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of motion artifacts in PPG signals. However, these methods

require either extra sensors, or extra computational and energy

resources to perform extensive complex calculations. In this

work, we present a method that does not need any extra sensor

and computationally is very similar to existing algorithms that

extract RR from PPG. Nevertheless, the proposed algorithm,

Smart Fusion of Frequency Domain Peak (SFFDP), is consid-

erably more robust against movement artifacts.

II. PROPOSED METHOD

Figure 2 shows all the steps of the proposed RR extraction

algorithm. In the rest of this section, we describe the details

of each step.

A. Prepare Data

To be able to extract the necessary features of the signal,

first the raw data needs to be pre-processed and prepared for

the feature extraction step. This preparation includes band-pass

filtering to remove the offset and any noise that lays outside

the field of interest and extracting the location of local maxima

and minima of the Blood Volume Pulse (BVP) signal. Using

a finite impulse response filter, namely Butterworth, [14] the

peaks can be easily detected since the maxima of the BVP

signal cause significantly large spikes. The order of the filter,

N , is defined by

N =
2 ∗ fs
25

, (1)

where fs is the sampling rate. The filter coefficients [14] are

bk =

{ −1 for k = 0, ...N2 − 1
1 for k = N

2 , ..., N − 1
(2)

Fig. 1. Respiration caused modulations: (a) none (b) Baseline Wanderer (BW)
(c) Amplitude Modulation (AM) (d) Frequency Modulation (FM).

Abstract—Wearable electronics enable a new look into the 
health of individuals in a fashion that was never possible before. 
However, many reliable methods for measuring Respiratory Rate 
(RR) require wearing gadgets that are impractical in a normal 
daily life setup. On the other hand, more practical methods, 
which are less intrusive, are often less reliable. Extracting RR 
using Photoplethysmogram (PPG) signals is one of the methods 
in the latter group. A major challenge for this method is the 
movement artifact, which leads to wrong estimation of RR or 
failure in its calculation. In this work, we propose a new algo-
rithm, Smart Fusion of Frequency Domain Peak (SFFDP),that 
outperforms existing algorithm by at least 37% improvement 
in terms of reliability; i.e., average error, Standard Deviation 
(STD), and Figure of Merit (FoM). This method does not require 
any signal other than PPG. Therefore, it can be used in a wide 
range of wearable devices, such as smart watches, without any 
hardware additions.

I. INTRODUCTION

Wearable Health-care Systems (WHS) spread their coverage 
to a wide range of applications [1, 2], being critical physical 
health domain [3, 4, 5, 6, 7], mental health [1, 8, 9], or well-

being and sport activities [1, 2]. However, their development 
is not free of challenges. In particular, constraints on resources 
drives the engineers to try to extract as much information 
possible with as little hardware as possible [10]. Moreover, 
the uncontrolled environment in which they operate poses 
challenges on their reliability [5, 10, 7]. Some of these chal-

lenges could be addressed by using more complex processing 
methods. However, those require more computational and 
energy resources, which are often not sufficiently available 
on these devices [4, 10]. Therefore, solutions that improve 
the reliability of the system with minimum overhead on the 
required resources are extremely valuable. In this paper, we 
propose such a solution for Respiratory Rate (RR) extraction. 

RR is an important physiological measure used in various 
medical studies [11]. However, common methods for direct 
measurement of RR, such as mounting a mouth piece, are 
rather uncomfortable for the subjects. One of the least intrusive 
methods of measuring RR is inferring it from Photoplethysmo-

gram (PPG) signals. The basic principle of RR extraction using 
PPG is to use the fact that breathing influences the cardiac 
system [12]. These influences, depicted in Figure 1, include 
amplitude and frequency modulation as well as wandering of 
the baseline. One of the main challenges that many WHS 
face, which affects the extraction of RR from PPG too, is the 
movement artifact [10]. In [13], we have provided an in-depth 
insight into the existing methods for detection and removal
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Fig. 2. Flow chart of the implemented RR extraction algorithm.

Figure 3 shows the visible improvement on a sample PPG

signal before and after application of the filter. Out of the

filtered signal, the local extrema are searched with three

criteria: (i) Extrema are recognized as such only if they are

bigger than the mean value of the signal, (ii) only detect

extrema that are 0.4fs apart, (iii) a peak must be surrounded

by two troughs and vice-versa (i.e., two peaks or two troughs

in a row are dimissed). After that, only the relevant peaks and

troughs remain and the extraction of the features can begin.

B. Feature Extraction

First the Amplitude Modulation (AM) feature is extracted

by calculating the difference of amplitude between the peaks

and troughs, which at the end is normalized to the mean of the

signal. The Baseline Wanderer (BW) is calculated by algebraic

addition of the amplitude of a peak to its following trough and

dividing the value by two, which is then normalized to the

mean of the signal. The last feature, Frequency Modulation

(FM), is calculated by subtracting the temporal location of

each peak and the one after it. At the end it is normalized to

the mean of the signal.

C. RR Extraction

For RR extraction, we propose a new estimation method

and then use smart fusion which combines the estimation and

values extracted from each feature to find a point of agreement

between all those values.

1) Proposed Estimation: For estimation of RR, existing

methods [15, 16, 17] process the extracted feature and respec-

tive properties in the time domain. In our proposed algorithm,

Smart Fusion of Frequency Domain Peak (SFFDP), we do

not use the features in the time domain like the other ones but

work in the frequency domain. Our algorithm searches for the

Dominant Frequency (DF) in the extracted signal. First, the

signal is detrended and after that, the dominant peak in the

range of 0.033 − 2Hz (which corresponds to a breath rate of

2 to 120 per minute) is searched and found. The breathrate

Fig. 3. (a) Original PPG signal and (b) filtered PPG signal.

TABLE I
DISTRIBUTION OF THE RECORDED DATA

No movement Movement
Normal breathing 10 12
Fast breathing 4 4
Slow breathing 4 7

corresponding to the DF is then considered as the estimated

RR.

2) Smart Fusion (SFU): The last step is the fusion of the

estimated values. To this end, first, the Standard Deviation

(STD) of the estimated values from each feature (BW, AM

and FM) is calculated for each window. If the STD is below

4, the mean value of these values is calculated and is taken as

the RR value of the fusion method. On the other hand, if only

two estimations have a STD below 4 and this value is lower

than the STD of all three estimations, the mean value of these

two estimations is calculated and set as the final RR value of

the fusion method. If all STDs exceed 4 then the value of the

SFU is set to NaN .

III. EXPERIMENTAL RESULTS

A. Collected Data and Setup

The data set consists of 41 samples from four male healthy

volunteers, aged between 26 and 29 years, performing three

different kinds of breathing and movements. The first task was

normal breathing in the range of 10 to 15 breaths per minute.

The second, fast breathing with a breath rate over 15 and the

last, slow breathing with a breath rate below 10. During the 60

seconds of measurement, the arm was moved from the table

straight into the air and this was repeated three times. Table I

shows the distribution of the collected data, and Figure 4 shows

an example of a BVP signal with the three movements and

their respective artifacts. Subjects’ count of their respiration

was used as the ground-truth of the respiratory rate.

The proposed algorithm is implemented in Matlab. Sam-

pling frequency of the BVP is 64 Hz and for the filter we have

used a 4th order high-pass Infinite Impulse Response (IIR)

filter, namely Butterworth, with a 0.05 Hz cut-off frequency

and a low-pass one with a 5 Hz cut-off frequency.

Fig. 4. A BVP with three movement artifacts.
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TABLE II
STATISTICAL RESULTS OF THE PROPOSED METHOD, SFFDP.

Window Mean|Error|
STD

Samples Window
FoM

Overlap [BPM] [%] length [s]
No 3.148 3.214 75.61 28 10.644
Yes 3.351 3.387 75.61 28 11.022

B. Window Size Selection

The performance of the system depends on various param-

eters such as processing window size. To find the perfect

window range, a parameter sweep was performed where the

window range was swept from 4 to 30 seconds in a step

size of 2. The maximum was set to 30 because the test

data are 60 seconds long. If the range exceeds 30 only half

of the signal could be analyzed since no second window

could be fully formed. Therefore, the range was not increased

further. In addition, the same range was tested with 50%

overlapping windows. We found out that very small window

size, especially below 10s, lead to undersirable performances.

For our algorithm, the optimal window size is 28s.

C. Figure of Merit (FoM)

To concretely evaluate the performance and quality of the

proposed algorithm as well as other algorithms, we define a

FoM, which is calculated by

FoM = Mean(|Error|) + STD + 10× (1− CSR2), (3)

where error is measured in Breath per Minute (BPM) and CSR

stands for the Computed Samples Ratio, that is the number

of samples with successful estimation of RR divided by the

overall number of samples. Since CSR is smaller than one and

the other two numbers are usually between one and ten, we

multiply (1 − CSR2) with a constant of 10, so that it can

be in the order of the other two numbers. Otherwise, the last

term would be too small and would have practically no effect

on FoM. Thus, the proposed FoM combines the amount of

error and reliability (represented by STD) of RR estimation,

as well as the number of samples it can successfully estimate.

The smaller FoM, the better the algorithm.

D. Results

The proposed algorithm, showed to be able to successfully

estimate 75% of the samples in our data set, with a mean

error and standard deviation of approximately 3 BPM. This is

an acceptable performance for many applications (e.g., Early

Warning Score (EWS) [3, 5, 6]), especially given the fact

that the data was contaminated with movement artifacts. A

summary of the results that we obtained for the proposed

algorithm is inserted in Table II. As we see in this table, the

performance of the system with and without window overlap

is very similar. However, the algorithm without overlapping

windows has a slightly better FoM and requires slightly less

processing power which makes it overall favorable. Moreover,

we observe that a Window Length of 28s was selected for

both cases since in our parameter sweep it showed the best

performance in both cases.

TABLE III
A SUMMARY OF ALL RR EXTRACTION ALGORITHMS.

Feature Extraction RR Estimation Fusion
AM BW FM CO PD DF SFU TFU

TDPD � � � � �

TDCO � � � � �

COSTF � � � � � �

SFFDP � � � � �

IV. COMPARISONS

A. Existing Algorithms

To be able to have a fair comparison, we implemented

three other principle algorithms in literature, namely Time

Domain Peak Detection (TDPD), Time Domain - Count Ori-

gin (TDCO), and Count Origin - Smart and Time Fusion

(COSTF). The first extraction algorithm, TDPD, [15] uses the

Peak Detection (PD) for estimation of RR. The second and

third algorithms, TDCO and COSTF [16], use Count Origin

(CO) method to detect peaks and troughs. In this method, a

threshold as 0.2 times the 75th percentile of peak values is

defined, and any peaks with an amplitude smaller than this

threshold is dismissed. A breath is detected as two consecu-

tive peaks separated by only one trough (with an amplitude

less than zero). Moreover, COSTF uses an additional fusion

method called Temporal Fusion (TFU) [17]. In Table III,

a summary of all the four tested algorithms, including the

proposed method (SFFDP), and their features are shown. The

key new feature of the proposed algorithm is using DF for its

estimation and the new enhanced SFU for the fusion.

It should be noted that compared to the original implemen-

tation, in our implementation of other works, we enhanced

TDPD, TDCO, and COSTF by changing the PPG peak detec-

tion from the detection of the maximum in the raw signal to

finding it after applying a filter, as seen in Figure 3, to get a

more robust detection. In addition, the fusion algorithm was

changed so that it can fuse two estimated values instead of

only all three, as it was the case originally. This increases the

percentages of calculated samples. A summary of the results

we obtained for each algorithm is inserted in Table IV. In

Table IV, the STDs for TDPD are 0 because only 2.44% of the

samples got calculated. That is only one sample and therefore

no STD could be calculated.

B. Comparison

We have summarized the comparison for the best result

of each algorithm and their respective FoM improvements

in Table V. In this table, the improvements of the proposed

algorithm, p, compared to algorithm i are calculated using

Imp. =
FoMi−FoMp

FoMi
. We observe that the proposed system

has the smallest mean error (3.1 BPM) and STD (only 3.2). We

remind the readers that the STD of TDPD is not considered

for comparison. Mainly because its value of 0 does not reflect

its reliability, but rather its lack of success in estimating more

than one sample. With regard to success in estimating RR, the

proposed method has a good performance of 75% which is

significantly larger than TDPD. This value however, is slightly
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TABLE IV
STATISTICAL RESULTS OF OTHER ALGORITHMS IN THE LITERATURE.

Algorithm
Mean|Error|

STD
Samples Window Window

FoM
[BPM] [%] length [s] Overlap

TDPD 9.226 0 2.44 12 19.220

TDPD 6.877 0 2.44 12 � 16.871
TDCO 15.418 6.353 97.6 22 22.253

TDCO 15.323 6.156 95.1 22 � 22.431
COSTF 16.257 6.753 100 28 23.009

COSTF 15.676 6.877 100 30 � 22.552

TABLE V
COMPARISON OF THE BEST PERFORMANCE OF ALL ALGORITHMS.

Algorithm
Mean|Error|

STD
Samples

FoM
Improv-

[BPM] [%] ement
TDPD 6.877 0 2.44 16.871 37%
TDCO 15.418 6.353 97.6 22.253 52%
COSTF 15.676 6.877 100 22.552 53%
Proposed 3.148 3.214 75.61 10.644 -

lower than TDCO and COSTF, which have a corresponding

ratio of 97% and 100%. Nevertheless, this slight degradation in

the ratio of successfully estimated samples is compensated by

a much larger improvement in the mean error (approximately

five times smaller error) and standard deviation (approximately

two times smaller). In particular, we note that a mean error of

15, associated with TDCO, and COSTF, is extremely large

and being comparable to the actual number of breath per

minutes, in most cases, renders it unacceptable. We observe

that FoMs reflects these factors as well. In summary, as we

can see in Table V, the proposed method (SFFDP), compared

to other three existing methods (TDPD, TDCO, and COSTF),

has a better performance (smallest FoM) and improves them

by 37-53%. This shows the superiority of the proposed method

compared to other existing ones.

V. CONCLUSION

In this paper, we proposed a new RR extraction algorithm,

SFFDP, which uses DF and SFU to extract the RR. Our

algorithm proved to be significantly more reliable than existing

algorithms despite introduction of movement artifacts. The

proposed algorithm has an average error of only 3.1 BPM and

a STD of 3.2, while successfully calculating 75.6% samples.

Compared to others, it shows more than 37% improvement

in the FoM, which combines the mean error, STD, and the

percentage of successfully estimated samples.
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