) in simulation on a desktop computer.
That is, input and output of sensor and actuator agents are
fed to the system via stored files, and RoSA allows for
other input-output interfaces as well. Runtime support for
deploying on embedded devices requires further development
to complete.

V. USE CASES OF THE FRAMEWORK
The section discusses how RoSA, the framework as a whole
and its features separately, can be used in different scenarios.

A. MODELING A NEW APPLICATION IN RoSA
Modeling an application using the RoSA Architecture fol-
lows a general flow shown in Figure 7. That is,

Specify requirements: The most abstract description of an
application defines input and output (sensors and actua-
tors, respectively) and the data manipulation to be done.
It can be seen as an extreme agent systemwith all sensors
and actuators connected to the only agent that represents
the entire application.

Model agent system: The monolithic application-agent is
decomposed into a set of agents organized in a hierarchy.
Agents enclose specific kinds of data manipulation and
serve as a unit of reusability — within and between
applications. Identifying agent patterns can help effi-
cient decomposition.

Model agents: Each agent is modeled, i.e., prescribed data
manipulation is realized by available functionalities and
custom code (Figure 8). Functionalities provide a level
of reusability below agents. RoSA provides a set of
functionalities, which is expected to grow over time.

Validate agents in simulation: Unit testing of agents is
done by validating their input-output behavior in sim-
ulation mode: a single-agent system is evaluated with
predefined input and expected output.

Validate application in simulation: Agents are put together
according to the system model. Integration testing of
the application is done by validating the input-output
behavior of the system in simulation mode.

Deploy application: The application is deployed in an
embedded device.

Though the RoSA methodology is presented as a sequen-
tial flow, the model of an application (i.e., the system model
with corresponding agent models) may be refined in an
iterative manner.

141380 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 7. Scenarios of using the RoSA framework.

FIGURE 8. An agent is modeled based on available functionalities and
custom code; reusable pieces of custom code are gradually promoted to
functionalities in a generalized form.

B. MIGRATING AN APPLICATION TO RoSA
RoSA can also be used to add self-awareness to existing
applications. An entire legacy application can be migrated to
RoSA in a few steps shown in Figure 7(b). That is,

Wrap legacy components into agents: Each component,
whose input-output behavior fits message-passing
semantics, is wrapped into a RoSA agent. Legacy com-
ponents may be grouped, if necessary. Existing legacy
code implements data manipulation within agents.

Build application from agents: Agents are put together
in an agent system according to the connections
between corresponding components in the legacy
system.

Refine model: The system and agent models may be refined
iteratively, as in the general case.

Deploy application: The agent system is deployed as a
RoSA application.

This approach turns a legacy system into a RoSA appli-
cation and enables utilizing all RoSA features for further
development.

C. ADDING RoSA AS A SELF-AWARE COMPONENT
It is also possible to add a RoSA agent system to an existing
application as a self-aware component (Figure 7(c)). This
scenario might be applied as a gradual migration path.

Identify self-aware component: The requirements are
specified either as a new component of the application
or based on an existing component to be replaced.

Realize component in RoSA: The component is realized
as a RoSA agent system following the general RoSA
methodology (Figure 7).

Integrate component into the application: The compo-
nent is integrated into the existing application via input
and output streams that are associated with its sensor and
actuator agents, respectively.

Deploy application: The application is deployed with the
RoSA system as one of its components.

This approach limits the development effort to one compo-
nent of the application — in contrast to migrating the whole
application. However, additional development and runtime
complexity is posed by the need to integrate RoSA as a
component of the existing application. Whether to take the
full migration or the component approach depends on the
size of the application and how much the application needs
self-awareness and can benefit from RoSA.

D. USING SELF-AWARE FUNCTIONALITIES FROM RoSA
RoSA supports reusability on two levels: agents in the system
model and functionalities in the agent model. The realizations

VOLUME 8, 2020 141381



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

of these two levels are independent, and functionalities
may be used without using agents. Should working with
a RoSA agent system be uneconomic, functionalities that
are defined in RoSA (Section VI) may be used in custom
codes directly — without involving other parts of the RoSA
framework.

E. IMPLEMENTING A GENERAL AGENT-BASED
APPLICATION WITH RoSA
While the main aim of RoSA is to facilitate developing
applications and concepts related to self-awareness, the appli-
cability of the framework is not limited to that. The agent
system that constitutes the base of the architecture can be
used for any other application that may benefit from such an
architecture (e.g., component-based systems). One can ignore
self-aware functionalities and implement an agent-based
application with all data processing in agents defined by
custom application-specific code only.

VI. SELF-AWARE FUNCTIONALITIES
Each RoSA agent receives messages from its input channels
and may send messages on its output channels. The data
processing that the agent does to maintain its state based
on input messages and generate output messages can be
defined with full flexibility (i.e., custom application code).
Nevertheless, RoSA provides predefined functionalities to
be used as components when defining agents, with min-
imal glue code that connects them. It is also possible to
mix functionalities and custom code freely within agents.
The modularity enables application developers to define
self-aware agents fast and efficiently by reusing existing
functionalities and also customize data processing whenever
needed.

The functionalities are based on self-aware proper-
ties [94], [95]. RoSA provides reference implementations of
the functionalities that have been used in our case studies
(Section VII): abstraction, data reliability, confidence, and
history. We expect the set of self-aware properties and cor-
responding functionalities to grow as well as their implemen-
tation to improve — contributions from the community are
welcome.

A. ABSTRACTION
Abstraction is ‘‘an appropriate selection of the representation
of the information in order to obtain compact knowledge
relevant to a particular purpose’’ [94]. It is a transformation
of data from one domain to another. Raw input data may
be abstracted into a semantic domain that the self-aware
system understands [52], and the abstraction may be done
at any level of a hierarchical system. It could also be done
top-down instead of bottom-up [94]. An abstraction needs to
be meaningful and efficient in the system’s context and to
have a well-defined structure.

1) ABSTRACTION FUNCTIONALITIES AVAILABLE IN ROSA
The broad definition of abstraction allows for a wide vari-
ety of approaches. RoSA currently provides the following
abstraction functionalities:

1) Lookup table maps an input datum to a symbol
(e.g., number, character, string).

2) Overlapping lookup table maps an input datum to
potentially multiple symbols; in case the boundaries
between symbols cannot be clearly defined (e.g., insuf-
ficient knowledge about the environment). Selecting
one symbol in a later processing step may be a
confidence-based decision (Section VI-C). In contrast,
a standard lookup table maps an input value directly to
one symbol.

3) Threshold-based signal state detector abstracts steady
states from a signal waveform, that is a sequence of input
values. In other words, it recognizes stable phases in
a signal. These steady states of a signal are identified
concerning a threshold of distance among the signal’s
sample values. A signal state is stored as an average
value of all input samples belonging to it. A simple
learning algorithm is utilized internally for state detec-
tion. Detailed discussion is available in [29], [30].

4) Confidence-based signal state detector also abstracts
steady states from a signal waveform, that is a
sequence of input values. These steady states of
an input signal are identified concerning the rela-
tive distance among the signal’s sample values. That
is, in contrast to the Threshold-based signal state
detector, the Confidence-based signal state detector
makes all decisions based on a confidence assessment
(Section VI-C). This assessment is not only based on a
simple average, but on the most recent signal samples
stored in a sliding window history. A detailed discussion
of the learning algorithm behind this functionality is
available in [31].

5) System state detector abstracts a system state from sig-
nals of an observed system. The current implementation
works with stateless systems only (i.e., identifying states
of a system whose output can be expressed as a function
of its input).

B. DATA RELIABILITY
Data reliability is ‘‘the extent to which a measuring proce-
dure yields the same results on repeated trials’’ [94]. The
trustworthiness of data is determined by accuracy, precision,
and truthfulness. The accuracy and precision are given by
systematic and random error of measurement, respectively.
Data can be accurate and precise but still not truthful [28],
for instance, if a sensor is working outside of its operating
conditions (e.g., a temperature sensor detached from the test
object).

Data reliability is a piece of meta-data about the trustwor-
thiness of the input data stream. Further actions may be taken

141382 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

according to the reliability of data. The following measures
may be used to assess trustworthiness:

1) Plausibility tells whether data is within its expected
domain (i.e., range). If a variable exceeds the realistic
limits of its represented quantity (e.g., human body tem-
perature over 100◦C), data might be unreliable.

2) Consistency tells whether data varies according to its
expected variability (i.e., maximum difference between
samples). If a variable changes too fast (e.g., position of
a robotic arm), data might be not reliable. Checking con-
sistency requires historical information (Section VI-D)
about the input signal.

3) Cross-validity tells whether one piece of data correlates
with other pieces as expected. If two dependent variables
(e.g., two interdependent vital signs) do not follow each
other, data might be not reliable.

1) DATA RELIABILITY FUNCTIONALITIES AVAILABLE IN ROSA
RoSA provides functionalities for assessing each of these
three measures of trustworthiness either in a binary or in a
fuzzy way (a total of 6 variants). Binary assessment makes
a binary decision about reliability according to a threshold.
Fuzzy assessment determines the level of data reliability in
the [0, 1] range and can be configured with a custom function.
The individual assessments may be combined (e.g., con-

sidering both plausibility and consistency of a variable at the
same time). RoSAprovides a set of predefinedmethods (aver-
age and multiplication of fuzzy assessments; conjunction and
disjunction for both binary and fuzzy assessments) for the
combination, which may be done as custom application code
as well.

C. CONFIDENCE
Confidence is ‘‘the extent to which a procedure may yield the
same results on repeated trials’’ and has significant similari-
ties to data reliability [94]. Confidence is a piece of meta-data
about the trustworthiness of the data processing performed by
a (sub-)system or function. It tells howwell a calculated result
corresponds to the expected output. Assessing confidence
assumes error-free input — which may be assessed by data
reliability (Section VI-B).

1) CONFIDENCE FUNCTIONALITIES AVAILABLE IN ROSA
RoSA defines an interface for assessing confidence, but the
actual assessment logic needs to be provided as a custom
function. The lack of predefined assessment functions is
because no general confidence measures have been identified
yet. The assessment of confidence varies much on a case-
by-case basis in our experience.

Besides this interface, RoSA offers a confidence-based
abstraction method, which is an overlapping lookup table
(Section VI-A). This method is based on fuzzy membership
functions [96], and Figure 9 shows an example of it. The
input data is mapped to three symbols (A, B, and C) so
that two symbols are associated for the overlapping ranges

FIGURE 9. A confidence-based abstraction method to abstract data into
one or more symbols with a corresponding confidence.

(i.e., (A,B) and (B,C) for [p1, p2] and [p3, p4], respectively).
The abstracted symbols are assigned with a confidence value
according to their corresponding fuzzymembership functions
(i.e., full confidence outside of the overlapping ranges and
lower confidences inside them). The membership functions
can be adjusted dynamically via control feedback in the
agent hierarchy whenever a higher level agent recognizes a
systematic error.

Cross-validity confidence tells whether one piece of data
correlates with other pieces. It is similar to cross-validity
reliability in that respect. However, it calculates historical
correlation information based on active monitoring, unlike
the a priori expectations of cross-validity reliability. This
assessment can be used to tune confidence-based abstraction
in lower levels of the hierarchy.

Individual confidence assessments may be combined, sim-
ilar to combining individual reliability assessments. RoSA
provides predefined combination methods and the possibil-
ity of handling combination by custom application code.
The reliability of the output of an agent can be assessed
by combining the reliability assessment of its input and the
confidence assessment of its data processing.

D. HISTORY
History is ‘‘recording and studying a series of past events con-
nected to an entity’’ and enables extracting knowledge from
the recorded time series [94]. Identifying trends in the past,
understanding time-dependent aspects of the current state,
and predicting future conditions [28] may all be supported
by utilizing history.

1) HISTORY FUNCTIONALITIES AVAILABLE IN ROSA
RoSA includes limited support for history (only the features
that we needed to implement other functionalities). A short
description is still included because the history functionality
can be used in the application code directly.

History functionality enables storing a sequence of data
values. Its capacity can be configured for a balanced memory
usage. History supports two strategies for redeemingmemory
once its capacity is reached: (i) stop strategy, when a full
history does not accept further data values, and (ii) FIFO
strategy, when history behaves like a sliding window. History
functionality allows access to the individual stored values and
also provides statistical properties (e.g., average) about the
stored sequence.

VOLUME 8, 2020 141383



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

VII. CASE STUDIES
Applications with different levels of self-awareness have
been implemented in RoSA. We present two case studies in
this section, which demonstrates how RoSA can be used for
quick application development.

A. SELF-AWARE EARLY WARNING SCORE SYSTEM
The first case study is presented in detail for a smooth intro-
duction of implementation details. The application — whose
different variants are developed over the case study — is a
health status assessment system.

1) BACKGROUND AND PROBLEM STATEMENT
Here, both, the calculation of the EarlyWarning Score (EWS)
and the traditional EWS system are briefly described, before
the next subsections deal with its extensions with various
self-awareness properties.

A patient’s health status can be assessed based on their
vital signs. Research on cardiac arrests shows that certain
symptoms can be observed long before the situation turns into
a case of emergency; symptoms may appear even 24 hours
before actual health deterioration [97]. EWS is a standard
manual tool for assessing patients’ health status and pre-
dicting health deterioration. Healthcare professionals peri-
odically monitor patients’ vital signs (heart rate, respiratory
rate, body temperature, blood pressure, and blood’s oxygen
saturation) and assess their health status by a criticality level
defined as EWS [98]. For this reason, each vital value is
assessed in the form of a score. A score of 0 indicates an ideal
health condition of a vital sign, while score 3 corresponds
to the worst. The EWS is the aggregate value of all the
individual vital sign scores. The higher the score, the higher
the criticality.

This manual procedure has been applied to hospitalized
patients. A portable device that automates the procedure
would allow high-risk patients to pursue their daily lives with
a much higher chance of survival. Robustness and fault toler-
ance is of major importance for such a device. Autonomous
monitoring of patients in a non-hospital environment needs
to deal with faulty measurements: sensors can be attached
incorrectly, become detached, or break down. Incorrect mea-
surements result in incorrect EWS, which might lead to false
positive or — even worse — false negative assessments.

We developed several self-aware variants of the EWS
application, which are able to deal with different kinds of
faults [26]–[28]. Those variants and their results are dis-
cussed in detail in the referred papers. Here we motivate their
high-level design and present their implementation in RoSA.

2) THE CONVENTIONAL EWS SYSTEM
For starters, we implement an application that calculates the
EWS in the conventional way (Figure 10). Five agents consti-
tute the low level of the hierarchy, each connected to a sensor
(modeled as a special agent) and assessing the corresponding
vital sign. One agent in the higher level is connected to the

FIGURE 10. The conventional EWS system.

low-level agents to make the aggregate assessment, whose
result is recorded by a monitoring agent. The actual imple-
mentation is outlined in Listing 1. Even though RoSA and the
applications are implemented in C++, the included listings
use a C++-based pseudo-code for brevity. The sometimes
verbose syntax of C++ is hidden, but the complexity of the
application code is presented truly.

The implementation (Listing 1) starts with creating a RoSA
Application (Line 1). Agents can be created and managed in
the context of the Application.

For each vital sign (demonstrated by heart rate), a sensor
(Line 2) and a low-level agent (Lines 4 to 21) are created. The
low-level agent (Figure 10(b)) performs the EWS assessment
by applying a lookup table abstraction (Section VI-A). The
connection between the sensor and the low-level agent is
established in a separate step (Line 23).

The high-level agent ((Figure 10(c)) aggregates vital
sign assessments by summing them into a final EWS
(Lines 26 to 31). Each low-level agent is connected to the
high-level agent (Line 33).

The final EWS is logged to the console by a dedicated
agent (Lines 36 to 40), which is connected to the high-level
EWS agent (Line 42).

3) A SELF-AWARE EWS SYSTEM WITH
RELIABILITY FUNCTIONALITIES
The conventional EWS system does not tolerate faults. Thus
we make the system more robust by utilizing additional

141384 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

LISTING 1. RoSA implementation of a conventional EWS system.

self-aware functionalities within the agents (Figure 11). The
agent hierarchy remains unchanged (Figure 10). Setting up
the RoSA application and agent hierarchy is done similarly
to the conventional EWS system (Listing 1).

The low-level agents (Figure 11(a)) assess the reliability
of the abstracted vital signs by checking plausibility and
consistency in combination (Section VI-B). The agent imple-
mentation is adapted by specifying the output as a pair of
values (i.e., abstracted value and reliability assessment) rather
than a single value and by utilizing reliability functionality in
data processing (Listing 2 Lines 3 to 7).

The high-level agent (Figure 11(b)) assesses cross-validity
reliability ((Section VI-B)) of the vital signs and combines
all reliability assessments for the final EWS. The agent imple-
mentation is adapted similarly to low-level agents (i.e., adjust
input and output types and utilize reliability functionality).

The reliability functionalities may be configured in differ-
ent ways for the agents. Experiments have been performed
both with binary [26] and with fuzzy [27] assessments.

Consider an experiment with the chest strap, which mea-
sures heartbeat, being loosely fastened. The measurement is

FIGURE 11. Agent descriptions for the EWS system with reliability
assessment.

LISTING 2. RoSA implementation of the self-aware heart rate agent.

not stable and provides unreliable readings during some time
(e.g., 350s – 670s in Figure 12), while other sensors provide
reliable data. Though the EWS is calculated according to the
standard rules (i.e., results in false positives), the assessed
reliability drops to 0 during measurement errors. The low
reliability indicates an issue with the system’s input(s).

4) A SELF-AWARE EWS SYSTEM WITH CONFIDENCE
FUNCTIONALITY
While the previous version calculated the EWS without any
modifications, the final version adjusts the EWS in case of a
low reliability [28].

The master agent (Figure 13(b)) additionally assesses
cross-validity confidence of the vital signs (Section VI-C).
The confidence assessment is based on personalized data
and is — combined with the cross-validity reliability —
used as control feedback for the low-level agents to adjust
their score abstraction process. The implementation, using
predefined functionalities, is still only a few lines (Listing 3).

VOLUME 8, 2020 141385



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 12. Results of an experiment in which the heartbeat sensor was
not attached properly and therefore incorrect measurements were made.

LISTING 3. RoSA implementation of the self-aware EWS master agent.

The agent generates its output as (i) a pair of calculated EWS
and assessed reliability (Line 6) and (ii) a list of confidence
feedback for each low-level agent (Line 8).

Low-level agents (Figure 13(a)) perform confidence-based
abstraction (Section VI-C and Figure 14), which takes his-
torical information into account (Section VI-D) about feed-
back from the high-level EWS agent. The calculated EWS is

FIGURE 13. Agent descriptions in the EWS system equipped with
reliability, confidence, and history.

FIGURE 14. A confidence-based abstraction method to abstract a vital
sign in one of four different scores (0 to 1).

adjusted in that way. The actual implementation (Listing 2)
is divided into two functions: (i) one for processing input,
like before, and (ii) one for processing control feedback.
Sensory input is processed like before (Lines 3 to 7)
except for abstraction being configured to operate based
on confidence (Section VI-C). Processing control feedback
(Lines 11 to 14) passes data from the high-level agent to the
local confidence-based abstraction. The feedback is stored
by the abstraction functionality internally with a history
functionality and is utilized when processing future sensory
input.

Consider an experiment when participants are monitored
with both working and faulty sensors (upper and lower
part of Figure 15(a), respectively). The experiment results
(Figure 15(b)) show that our self-aware EWS application
performs much better (even if not perfectly) than the con-
ventional system in the presence of sensory errors. The
self-aware EWS system has almost 80 times less false alarms
than the conventional system in our experiments [28].

141386 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 15. Results of an experiment when participants were monitored
with both working and faulty sets of sensors.

5) SUMMARY
The detailed case study followed the development of our
EWS application through four versions. That process demon-
strates that implementing an agent-based application with
self-aware properties takes only a few steps in RoSA. Defin-
ing the agent system at the beginning was a lightweight task
by using the existing agent interfaces of RoSA. Additionally,
thanks to the modular design and reusable functionalities of
RoSA, moving from one version to the next (i.e., including
more sophisticated self-aware properties) needed only local
modifications of agents and functionality configurations.

We were, of course, experimenting with different imple-
mentation alternatives during development. In the end, how-
ever, we packed the various functional components of data
processing into functionalities, which are reusable mod-
ules. New applications can use those functionalities while

they might also need to implement novel data processing
approaches in custom application code. Those pieces of cus-
tom code, once matured, should be turned into functionalities
for modularity and reusability. That is a way for sustainable
development in the long run, and it is facilitated by RoSA.

B. CONTEXT-AWARE CONDITION MONITORING
This case study presents amonitoring system that assesses the
working state and the health condition of another system or
device; hereafter System under Observation (SuO). We limit
the discussion to the modeling level (i.e., source-level imple-
mentation is ignored); the first case study provides insight
into implementation.

1) BACKGROUND AND PROBLEM STATEMENT
Industry, particularly automated production plants, has an
interest in reliable monitoring systems that are able to raise
an alarm in case of malfunctions of the SuO [99]. Such
a monitoring and warning system enables optimization of
maintenance work and minimizes downtimes.

Implementing tailor-made monitoring systems for each
SuO is an expensive endeavor. A reliable self-adaptive mon-
itoring system can reduce cost and time. We present such
a system, which is able to assess the health status of any
SuO without detailed a priori knowledge but by observing
its input and output. The system assumes that the SuO meets
two requirements: (i) the SuO works as a bijective function
between its input and output, and (ii) the SuO operates in
steady states. Requirement (i) allows the monitoring system
to uniquely identify input-output pairs of normal operation.
Dissociation of input and output signals is then considered
a symptom of fault. Requirement (ii) is a consequence of
the fact that the monitoring system discards unstable and
transient signals.

The monitoring system adapts to any SuO based on con-
textual information only (see context-awareness). We have
performed experiments with two variants of the system:
(i) Context-aware Health Monitoring (CAH) [29], [30]
applies a threshold-based decision-making process and
(ii) Confidence-based Context-Aware condition Monitoring
(CCAM) [31] makes decisions based on confidence.

Compared to similarmonitoring solutions (e.g., deep learn-
ing and data mining), our system has a considerably smaller
runtime footprint and can be applied to resource-constrained
applications.

2) MODELING THE MONITORING SYSTEM
The application has a hierarchical structure (Figure 16). The
low-level agents are connected to the sensors and can perform
pre-processing of sensory input if necessary as well as incor-
porate a signal state detector (Section VI-A).

The detected signal states are combined into a system state
by a system state detector (Section VI-A) in the high-level
agent. Its output (i.e., system state and health condition) is
processed (e.g., logging or trigging a warning in case of
malfunction) by a dedicated agent.

VOLUME 8, 2020 141387



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

FIGURE 16. Architecture of CAH/CCAM for monitoring an AC motor.

The signal and system state detector functionalities keep
historical information about their input to identify steady
states as well as recognize state changes and drifting signals
(see [29]–[31]). Each new signal sample is compared with
historical information to detect if the signal changed state.
The historical information consists of an average value in
CAH and a sliding window history in CCAM. If the new
sample is in close proximity to the saved data of a recorded
state, it belongs to that state. Whether a signal is stable or
drifting is extracted from the course of the historical data. The
state of the system is then the composition of the individual
signal states. For further details, we refer to our corresponding
works.

The state and health condition of the observed signal/sys-
tem are outputs of the functionalities. The difference between
CAH and CCAM is in the configuration of signal and sys-
tem state detection: they make binary threshold-based and
confidence-based decisions, respectively. CCAM provides
better results than CAH.

Adjusting CAH/CCAM for a different SuO takes only two
simple steps: (i) defining a low-level agent with a signal
state detector for each input and output signal of the SuO
and (ii) connecting each low-level agent to the high-level one
and associating each signal to the system state detector either
as input signal or output signal. The system is easily scalable,
but the system state detector could become a bottleneck in
case of an extremely high number of signals. This potential
scalability issue is not caused by RoSA but by the architecture
of the implemented application. In the case of such a complex
SuO with a massive number of signals, the problem could
be scaled out by replacing the central system state detector
with a corresponding hierarchy of those. In other words,
the SuO would be split up in various subsystems that have
their own system state detectors, which may be combined in
a hierarchical structure. This approach shows the powerful
implementation of RoSA and its self-aware functionalities.
Furthermore, this approach would overcome not only the
issue of a bottleneck but also enables highly systematic mon-
itoring of the SuO.

3) SUMMARY
Context-aware detection of different signal and system states
is now enabled in RoSA by corresponding functionali-
ties. However, no state detector was implemented when we
started to develop the application. In the experimental phase,
we implemented state detection as custom code in combi-
nation with existing RoSA functionalities (abstraction, con-
fidence, and history). Reusing functionalities in a modular
way, facilitated our efforts to implement complex data pro-
cessing for context-aware state detection. We turned the val-
idated implementations of signal and system state detectors
into functionalities, which can be reused and configured by
application-specific rules.

VIII. DISCUSSION
Before concluding, we enumerate the lessons learned from
developing RoSA and the open issues already identified.
We organize the discussion in three themes: modeling
self-awareness in Section VIII-A, the software implementa-
tion in Section VIII-B, and implementing on ES hardware in
Section VIII-C.

A. MODELING SELF-AWARENESS
An important lesson was realizing how much application-
dependent self-aware functionalities are. While a self-
awareness property has some fundamental characteristic,
a corresponding functionality may be implemented in dif-
ferent ways. For example, while confidence is a measure
of how trustworthy the work of a task, part of the system,
or the entire system is (Section VI-C), it may be calculated in
many different ways [100] (see for example [31], [55], [101]).
What interface to use for a self-awareness property depends
on the actual usage. Therefore, each functionality must have
a sophisticated interface to support modularity. This allows
using functionalities directly or in combination with other
functionalities to express more complex concepts. Whenever
a new concept that cannot be built from the existing function-
alities is to be developed, devising a modular interface for the
new functionality is challenging but essential for reusability.

While the interfaces of functionalities are instrumental
for reusability, details of their internal implementations can
affect performance significantly. We provide a set of func-
tionalities in RoSA; however, there might be better-working
implementations. Hence, users of RoSA are not discouraged
from adjusting and optimizing the implementations to their
specific end-use. The modular design makes it possible to
experiment with alternative implementations at will. In addi-
tion, users are encouraged to develop other functionalities
whenever they have new ideas or specific needs.

We realize there is room for improving the modeling capa-
bilities of RoSA. One limiting factor is the small set of
implemented self-aware functionalities. Our research effort in
self-awareness properties and functionality implementations
will continue. We foresee exciting challenges in the area

141388 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

TABLE 2. Static and dynamic characteristics of the case studies (Section VII) executed on different ES platforms with different ARM cores (Cortex-A7 and
Cortex-A15 implement the 32-bit ARMv7-A architecture, Cortex-A53 implements the 64-bit ARMv8-A architecture) shows that each application can work
in real-time on ES hardware; note that numbers of different applications are not to be compared as they implement independent algorithms.

and hope for the community’s contribution in tackling them
together to make RoSA a powerful common framework.

FIGURE 17. Ratio of non-comment codelines of RoSA-based application
code (Application) and that of the RoSA framework itself (Framework)
relative to the number of non-comment codelines of corresponding
custom-written applications in our case studies. The base-line (actual
number of codelines) for each application is indicated below the
application names.

B. SOFTWARE IMPLEMENTATION
We made RoSA to accelerate and simplify research on
self-awareness through a reusable software framework. Com-
paring the number of non-comment codelines (as an indi-
cator of development effort) of our original custom-written
applications and that of the RoSA-based implementation pro-
vides a quantitative measure of how much the development
effort is simplified by using RoSA. This comparison for
the presented case studies is shown in Figure 17, where the
custom code of the corresponding application is the reference,
meaning 100%. The RoSA-based Application sizes relative
to the corresponding custom code show that RoSA-based
implementations stay relatively small (3.46%–6.24%), inde-
pendently from the size of the custom-written applications.

Those implementations are small because they depend on
the framework. The RoSA Framework size relative to the
custom applications (the 100% references) shows that the
overhead posed by the framework reduces (from an overhead
of 120.4% for EWS to −40.72% for CAH/CCAM) as the
size of the application increases (from 5481 to 20378 lines of
custom application code for EWS and CAH/CCAM, respec-
tively). The negative framework overhead indicates that even
a custom implementation might be sub-optimal in case of
complex applications. The quality of maintained framework
code improves over time, while that does not typically happen
with custom implementations developed in one go.

Averaging the sizes of all cases, we observe that on
average, a RoSA-based implementation consists of only
5.18% lines of code relative to the custom implementation.
The framework code has on average 20.75% more codelines
than a custom application. The framework is, however, to be
implemented only once and reused any number of times.
Implementing a framework pays off when used for several
applications. Particularly, implementing the framework and
the four presented case studies in RoSA needed in total only
29.01% of the total number of codelines of our four original
custom-written applications together; in other words, in total
we needed 70.99% less codelines for implementing all four
applications with RoSA. These figures confirm our initial
hypothesis: an appropriate framework reduces the modeling
and development efforts in self-aware systems.

Lastly, we realize that the capabilities and usability of
RoSA as a software framework can be enhanced. For exam-
ple, a graphical interface could help non-programmers to
interact with models. Studying typical model patterns on both
the agent system and the agent levels could help application
developers in making better designs and utilizing available
features efficiently.

C. IMPLEMENTING ON EMBEDDED SYSTEM HARDWARE
RoSA is a standalone actor framework with an open-source
standard native implementation, to which CAF is the most
similar from the existing agent-based frameworks (discussed

VOLUME 8, 2020 141389



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

in Section III-F). For deploying RoSA in ESs, we limited the
implemented features to the essentials for our case studies
without limiting the generality of the agent system. The
binary size of the RoSA libraries on a x86-64 linux machine
is 300 kB, while that of the CAF core library (version 0.17.5)
is 7248 kB. This significant (24 times) difference in favor of
RoSA indicates that our framework is applicable to consider-
ably smaller systems than CAF.

As a preliminary confirmation of this hypothesis (suit-
ability for ESs), we ran our case studies on the ODROID
XU4 [102] and Raspberry Pi 3 [103] systems. The for-
mer has an eight-core big.LITTLE [104] configuration with
Cortex-A7 and Cortex-A15 cores and the latter has a
quad-core configuration with Cortex-A53 cores. The applica-
tions posed a moderate memory footprint well below 4 MB,
which fits typical ESs, and processed samples several times
faster than required for real-time execution. In Table 2,
we have summarized the characteristics of each application
implemented on each platform, where the real-time require-
ments and actual average processing times can be found.
It has to be noted that the real-time sampling period depends
on the nature of the corresponding application and that the
table is not meant to compare the different applications. We
plan to extend the evaluation of our software implementation
by performing further extensive and vigorous tests by deploy-
ing RoSA on other real ES hardware in the future.

IX. CONCLUSION
Self-awareness is a hot topic, but related research and devel-
opment efforts are fragmented among different fields and
communities. Self-aware systems are developed from scratch
in many cases. Such method of development, on long term,
is redundant, inefficient and uneconomic. A major reason
behind this fragmentation is the lack of a common framework
that would facilitate development, cooperation, and reuse of
existing results.

In this paper, we presented RoSA, a framework that
aims to help researchers and engineers to explore the novel
design space of self-awareness. RoSA supports modeling of
self-aware applications as agent systems and modeling of
agents based on self-aware functionalities. We presented the
design principles of the RoSA architecture as well as use
cases of RoSA-based modeling for different scenarios. The
description of self-aware functionalities offered by RoSA
and detailed case studies about applications implemented in
RoSA demonstrate the modeling power and applicability of
the framework.

Using RoSA relieves application developers from taking
care of handling agents and message passing. Predefined
functionalities serve as reusable components for defining
individual agents. Data processing within agents can be
defined as an arbitrary combination of custom application
code and existing functionalities. Application code can thus
be limited to the important aspects: (i) data processing within
agents and (ii) the agent hierarchy of the application.

We promote RoSA as a vehicle for researchers to study
various concepts that are related to self-awareness and the
relation among them; and also for engineers to prototype and
evaluate self-aware features in their designs with ease.

ABBREVIATIONS
AC Autonomic Computing.
AI Artificial Intelligence.
CAF C++ Actor Framework.
CAH Context-aware Health Monitoring.
CCAM Confidence-based Context-Aware

condition Monitoring.
CPS Cyber-Physical System.
CSA Computational Self-Awareness.
DARPA Defense Advanced Research Projects

Agency.
ES Embedded System.
EWS Early Warning Score.
IBM International Business Machines Cor-

poration.
IT Information Technology.
MAS Multi-agent System.
MPSoC Multi-Processor System-on-Chip.
NASA National Aeronautics and Space

Administration.
ODA Observe-Decide-Act.
RoSA Research on Self-Awareness.
SoC System on Chip.
SuO System under Observation.

ACKNOWLEDGMENT
(Maximilian Götzinger and Dávid Juhász contributed equally
to this work.)

REFERENCES
[1] J. Rivera and R. van der Meulen. (Nov. 2014). Gartner Says 4.9 Bil-

lion Connected ‘Things’ Will be in use in 2015. [Online]. Available:
http://www.gartner.com/newsroom/id/2905717

[2] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things:
A survey,’’ Comput. Netw., vol. 54, no. 15, pp. 2787–2805,
Oct. 2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1389128610001568

[3] M. Yaqoob, S. R. Qaisrani, M. Waqas, Y. Ayaz, S. Iqbal, and S. Nisar,
‘‘Control of robotic arm manipulator with haptic feedback using pro-
grammable system on chip,’’ in Proc. Int. Conf. Robot. Emerg. Allied
Technol. Eng. (iCREATE), Apr. 2014, pp. 300–305.

[4] D. Genius, E. Faure, and N. Pouillon, ‘‘Mapping a telecommunica-
tion application on a multiprocessor system-on-chip,’’ in Algorithm-
Architecture Matching for Signal and Image Processing. Dordrecht,
The Netherlands: Springer, 2011, pp. 53–77.

[5] S. Mukhopadhyay, M. Heddes, M. Ravasi, and M. S. Yeo, ‘‘System-on-
a-chip and multi-chip systems supporting advanced telecommunication
functions,’’ U.S. Patent 12 342 625, Jun. 24, 2010.

[6] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, ‘‘Computer architectures for
autonomous driving,’’ Computer, vol. 50, no. 8, pp. 18–25, 2017.

[7] X. Chen, X. Jiang, and L. Wang, ‘‘Development on ARM9 System-on-
chip embedded sensor node for urban intelligent transportation system,’’
in Proc. IEEE Int. Symp. Ind. Electron., vol. 4, Jul. 2006, pp. 3270–3275.

[8] N. Moreira, J. Lazaro, U. Bidarte, J. Jimenez, and A. Astarloa, ‘‘On
the utilization of system-on-chip platforms to achieve nanosecond syn-
chronization accuracies in substation automation systems,’’ IEEE Trans.
Smart Grid, vol. 8, no. 4, pp. 1932–1942, Jul. 2017.

141390 VOLUME 8, 2020



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

[9] B. Massot, C. Gehin, R. Nocua, A. Dittmar, and E. McAdams,
‘‘A wearable, low-power, health-monitoring instrumentation based on a
programmable system-on-chipTM,’’ in Proc. Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc., Sep. 2009, pp. 4852–4855.

[10] L. Gurgen, O. Gunalp, Y. Benazzouz, and M. Galissot, ‘‘Self-aware
cyber-physical systems and applications in smart buildings and cities,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2013,
pp. 1149–1154.

[11] A. Jantsch, A. Anzanpour, H. Kholerdi, I. Azimi, L. C. Siafara,
A. M. Rahmani, N. TaheriNejad, P. Liljeberg, and N. Dutt, ‘‘Hierarchical
dynamic goal management for IoT systems,’’ in Proc. 19th Int. Symp.
Qual. Electron. Design (ISQED), Mar. 2018, pp. 370–375.

[12] M. Shafique, D. Gnad, S. Garg, and J. Henkel, ‘‘Variability-aware dark
silicon management in on-chip many-core systems,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. San Jose, CA, USA: EDA Consortium,
Mar. 2015, pp. 387–392.

[13] W. Huang, M. R. Stant, K. Sankaranarayanan, R. J. Ribando, and
K. Skadron, ‘‘Many-core design from a thermal perspective,’’
in Proc. 45th Annu. Conf. Design Autom. (DAC), Jun. 2008,
pp. 746–749.

[14] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, ‘‘Mapping on
multi/many-core systems: Survey of current and emerging trends,’’ in
Proc. 50th Annu. Design Autom. Conf. (DAC). New York, NY, USA:
ACM, 2013, pp. 1:1–1:10

[15] N. Dutt, A. Jantsch, and S. Sarma, ‘‘Self-aware cyber-physical systems-
on-chip,’’ inProc. IEEE/ACM Int. Conf. Comput.-AidedDesign (ICCAD),
Austin, TX, USA, Nov. 2015, pp. 46–50.

[16] P. R. Lewis, M. Platzner, B. Rinner, J. Tørresen, and X. Yao, Self-
Aware Computing Systems: An Engineering Approach (Natural Comput-
ing Series), 1st ed. Cham, Switzerland: Springer, 2016, doi: 10.1007/978-
3-319-39675-0.

[17] N. Dutt and N. TaheriNejad, ‘‘Self-awareness in cyber-physical systems,’’
in Proc. 29th Int. Conf. VLSI Design 15th Int. Conf. Embedded Syst.
(VLSID), Jan. 2016, pp. 5–6.

[18] K. Bellman, N. Dutt, L. Esterle, A. Herkersdorf, A. Jantsch, C. Landauer,
P. R. Lewis,M. Platzner, N. TaheriNejad, andK. Tammemäe, ‘‘Self-aware
cyber-physical systems,’’ ACM Trans. Cyber-Phys. Syst., vol. 4, no. 4,
pp. 1–24, 2020.

[19] J.-S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, and E. Calis,
‘‘The benefits of self-awareness and attention in fog andmist computing,’’
Computer, vol. 48, no. 7, pp. 37–45, Jul. 2015.

[20] F. Forooghifar, A. Aminifar, and D. Atienza, ‘‘Resource-aware dis-
tributed epilepsy monitoring using self-awareness from edge to cloud,’’
IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1338–1350,
Dec. 2019.

[21] S. Kounev, X. Zhu, J. O. Kephart, and M. Kwiatkowska, ‘‘Model-
driven algorithms and architectures for self-aware computing systems
(Dagstuhl seminar 15041),’’ Dagstuhl Rep., vol. 5, no. 1, pp. 164–196,
2015.

[22] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. L. Minku, and
L. Esterle, ‘‘The handbook of engineering self-aware and self-expressive
systems,’’ CoRR, vol. abs/1409.1793, pp. 1–81, Sep. 2014. [Online].
Available: http://arxiv.org/abs/1409.1793

[23] H. Psaier and S. Dustdar, ‘‘A survey on self-healing systems:
Approaches and systems,’’ Computing, vol. 91, no. 1, pp. 43–73,
Jan. 2011.

[24] P. R. Lewis, A. Chandra, F. Faniyi, K. Glette, T. Chen, R. Bahsoon,
J. Torresen, and X. Yao, ‘‘Architectural aspects of self-aware and self-
expressive computing systems: From psychology to engineering,’’ Com-
puter, vol. 48, no. 8, pp. 62–70, Aug. 2015.

[25] T. Bures, D. Weyns, B. Schmerl, J. Fitzgerald, A. Aniculaesei, C. Berger,
J. Cambeiro, J. Carlson, S. A. Chowdhury,M. Daun, and N. Li, ‘‘Software
engineering for smart cyber-physical systems (SEsCPS 2018)-workshop
report,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 44, no. 4, pp. 11–13,
2019.

[26] M. Götzinger, N. Taherinejad, A. M. Rahmani, P. Liljeberg, A. Jantsch,
and H. Tenhunen, ‘‘Enhancing the early warning score system using data
confidence,’’ in Proc. Int. Conf. Wireless Mobile Commun. Healthcare.
Cham, Switzerland: Springer, 2016, pp. 91–99.

[27] M. Götzinger, A. Anzanpour, I. Azimi, N. Taherinejad,
and A. M. Rahmani, ‘‘Enhancing the self-aware early warning score
system through fuzzified data reliability assessment,’’ in Proc. Int. Conf.
Wireless Mobile Commun. Healthcare. Cham, Switzerland: Springer,
2017, pp. 3–11.

[28] M. Götzinger, A. Anzanpour, I. Azimi, N. TaheriNejad, A. Jantsch,
A. M. Rahmani, and P. Liljeberg, ‘‘Confidence-enhanced early warn-
ing score based on fuzzy logic,’’ Mobile Netw. Appl., vol. 8, pp. 1–18,
Aug. 2019.

[29] M. Gotzinger, N. TaheriNejad, H. A. Kholerdi, and A. Jantsch, ‘‘On the
design of context-aware health monitoring without a priori knowledge;
an AC-motor case-study,’’ in Proc. IEEE 30th Can. Conf. Electr. Comput.
Eng. (CCECE), Apr. 2017, pp. 1–5.

[30] M. Gotzinger, E. Willegger, N. TaheriNejad, A. Jantsch, T. Sauter,
T. Glatzl, and P. Lilieberg, ‘‘Applicability of context-aware health moni-
toring to hydraulic circuits,’’ in Proc. IECON-44th Annu. Conf. IEEE Ind.
Electron. Soc., Oct. 2018, pp. 4712–4719.

[31] M. Götzinger, N. TaheriNejad, H. A. Kholerdi, A. Jantsch, E. Willegger,
T. Glatzl, A. M. Rahmani, T. Sauter, and P. Liljeberg, ‘‘Model-free
condition monitoring with confidence,’’ Int. J. Comput. Integr. Manuf.,
vol. 32, nos. 4–5, pp. 466–481, May 2019.

[32] F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao, ‘‘Architecting self-aware
software systems,’’ in Proc. IEEE/IFIP Conf. Softw. Archit., Apr. 2014,
pp. 91–94.

[33] L. Guang, E. Nigussie, J. Plosila, J. Isoaho, and H. Tenhunen, ‘‘Survey
of self-adaptive NoCs with energy-efficiency and dependability,’’ Int.
J. Embedded Real-Time Commun. Syst., vol. 3, no. 2, pp. 1–22,
Apr. 2012.

[34] J. Schlingensiepen, F. Nemtanu, R.Mehmood, and L.McCluskey, ‘‘Auto-
nomic transport management systems—Enabler for smart cities, per-
sonalized medicine, participation and industry grid/industry 4.0,’’ in
Intelligent Transportation Systems–Problems and Perspectives. Cham,
Switzerland: Springer, 2016, pp. 3–35.

[35] D. B. Abeywickrama and E. Ovaska, ‘‘A survey of autonomic computing
methods in digital service ecosystems,’’ Service Oriented Comput. Appl.,
vol. 11, no. 1, pp. 1–31, Mar. 2017.

[36] M. Parashar and S. Hariri, ‘‘Autonomic computing: An overview,’’
in Unconventional Programming Paradigms, J.-P. Banâtre, P. Fradet,
J.-L. Giavitto, and O. Michel, Eds. Berlin, Germany: Springer, 2005,
pp. 257–269.

[37] M. C. Huebscher and J. A. McCann, ‘‘A survey of autonomic
computing—Degrees, models, and applications,’’ ACM Comput.
Surv., vol. 40, no. 3, pp. 1–28, Aug. 2008, doi: 10.1145/1380584.
1380585.

[38] A. L. Randall and R. C. Walter, ‘‘Overview of the small unit operations
situational awareness system,’’ in Proc. IEEE Mil. Commun. Conf. (MIL-
COM), vol. 1, Oct. 2003, pp. 169–173.

[39] M. Rahman, R. Ranjan, R. Buyya, and B. Benatallah, ‘‘A taxonomy
and survey on autonomic management of applications in grid comput-
ing environments,’’ Concurrency Comput., Pract. Exp., vol. 23, no. 16,
pp. 1990–2019, Nov. 2011. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.1734

[40] J. O. Kephart, ‘‘Research challenges of autonomic computing,’’ in Proc.
27th Int. Conf. Softw. Eng. (ICSE), 2005, pp. 15–22.

[41] A. G. Ganek and T. A. Corbi, ‘‘The dawning of the autonomic computing
era,’’ IBM Syst. J., vol. 42, no. 1, pp. 5–18, 2003.

[42] D. Sinreich, ‘‘An architectural blueprint for autonomic computing,’’
IBM Corp., Armonk, NY, USA, White paper, 2006. [Online].
Available: https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%
20White%20Paper%20V7.pdf

[43] P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic Computing:
Principles, Design and Implementation. London, U.K.: Springer, 2013.

[44] J. O. Kephart and D. M. Chess, ‘‘The vision of autonomic computing,’’
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[45] J. Cámara, K. L. Bellman, J. O. Kephart, M. Autili, N. Bencomo,
A. Diaconescu, H. Giese, S. Götz, P. Inverardi, S. Kounev, and M. Tivoli,
Self-aware Computing Systems: Related Concepts and Research Areas.
Cham, Switzerland: Springer, 2017, pp. 17–49, doi: 10.1007/978-3-319-
47474-8_2.

[46] D. F. Bantz, C. Bisdikian, D. Challener, J. P. Karidis, S. Mastrianni,
A. Mohindra, D. G. Shea, and M. Vanover, ‘‘Autonomic personal com-
puting,’’ IBM Syst. J., vol. 42, no. 1, pp. 165–176, 2003.

[47] M. Salehie and L. Tahvildari, ‘‘Self-adaptive software: Landscape and
research challenges,’’ ACM Trans. Auto. Adapt. Syst., vol. 4, no. 2, p. 14,
2009.

[48] C. Landauer and K. L. Bellman, ‘‘An architecture for self-awareness
experiments,’’ in Proc. IEEE Int. Conf. Autonomic Comput. (ICAC),
Jul. 2017, pp. 255–262.

VOLUME 8, 2020 141391

http://dx.doi.org/10.1007/978-3-319-39675-0
http://dx.doi.org/10.1007/978-3-319-39675-0
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1145/1380584.1380585
http://dx.doi.org/10.1007/978-3-319-47474-8_2
http://dx.doi.org/10.1007/978-3-319-47474-8_2


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

[49] K. L. Bellman, ‘‘An approach to integrating and creating flexible software
environments supporting the design of complex systems,’’ in Proc. Winter
Simul. Conf., 1991, pp. 1101–1105.

[50] M. Salehie and L. Tahvildari, ‘‘Autonomic computing: Emerging trends
and open problems,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 30, no. 4,
pp. 1–7, 2005.

[51] H. Giese, T. Vogel, A. Diaconescu, S. Götz, N. Bencomo, K. Geihs,
S. Kounev, and K. L. Bellman, State of the Art in Architectures for
Self-Aware Computing Systems. Cham, Switzerland: Springer, 2017,
pp. 237–275, doi: 10.1007/978-3-319-47474-8_8.

[52] N. Dutt, A. Jantsch, and S. Sarma, ‘‘Toward smart embedded systems:
A self-aware system-on-chip (SOC) perspective,’’ ACM Trans. Embed.
Comput. Syst., vol. 15, no. 2, pp. 22:1–22:27, Feb. 2016.

[53] P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, and L. Benini, ‘‘A linux-
governor based dynamic reliabilitymanager for Androidmobile devices,’’
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2014, pp. 1–4.

[54] B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. Pflugfelder,
G. F. Dominguez, and P. R. Lewis, ‘‘Self-aware and self-expressive
camera networks,’’ Computer, vol. 48, no. 7, pp. 21–28, Jul. 2015.

[55] F. Forooghifar, A. Aminifar, and D. A. Alonso, ‘‘Self-aware wearable
systems in epileptic seizure detection,’’ in Proc. 21st Euromicro Conf.
Digit. Syst. Design (DSD), Aug. 2018, pp. 426–432.

[56] B. Jennings and R. Stadler, ‘‘Resource management in clouds: Survey and
research challenges,’’ J. Netw. Syst. Manage., vol. 23, no. 3, pp. 567–619,
Jul. 2015, doi: 10.1007/s10922-014-9307-7.

[57] P. Spathis andM. D. D. Bicudo, ‘‘Ana: Autonomic network architecture,’’
in Autonomic Network Management Principles: From Concepts to Appli-
cations. Oxford, U.K.: Academic, 2011, p. 49.

[58] L. Wanner, S. Elmalaki, L. Lai, P. Gupta, and M. Srivastava, ‘‘VarEMU:
An emulation testbed for variability-aware software,’’ in Proc. Int.
Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2013,
pp. 1–10.

[59] J. Strassner, S.-S. Kim, and J. W.-K. Hong, ‘‘The design of an autonomic
communication element to manage future Internet services,’’ in Man-
agement Enabling the Future Internet for Changing Business and New
Computing Services. Berlin, Germany: Springer, 2009, pp. 122–132.

[60] W. Baek and T. M. Chilimbi, ‘‘Green: A framework for sup-
porting energy-conscious programming using controlled approxima-
tion,’’ in Proc. ACM SIGPLAN Notices, vol. 45, no. 6, 2010,
pp. 198–209.

[61] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and
A. Agarwal, ‘‘SEEC: A framework for self-aware computing,’’
MIT, Cambrige, MA, USA, Tech. Rep. MIT-CSAIL-TR-2010-049,
Oct. 2010.

[62] E. Shamsa, A. Kanduri, N. TaheriNejad, A. Probstl, S. Chakraborty,
A. M. Rahmani, and P. Liljeberg, ‘‘User-centric resource management for
embedded multi-core processors,’’ in Proc. 33rd Int. Conf. VLSI Design
19th Int. Conf. Embedded Syst. (VLSID), Jan. 2020, pp. 1–6.

[63] A. Akbar and P. R. Lewis, ‘‘Self-adaptive and self-aware mobile-cloud
hybrid robotics,’’ in Proc. 5th Int. Conf. Internet Things, Syst., Manage.
Secur., Oct. 2018, pp. 262–267.

[64] L. C. Siafara, H. A. Kholerdi, A. Bratukhin, N. TaheriNejad, A. Wendt,
A. Jantsch, A. Treytl, and T. Sauter, ‘‘SAMBA: A self-aware health
monitoring architecture for distributed industrial systems,’’ in Proc.
IECON-43rd Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2017,
pp. 3512–3517.

[65] L. C. Siafara, H. Kholerdi, A. Bratukhin, N. Taherinejad, and A. Jantsch,
‘‘SAMBA–an architecture for adaptive cognitive control of distributed
cyber-physical production systems based on its self-awareness,’’ e i
Elektrotechnik und Informationstechnik, vol. 135, no. 3, pp. 270–277,
Jun. 2018, doi: 10.1007/s00502-018-0614-7.

[66] K. Nymoen, A. Chandra, and J. Torresen, ‘‘Self-awareness in activemusic
systems,’’ Self-Aware Computing Systems. Cham, Switzerland: Springer,
2016, pp. 279–296, doi: 10.1007/978-3-319-39675-0_14.

[67] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,
W. Schröder-Preikschat, and G. Snelting, ‘‘Invasive computing:
An overview,’’ in Multiprocessor System-on-Chip: Hardware Design
and Tool Integration, M. Hübner and J. Becker, Eds. Berlin, Germany:
Springer, 2011, pp. 241–268.

[68] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Bernauer, O. Bringmann,
W. Rosenstiel, and A. Herkersdorf, ‘‘Autonomic system on chip plat-
form,’’ in Organic Computing—A Paradigm Shift for Complex Systems
(Autonomic Systems), C. Müller-Schloer, H. Schmeck, and T. Ungerer,
Eds. Basel, Switzerland: Birkhäuser, 2011, ch. 4.7, pp. 413–425.

[69] A. Bouajila, J. Zeppenfeld, W. Stechele, A. Herkersdorf, A. Bernauer,
O. Bringmann, and W. Rosenstiel, ‘‘Organic computing at the system on
chip level,’’ in Proc. IFIP Int. Conf. Very Large Scale Integr., Oct. 2006,
pp. 338–341.

[70] G. Kornaros and D. Pnevmatikatos, ‘‘A survey and taxonomy of on-chip
monitoring of multicore systems-on-chip,’’ ACM Trans. Design Autom.
Electron. Syst., vol. 18, no. 2, pp. 1–38, Mar. 2013.

[71] N. T. Nejad, M. A. Shami, and P. D. S. Manoj, ‘‘Self-aware sensing and
attention-based data collection in multi-processor system-on-chips,’’ in
Proc. 15th IEEE Int. New Circuits Syst. Conf. (NEWCAS), Jun. 2017,
pp. 81–84.

[72] S. M. Jafri, L. Guang, A. Jantsch, K. Paul, A. Hemani, and
H. Tenhunen, ‘‘Self-adaptive NoC power management with dual-
level agents-architecture and implementation,’’ in Proc. PECCS, 2012,
pp. 450–458.

[73] S. Kounev, P. Lewis, K. Bellman, N. Bencomo, J. Camara, A. Diaconescu,
L. Esterle, K. Geihs, H. Giese, S. Götz, P. Inverardi, J. Kephart, and
A. Zisman, ‘‘The notion of self-aware computing,’’ in Self-Aware Com-
puting Systems, S. Kounev, J. O. Kephart, A. Milenkoski, and X. Zhu,
Eds. Cham, Switzerland: Springer, 2017, pp. 3–16.

[74] J. Kramer and J. Magee, ‘‘Self-managed systems: An architec-
tural challenge,’’ in Proc. Future Softw. Eng. (FOSE), May 2007,
pp. 259–268.

[75] U. Aßmann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp, A Refer-
ence Architecture and Roadmap for Models Run.Time Systems. Cham,
Switzerland: Springer, 2014, pp. 1–18, doi: 10.1007/978-3-319-08915-
7_1.

[76] L. Guang, E. Nigussie, J. Isoaho, P. Rantala, and H. Tenhunen, ‘‘Inter-
connection alternatives for hierarchical monitoring communication in
parallel SoCs,’’ Microprocessors Microsyst., vol. 34, no. 5, pp. 118–128,
Aug. 2010.

[77] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson, ‘‘Pervasive ecosys-
tems: A coordination model based on semantic chemistry,’’ in Proc. 27th
Annu. ACM Symp. Appl. Comput. New York, NY, USA: ACM, 2012,
pp. 295–302.

[78] C. Savaglio, G. Fortino, and M. Zhou, ‘‘Towards interoperable, cog-
nitive and autonomic IoT systems: An agent-based approach,’’ in
Proc. IEEE 3rd World Forum Internet Things (WF-IoT), Dec. 2016,
pp. 58–63.

[79] I. Carreras, I. Chlamtac, F. De Pellegrini, and D. Miorandi,
‘‘BIONETS: Bio-inspired networking for pervasive communication
environments,’’ IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 218–229,
Jan. 2007.

[80] A. Bucchiarone, ‘‘Collective adaptation through multi-agents ensembles:
The case of smart urbanmobility,’’ACMTrans. Auto. Adapt. Syst., vol. 14,
no. 2, pp. 1–28, Dec. 2019.

[81] A. Bucchiarone, M. De Sanctis, A. Marconi, and A. Martinelli,
‘‘DeMOCAS: Domain objects for service-based collective adaptive
systems,’’ in Service-Oriented Computing—ICSOC 2016 Workshops.
Cham, Switzerland: Springer, 2017, pp. 174–178. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-68136-8_19

[82] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. London, U.K.: Pearson, 2010.

[83] M. Wooldridge and N. R. Jennings, ‘‘Intelligent agents: Theory and
practice,’’ Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152, Jun. 1995.

[84] C. Hewitt, ‘‘Actor model of computation for scalable robust informa-
tion systems,’’ in Proc. Symp. Logic Collaboration Intell. Appl., 2017,
pp. 1–91.

[85] A. Sadighi, B. Donyanavard, T. Kadeed, K. Moazzemi, T. Muck,
A. Nassar, A. M. Rahmani, T. Wild, N. Dutt, R. Ernst, A. Herkersdorf,
and F. Kurdahi, ‘‘Design methodologies for enabling self-awareness in
autonomous systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2018, pp. 1532–1537.

[86] L. Guang, ‘‘Hierarchical agent-based adaptation for self-aware embedded
computing systems,’’ Ph.D. dissertation, Dept. Inf. Technol., Univ. Turku,
Turku, Finland, 2012.

[87] J. Hunt, Introduction to Akka Actors. Springer, 2014, pp. 383–398.
[88] D. Charousset, R. Hiesgen, and T. C. Schmidt, ‘‘Revisiting actor pro-

gramming in C++,’’ Comput. Lang., Syst. Struct., vol. 45, pp. 105–131,
Apr. 2016.

[89] P. Taillandier, B. Gaudou, A. Grignard, Q.-N. Huynh, N. Marilleau,
P. Caillou, D. Philippon, and A. Drogoul, ‘‘Building, composing and
experimenting complex spatial models with the GAMA platform,’’
GeoInformatica, vol. 23, no. 2, pp. 299–322, Apr. 2019.

141392 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-47474-8_8
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1007/s00502-018-0614-7
http://dx.doi.org/10.1007/978-3-319-39675-0_14
http://dx.doi.org/10.1007/978-3-319-08915-7_1
http://dx.doi.org/10.1007/978-3-319-08915-7_1


M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

[90] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, Jade—A Java
Agent Development Framework. Boston, MA, USA: Springer, 2005,
pp. 125–147.

[91] B. Chen, H. H. Cheng, and J. Palen, ‘‘Mobile-C: A mobile agent plat-
form for mobile C/C++ agents,’’ Softw. Pract. Exper., vol. 36, no. 15,
pp. 1711–1733, 2006.

[92] N. Collier and M. North, ‘‘Parallel agent-based simulation with
repast for high performance computing,’’ Simulation, vol. 89, no. 10,
pp. 1215–1235, Oct. 2013.

[93] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal,
M. Bragen, and P. Sydelko, ‘‘Complex adaptive systems modeling with
repast simphony,’’ Complex Adapt. Syst. Model., vol. 1, no. 1, p. 3,
Dec. 2013.

[94] N. TaheriNejad, A. Jantsch, and D. Pollreisz, ‘‘Comprehensive obser-
vation and its role in self-awareness; an emotion recognition system
example,’’ in Proc. Position Papers Federated Conf. Comput. Sci. Inf.
Syst., Gdansk, Poland, Oct. 2016, pp. 117–124.

[95] A. Jantsch and K. Tammemäe, ‘‘A framework of awareness for artificial
subjects,’’ in Proc. 2014 Int. Conf. Hardw./Softw. Codesign Syst. Synth.
New York, NY, USA: ACM, 2014, pp. 20:1–20:3.

[96] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,
Jun. 1965.

[97] J. McGaughey, F. Alderdice, R. Fowler, A. Kapila, A. Mayhew, and
M. Moutray, ‘‘Outreach and early warning systems (EWS) for the pre-
vention of intensive care admission and death of critically ill adult
patients on general hospital wards,’’ Cochrane Library, vol. 2007, no. 3,
pp. CD005529:1–CD005529:24, Jul. 2007.

[98] R. J. Morgan, F. Williams, and M. M. Wright, ‘‘An early warning scoring
system for detecting developing critical illness,’’ Clin. Intensive Care,
vol. 8, no. 2, p. 100, 1997.

[99] W. Thomson and R. Gilmore, ‘‘Motor current signature analysis to
detect faults in induction motor drives–fundamentals, data interpretation,
and industrial case histories,’’ in Proc. 32nd Turbomachinery Symp.,
Sep. 2003, pp. 145–156.

[100] N. TaheriNejad and A. Jantsch, ‘‘Improved machine learning using con-
fidence,’’ in Proc. IEEE Can. Conf. Electr. Comput. Eng. (CCECE),
May 2019, pp. 1–5.

[101] H. A. Kholerdi, N. TaheriNejad, and A. Jantsch, ‘‘Enhancement of clas-
sification of small data sets using self-awareness—An iris flower case-
study,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2018,
pp. 1–5.

[102] HADRKERNEL. (2017). ODROID-XU4 Manual. [Online]. Avail-
able: https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-
manual.pdf

[103] Raspberry Pi (Trading) Ltd. (2019). Raspberry Pi Compute
Module 3+ Datasheet. [Online]. Available: https://www.raspberrypi.
org/documentation/hardware/computemodule/datasheets/rpi_DATA_
CM3plus_1p0.pdf

[104] LITTLE Technology. (2013). The Future of Mobile. [Online]. Available:
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_
of_Mobile.pdf

MAXIMILIAN GÖTZINGER (Member, IEEE)
received the B.Sc. and M.Sc. degrees in electrical
engineering and information technology from TU
Wien (formerly known as the Vienna University of
Technology as well), Vienna, Austria, in 2012 and
2015, respectively. He is currently pursuing the
Ph.D. degree in computer science with the Depart-
ment of Future Technologies, University of Turku.

He is also with the Institute of Computer Tech-
nology, TU Wien, as a Project Assistant and a

Teacher. He has a keen and serious interest in computer science and engi-
neering, as well as teaching. His research interest includes computational
self-awareness, for which he is conducting many case studies, such as health
and system monitoring. He has published ten peer-reviewed papers, for one
of which he received the Best Paper Award. In 2019, he received the one
Best Teacher Award and the one Best Lecturer Award for the course digital
systems.

DÁVID JUHÁSZ received the B.Sc. and M.Sc.
degrees in computer science from Eötvös Loránd
University, Budapest, Hungary, in 2010 and 2012,
respectively. He is currently pursuing the Ph.D.
degree with the Institute of Computer Technology,
TU Wien, Vienna, Austria.

He is an Early Stage Researcher of the oCPS
Marie Curie ITN Project at TU Wien. He is also a
Lead Software Architect at Imsys AB, Stockholm,
Sweden. His research interests include develop-

ment methodologies and runtime systems that enable efficient utilization
of complex hardware solutions via a high-level software environment. His
current research interests include self-aware systems and execution issues of
the state-of-the-art hardware platforms focusing on non-functional require-
ments. He had contributed to software development on different levels of
abstraction as well as design and implementation questions of programming
languages, runtime systems, and instruction set architectures.

NIMA TAHERINEJAD (Member, IEEE) received
the Ph.D. degree in electrical and computer engi-
neering from The University of British Columbia,
Vancouver, Canada, in 2015.

He is currently a ‘‘Universitätsassistant’’ at
TU Wien (formerly known also as the Vienna
University of Technology), Vienna, Austria,
where his areas of work include self-awareness
in resource-constrained cyber-physical systems,
embedded systems, systems on chip, health-care,

memristor-based circuit and systems, and robotics. He has published two
books and more than 45 peer-reviewed articles. He received several awards
and scholarships from universities, conferences, and workshops he has
attended. He has also served as a reviewer, an editor, an organizer, and the
chair for various journals, conferences, and workshops.

EDWIN WILLEGGER received the B.Sc. degree
in electrical engineering from TU Wien, Vienna,
Austria, in 2018, where he is currently pursu-
ing the master’s degree in microelectronics and
photonics.

From 2014 to 2015, he was with Siemens
Austria and was doing research on preventive
maintenance of complex mechanical systems.
Since 2015, he has been a Research Assistant at
TUWien. His research interest includes the devel-

opment of self-aware hardware and software systems.

BENEDIKT TUTZER received the B.S. degree
in computer engineering from TU Wien, Vienna,
Austria, in 2018, where he is currently pursuing
the master’s degree in embedded systems.

In 2017 and 2018, he was with the Interactive
Media Systems Group, TU Wien, researching the
applications of virtual-reality headsets as a seeing
aid for visually impaired patients at the Vienna
General Hospital. Since 2018, he has been with
the Institute of Computer Technology, TU Wien,
focusing on electronic design automation.

VOLUME 8, 2020 141393



M. Götzinger et al.: RoSA: A Framework for Modeling Self-Awareness in Cyber-Physical Systems

PASI LILJEBERG (Member, IEEE) received the
M.Sc. and Ph.D. degrees in information and com-
munication technology from the University of
Turku, Turku, Finland, in 1999 and 2005, respec-
tively. He received an Adjunct Professorship in
embedded computing architectures, in 2010. He is
currently a Full Professor with the Digital Health
Technology, University of Turku. He has authored
more than 300 peer-reviewed publications. His
current research interests include biomedical engi-

neering, the Internet of Things, fog computing, approximate and adaptive
computing, wearable sensor, e-health technology, and health data analytics.
In that context, he has established and leading the Internet-of-Things for
Healthcare (IoT4Health) Research Group.

AXEL JANTSCH (Senior Member, IEEE) received
the Dipl.Ing. and Ph.D. degrees in computer sci-
ence from TU Wien, Vienna, Austria, in 1987 and
1992, respectively.

From 1997 to 2002, he was an Associate Pro-
fessor at the KTH Royal Institute of Technology,
Stockholm, where he was a full Professor in elec-
tronic systems design, from 2002 to 2014. Since
2014, he has been a Professor of systems on chips
at the Institute of Computer Technology, TUWien.

He has published five books as an Editor and one as an Author, over
300 peer-reviewed contributions in journals, books, and conference proceed-
ings. He has given over 100 invited presentations at conferences, universities,
and companies. His current research interests include systems on chips,
self-aware cyber-physical systems, and embedded machine learning.

AMIR M. RAHMANI (Senior Member, IEEE) is
currently an Assistant Professor of computer sci-
ence and nursing (joint appointment) at UCI and is
also a Life-Time Adjunct Professor (Docent) at the
Department of Future Technologies, University of
Turku, Turku, Finland. He is the Founder of the
Health SciTech Group, University of California at
Irvine (UCI), and the Co-Founder of the Internet-
of-Things for Healthcare Group (IoT4Health),
University of Turku (UTU). He has coauthored

more than 200 peer-reviewed publications. His research interests include
the Internet of Things (IoT), e-health, wearable sensor design, bio-signal
processing, health informatics, and big health data analytics. He is espe-
cially excited about novel sensing, computation/analytics, communication,
and networking paradigms, applied to healthcare/medical and well-being
applications. He is the Associate Editor-in-Chief of the ACM Transactions
on Computing for Healthcare.

141394 VOLUME 8, 2020


