
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020 1495

A Memristive Multiplier Using Semi-Serial
IMPLY-Based Adder

David Radakovits, Nima TaheriNejad , Member, IEEE, Mengye Cai , Student Member, IEEE,

Théophile Delaroche, and Shahriar Mirabbasi , Member, IEEE

Abstract— Memristors are among emerging technologies with
many promising features, which makes them suitable not only for
storage purposes but also for computations. In this work, focusing
on in-memory computations, we first present our semi-serial
IMPLY-based adder and perform an extensive analysis of its
merits. In addition to providing a favorable balance between the
number of steps and number of memristors, a key property of the
presented adder is its compactness as compared to the state-of-
the-art adders. Next, using our semi-serial adder, we propose an
IMPLY-based multiplier. We show that the proposed multiplier
is more than 5× better than other works based on the figure of
merit which gives equal weight to the number of steps (i.e., speed)
and required die area. Additionally, we provide a deeper insight
into IMPLY-based arithmetic units, their properties, design
characteristics, and advantages or disadvantages compared to
one another by proposing new figures of merit and performing
comprehensive comparative analyses. This facilitates the process
of design, or selection, of suitable units for the design engineers
and researchers in the field.

Index Terms— Memristors, resistive RAM, memristive circuits,
IMPLY, adder, full-adder, semi-serial, multiplier, multiplication
circuit.

I. INTRODUCTION

MEMRISTORS as memory elements have been widely
researched [1]–[9] and are already used in commer-

cial products [10], [11]. Given the advantages of memristive
technologies, especially, in terms of size, speed, and power
consumption, one of their emerging applications is their use as
in-memory computational elements [3], [12]–[15]. In-Memory
Computation (IMC) refers to performing computations inside
memory, without performing any read or write operation for
the purpose of the computation. This type of operation has
many advantages; first, it saves on the energy required for
read and write, as well as the transfer of the data to the
processing unit. Next, it often enables massive parallelization

Manuscript received September 1, 2019; revised November 8, 2019;
accepted January 2, 2020. Date of publication January 23, 2020; date of
current version May 1, 2020. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC). This article
was recommended by Associate Editor B. Gosselin. (Corresponding author:
Nima TaheriNejad.)

David Radakovits and Nima TaheriNejad are with the Department of Electri-
cal Engineering and Information Technology, Institute of Computer Technol-
ogy, TU Wien, 1040 Vienna, Austria (e-mail: nima.taherinejad@tuwien.ac.at).

Mengye Cai and Shahriar Mirabbasi are with the Department of Electrical
and Computer Engineering, The University of British Columbia, Vancouver,
BC V6T 1Z4, Canada.

Théophile Delaroche is with the Bordeaux Graduate School of Electron-
ics, Computer Science, Telecommunications, Mathematics and Mechanics
(ENSEIRB), University of Bordeaux INP, 33400 Bordeaux, France.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2020.2965935

Fig. 1. Circuit-level implementation of IMPLY logic gate using memris-
tors [32].

of operations. Last, and perhaps the most important feature,
is that it can alleviate or solve the Von-Neumann bottleneck
problem, i.e., the speed and efficiency barrier that cannot
be overcome solely with more better performing Central
Processing Units (CPUs) and memory, due to the performance
gap between the aforementioned units and the data bus that is
shared among them [16]. These benefits have been shown in
recent works such as [17]–[21].

Adders and multipliers are crucial building blocks of
Arithmetic Logic Units (ALUs), since virtually every arith-
metic calculation on a computer system involves addition and
multiplication. Efficiency of these two units nowadays is even
more important given the widespread usage of computation-
heavy machine learning applications such as Neural Networks
(NNs). Therefore, in this paper, we focus on efficient full-
adder design and show that the proposed efficient adder can
be directly used in multipliers and offer performance that
compares favorably with that of optimized multiplier designs.
Among the wide range of memristor-based logic [21]–[30],
we have chosen Material Implication (IMPLY) logic [31]–[33]
because of its compatibility with IMC and crossbar struc-
ture [31], [32]. However, we note that IMPLY is not the
only logic with these features, others such as Memristor-Aided
Logic (MAGIC) [25] and Fast and energy-efficient Logic in
Memory (FELIX) [21] have similar properties too.

In a → b, the IMPLY operation leads to logic ‘0’ (High
Resistance State (HRS) or Rof f) at the output (which will be
stored on b, over-writing its initial input value), only if, a has
a logical value of ‘1’ (Low Resistance State (LRS) or Ron)
and b has a logical value of ‘0’. To perform this operation
in a memristive circuit, one connects memristor a and b as
shown in Figure 1 and applies two fixed voltages, respectively
VC O N D and VS ET , to those memristors. Detailed information
on IMPLY operation and how to select the two fixed voltages
and resistor RG can be found in [31]–[33].

The rest of the paper is organized as follows. In Section II,
we review the State-of-the-Art (SoA) in IMPLY-based adders.
In Section III, we review our proposed semi-serial adder [34]

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1295-0332
https://orcid.org/0000-0001-9514-6528
https://orcid.org/0000-0001-8852-1633

1496 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

Fig. 2. Serial full-adder topology.

To be able to better evaluate the performance of the adder,
we propose several metrics in Section IV, which take into
account a range of constraints and considerations that take part
in the decision-making process during design time. Based on
these metrics, we perform a comprehensive comparative analy-
sis of SoA adders in Section V and position our semi-serial
design among them. In Section VI, we propose a multiplier
based on our semi-serial adder and compare it with the SoA
multipliers. We show that even though, in contrast to other
SoA multipliers, we have not performed any optimization to
develop the multiplier, due to the outstanding qualities of the
semi-serial adder, the performance of the presented multiplier
compares favorably with that of the SoA. Finally, we provide
concluding remarks in Section VII.

II. LITERATURE REVIEW

IMPLY-based adders are traditionally designed in either
serial or parallel fashion. However, these two topologies mark
the opposite extremes of the continuum of possible adder
designs, where each design represents a compromise between
area, i.e., the number of necessary memristors (as well as addi-
tional Complementary Metal-Oxide Semiconductor (CMOS)
circuitry), and speed, i.e., the number of necessary compu-
tational steps. This section provides an overview of such
adders that are reported in the literature. A comprehensive
comparative analysis is provided in Section V.

A. Serial Adders

In serial designs [33], [35]–[37] all memristors, i.e., input
memristors, work memristors, and output memristors, are con-
nected to a common node together with the working resistor,
RG (cf. Figure 2). Fully serial topology therefore consumes
minimal space and has the lowest complexity, but at the same
time needs the highest number of steps to calculate a sum.
Therefore, the main focus for these designs has been reducing
the number of steps by devising more efficient algorithms.
Currently, 22n steps for an n-bit adder presented in [36] is
the lowest number of steps reported in the literature for this
kind of adders. This work presents another turning point in
the respective literature by reducing the number of memristors
required from 3n+3 to 2n+3. This feat is achieved by reusing
the memristors of one of the input variables to store the output
result. This clever design takes advantage of the fact that due
to intrinsic properties of IMPLY operations, input memristors
would lose their initial values in any case. Therefore, over-
writing them with the output results does not cause any
disadvantage.

B. Parallel Adders

On the other end of the spectrum are parallel topolo-
gies [33], [37]. In these topologies every bit of the first

Fig. 3. Parallel full-adder topology.

summand is located in a separate section together with its
associated work memristors wi, j , working resistor RG , and
the corresponding bit of the second summand (cf. Figure 3),
i.e., each section calculates one bit of the sum. Parallel
topologies are the fastest options for IMPLY-based adders,
while they require the largest number of memristors. The
smallest parallel design [37] in the literature uses 4n + 1
memristors and calculates the sum in 5n + 16 steps. This
improvement in area is in part due to the reuse of the input
memristors. The other notable technique is partitioning of the
algorithm, in that the carry memristor is shared by all sections.

C. Iterative and Semi-Parallel Adders

As mentioned before, in designing memristor-based adders,
there is still room for improvements, especially, when targeting
applications in which neither speed nor size can be compro-
mised. Therefore, some designs between the two extremes,
i.e., fully serial and fully parallel structures, have been pro-
posed. For instance, Rohani et al. [38], as shown in Figure 4,
use two separate sections to parallelize independent steps
within one bit, however, bits are run serially one after the
other. This approach makes the semi-parallel adder more
compact, since there are only two sections for any n-bit adder,
as opposed to n-sections in the parallel designs. However, it is
still not as fast as parallel designs, even though it requires less
steps compared to serial designs.

Another work with less traditional structure is the ’Iterative’
design [39]. Even though its name implies sequential opera-
tions, the work shows more similarities to parallel designs,
than serial designs. That is particularly noticeable in the very
large number of memristors it needs for its operations which
is a property shared by parallel designs. However, in terms of
the number of steps, it is closer to serial designs (i.e., it is
slower than parallel designs).

D. Multipliers

While there are several different IMPLY-based adder
designs in the literature, the number of multiplier designs

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

RADAKOVITS et al.: MEMRISTIVE MULTIPLIER USING SEMI-SERIAL IMPLY-BASED ADDER 1497

Fig. 4. Multi-bit semi-parallel; Parallelization within one bit and calculating
each bit after the other [38].

is considerably lower. This scarce presence of IMPLY-based
multipliers in the literature is remarkable, since multiplication
is among the most important functions of ALUs (along with
addition). In the following, we have highlighted IMPLY-based
multiplier designs:

1) Shift&Add Multiplier: The multiplier in [40] uses the
so-called Shift&Add scheme, in which the first factor is
repeatedly shifted left and added to a sum register if the corre-
sponding bit in the second factor is ‘1’, otherwise, it is shifted
again immediately. Through reuse of registers and optimized
IMPLY-based multiplexers and shift registers, the Shift&Add
multiplier provides a good compromise between the number of
memristors and computational steps. However, these optimiza-
tions are achieved through considerable addition of switches
and consequently increase the CMOS overhead significantly,
which is not fully considered in our comparisons given that
actual CMOS overhead numbers which include those control
logics are not available.

2) Array Multiplier: The array-type or parallel multiplier
in [41] uses n − 1 full adders for the implementation of an
n × n-bit multiplier, causing a high number of memristors.
Since the carry bits have to be propagated through all adders,
this scheme suffers from a relatively large delay too.

3) Dadda Multiplier: This multiplier in [42] uses the Dadda
scheme for multiplication, which was proposed by L. Dadda
in 1965 [43]. In this scheme the partial products are added
in a distinct tree structure to gain speed but also area savings
over the parallel multiplier.

III. SEMI-SERIAL ADDER

As mentioned in Section II, most IMPLY-based adder
designs are from one of two types: serial or parallel. Whereas
serial designs aim for a low number of memristors, thus
sacrifice speed, parallel approaches are optimized for speed,
but use a large number of work memristors. The goal of our
semi-serial adder design is to combine properties of both serial
and parallel approaches to achieve a better design with higher
Figure of Merit (FoM).

A. Design

Contrary to serial or parallel designs, in our semi-serial
adder the input variables ai and bi are located in two separate

Fig. 5. Topology of the previously proposed semi-serial full-adder.

sections while five work memristors (w1 to w4 and c) and the
carry-in memristor cin are located in a separate section. Our
design needs a total number of memristors of 2n + 6; 2n for
input memristors and output variable (output will be written
back on a), 4 work memristors (for any n) and two carry
memristors. As can be seen in Figure 5, the input sections
have their own work resistor RG , and each memristor in the
separate third section can be connected to either of the two
input sections, a and b. The input section a and the carry-in
memristor cin are reused to store the resulting sum and carry.
Equation (1) and Equation (2) show the formulation of sum
and carry in IMPLY logic, which we use to implement the
semi-serial adder.

S =
[
(a → b) →

(
(a → b) → c

)]
→

(
(a ⊕ b) → c

)

(1)

Cout =
[(

(a → b) → c
)

→ (b → a)
]

(2)

We refer to this structure as semi-serial, since each bit is
calculated in a serial fashion (similar to serial topology),
but the placement of work memristors in a separate third
section enables parallelism beyond what is possible in the
serial topology. The algorithm is spelled out in Table I. In the
main body of the algorithm, c is used and propagated. This
assumption is valid in the middle steps since the algorithm
itself produces and propagates c, however, in the beginning
traditionally cin is provided (not c). Moreover, at the end,
typically cout is desired not cout . Hence, to conform with
that, we consider one additional step for the inversion of
cin at the beginning and one additional inversion step at
the end of the algorithm. These steps, which are run only
once at the beginning and at the end of the execution of the
algorithm, are highlighted in bold blue in Table I. Therefore,
the overall number of steps is 10n + 2. Table II displays
the connection status of memristors in the work memristors
section (c, cin , w1−4) for every step in the algorithm (shown
in Table I). A “U” implies that the memristor is connected
to the upper section (a memristors), i.e., the upper switch is
closed while the lower switch is open. Analogously, an “L”
means that the respective memristor is connected to the lower
section (b memristors), i.e., the upper switch is open while
the lower switch is closed. A dash (“-”) shows a “don’t care”
state, meaning that the memristor could be connected to either
or neither of the sections, since the respective memristor is not

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

1498 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

TABLE I

EXECUTION STEPS OF ADDITION IN OUR SEMI-SERIAL TOPOLOGY, REQUIRING 10n + 2 STEPS, 2n + 6 MEMRISTORS. WORK MEMRISTORS AND c CAN
CONNECT TO ANY OF THE TWO SECTIONS AND c = cin . OPERATIONS IN BOLD BLUE (UNNUMBERED STEPS) ARE PERFORMED ONLY FOR THE

VERY FIRST AND VERY LAST BIT OF THE OPERATION

TABLE II

CONNECTION STATUS OF MEMRISTORS IN THE WORK SECTION FOR
EVERY STEP OF THE ALGORITHM AS SHOWN IN TABLE I. ‘U’ MEANS

UPPER SWITCH IS CLOSED, ‘L’ MEANS LOWER SWITCHED IS

CLOSED, AND DASH (‘-’) REPRSENTS A “don’t care” STATE
MEANING THAT EITHER OR BOTH SWITCHES COULD BE

OPEN OR CLOSED (THE MEMRISTOR IS IN INACTIVE

AND COULD BE CONNECTED TO EITHER OF THE

SECTIONS OR TO NONE)

TABLE III

PARAMETERS FOR VTEAM MODEL

used in that step (i.e., it is disconnected from supply voltage
and is inactive).

B. Simulations

1) Setup: The design was tested through simulations in
LTSpice. To model the behavior of memristors, we used the
Voltage-controlled ThrEshold Adaptive Memristor (VTEAM)
model [44] implemented in SPICE [34], [45]. The parameters
used for the setup of the model can be found in Table III.
Table IV shows the parameters used for the IMPLY logic.

2) Results: We could verify that our design can correctly
perform an n-bit summation using 2n + 6 memristors and the

TABLE IV

PARAMETERS FOR IMPLY LOGIC

number of necessary steps is 10n + 2. Simulating all input
combinations resulted in expected behaviors in all cases.

Our simulations yielded a power consumption of 9.87nJ per
bit. This figure does not include the inversion of the carry
for the first and last bit. These inversions cause an additional
overhead of 1.33nJ, which results in a total power consumption
of (9.87n + 1.33)nJ. Power consumption and energy numbers
were obtained using simulations in LTSpice and contain the
average1 consumption of memristors only. We note that the
energy consumption of memristors can substantially differ
based on the model (and technology) used. However, our
numbers can provide a good base for comparison in the future,
since the models we have used are available to the public
and others can use them to simulate their own adders and
obtain power consumption numbers that are comparable with
ours. In Section III-C.2, we report the power and energy
consumption of the CMOS control logic and the overall
consumption.

Figure 6 shows the SPICE simulation of a 1-bit full addition
using our semi-serial design. Figure 7 shows the simulation
of a complete 4-bit addition. The input values are a4−1 =
1011, b4−1 = 0100, cin = 0 = c and the results are correctly
calculated as a4−1 = 1111, cin = 0 = c and are available in
memristors ai and cin at 1.26ms, which equals 42 steps.

C. Discussions

1) Crossbar Compatibility: Our semi-serial design
requires external switches for the work memristor section

1Since the power consumption of a single IMPLY-gate depends on the
logical state of the inputs, we averaged the energy consumption over the
four possible input combinations and use that figure as the generic power
consumption of the gate.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

RADAKOVITS et al.: MEMRISTIVE MULTIPLIER USING SEMI-SERIAL IMPLY-BASED ADDER 1499

Fig. 6. Simulation of 1-bit full adder with a = 0, b = 0, cin = 1. One
IMPLY step takes 30µs.

Fig. 7. Simulation of 4-bit full adder with a4−1 = 1011, b4−1 = 0100,
c = 0 = cin . Results are available in ai and cin at 1.26ms.

(c, cin , w1−4) to connect them to different sections. However,
such memristors are usually implemented in a Back End Of
Line (BEOL) process2 which leads to CMOS switches being
located underneath the crossbar [50]–[53]. This can lead
to —virtually— no die area overhead. The area overhead
of these externally provided switches can be estimated
using our proposed FoMs in Equation (6) & Equation (7)
(cf. Section IV) and is considered in the comparison in
Section V. We note that prior research [54]–[57] has shown
that 1T1R structure is preferable over a 1R structure, because
of the robustness of logic operation and reduced parasitic

2In a BEOL process, the CMOS switches and circuits are produced in
a traditional CMOS technology, and once that process is finished the die is
transferred to a different facility with a memristive technology which produces
the memristors on top of the CMOS-finished die. There are already companies
which offer such a service commercially, e.g., see MOSIS C5 CMOS by
Neurobit [46], CMOS BEOL Memristor service by KNOWM [47], or CAE-
Leti services [48] through Circuits Multi Project (CMP) organization [49].

effects, such as the sneak path problem. Using a 1T1R
structure, the additional switches could be implemented easier
and would lead to relatively less CMOS overhead.

2) CMOS Control Logic: Here, to the best of our knowl-
edge, for the first time in the literature of IMPLY-based adders,
we have synthesized the control logic of the adder and report
its properties. To this end, we wrote the Hardware Description
Language (HDL) code for a state-machine corresponding to
the algorithm given in Table I. This state-machine is capable
of controlling an n-bit semi-serial adder for any given value of
n, with no or minimal changes in the hardware, as it takes the
number of bits of the adder, n, as an input variable. We have
synthesized it in a 65-nm CMOS technology and the design
led to 378µm2 (21µm × 18µm) of die area and a power
consumption of 271nW . Adding the energy consumption of
the control logic to the energy consumed in the memristors,
as reported in Section III-B.2, we obtain an overall energy
consumption of (9.95n + 1.33) nano Joules, where n denotes
the number of bits.

IV. METRICS

In the literature, arithmetic units such as adders or mul-
tipliers are usually compared regarding their size, i.e., the
number of necessary memristors, and their speed, i.e., the
number of necessary computational steps till the result is ready.
The comparison and judgment of performance on these two
figures, stand-alone and separately, barely provides a good and
fair insight to their merit. Firstly, because not each factor has
always the same weight. Moreover, other factors need to be
taken into account, e.g., the number of switches and drivers
(complexity of the system). In addition, these factors cannot be
assumed to have an equally large impact on the performance
and merit of a design. This is mainly because of two reasons:

i) Memristors are usually implemented in a BEOL process,
which means that CMOS switches can be implemented
underneath the memristor crossbar [50]–[53] and thus
only affect the size of the chip to an extent which is
not necessarily in proportion to the overall CMOS area.

ii) Since memristors have a very small area footprint, the
speed of a memristive system can be assumed to have a
larger impact on whether it can out-compete traditional
CMOS systems, than its size.

Hence, here we propose several FoMs which consider these
factors as well as different design constraints.

3) Balanced: We start with an equally balanced FoM,
Eq. (3), which is proportional to both the number of mem-
ristors (namely nM) and number of steps (shown by nS).

FoMB = 1

nM · nS
(3)

All proposed FoMs are formulated such that larger figures rep-
resent larger merit.

4) Speed-Centered: To evaluate designs for cases where the
speed of a design is more important than its size (due to
aforementioned reasons and/or design requirements), the FoM
in Equation (4) can be used.

FoMS = 1

nM · n2
S

(4)

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

1500 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

5) Memristor-Centered: If there is a larger emphasis on the
number of memristors in a design, the FoM in Equation (5)
can be used.

FoMM = 1

n2
M · nS

(5)

6) CMOS Overhead: To include the impact of necessary
additional CMOS switches, the FoM in Equation (6) can be
used, where nC denotes the number of CMOS switches. The
constant 1 is added to nC to ensure the FoM will not be infinite
in cases where no CMOS switches are used.

FoMC = 1

nM · nS · (1 + nC)
(6)

7) Area-Centered: The area of the overall memristive sys-
tem (including both memritors and classical CMOS circuitry)
is often assessed by the number of memristors and the number
of CMOS switches. However, we need to consider that

i) memristors are a lot smaller than CMOS switches, and
ii) memristors are usually implemented in a BEOL process.

Therefore, the CMOS circuitry is usually located under-
neath the memristor crossbar [50]–[53].

We therefore propose the FoM in Equation (7), which con-
siders that a CMOS switch is by a factor of c larger than a
memristor and may be located underneath the crossbar.

FoMA = 1

nS · max(nM , c · nC)
(7)

In Section V, we provide a comprehensive comparative
analysis using the FoMs proposed here. We note that not all
these FoMs are equally important. For example, between the
Area-centered (FoMA), CMOS Overhead (FoMC), and Bal-
anced (FoMB), the Area-centered metric is the most important
metric since it provides the most realistic figure regarding the
actual area used by the system and consequently its die area
and cost. Moreover, they all assume an equal weight on the
importance of area and speed, which may not be always the
case. We clarify this matter by a few examples.

For instance, if the IMC is intended to enhance an off-chip
(large) storage memory, cost of the memory and consequently
compactness of the design is more important. In such a case,
speed might be a secondary concern since the competing
solution (transferring data to the processor, processing it, and
storing it back in the memory again) is significantly slower
and hence any gain in speed is appreciated. On the other hand,
if the IMC is intended to enhance an on-chip (cache) memory,
both area (cost) and speed might be important, depending
on the type of the processor. In lower-end processors, cost
needs to be kept low, but speed is important too since by
slower designs it may be faster to process the data in the
processor as opposed to in memory. However, for higher-end
high-performance processors usually cost is less of a concern
and speed has a much higher priority and importance. For
such a design Speed-centered (FoMS) is probably a more
representative FoM.

Lastly, we would like to remark that the FoMs we have pro-
vided here are not conclusive and there are many other ways
to assess the merit of a design. In particular, when a certain

design and its constraints are being considered, a designer
can and should try to extract a FoM which appropriately
represents the goals of their design. We believe the FoMs that
we have provided here are good representatives for generic
cases, such as the examples above, and hope that they can
inspire designers and provide engineers a guideline to come
up with their own case-specific FoMs.

V. COMPARATIVE ANALYSIS

In this section, we present a comprehensive comparative
analysis of IMPLY-based adder designs in the literature
regarding their performance using FoMs presented in the
previous sections and measured by the number of memris-
tors, number of computational steps and number of switches
necessary for the design. We note, that we do not compare
the designs regarding power consumption, since, as stated
in [34] too, power consumption is rarely reported and given the
large variation among memristors, a fair comparison requires
simulation with the same model and in similar conditions (such
as simulation setup). In our comparisons, numbers reported
for improvement in each performance figure, P , have been
calculated as

Imp.(%) = Pworse − Pbetter

Pworse
× 100, (8)

where P is the place holder for the parameters compared (e.g.,
number of memristors, steps, or switches), and Pworse is the
number associated with the worse design and Pbetter is the
better number. E.g., when comparing the number of necessary
memristors in two designs, Pworse would be the number of
memristors for the design which needs more memristors and
Pbetter would be the number of memristors for the design
with smaller number of required memristors. Given the perfor-
mance figures considered in this paper, the design with smaller
numbers (less memristors, less switches or smaller number of
steps) is always better, hence filling the Pbetter .

Serial designs mainly split into two groups regarding
their number of memristors. Here, designs that use 2n + 3
memristors [36], [37] stand against those that use 3n + 3
memristors [33], [35], which is a remarkable improvement
of asymptotically3 33%. This improvement mainly comes
from reuse of input and work memristors. The fastest
serial design [36] needs 22n steps. All serial designs share
this characteristic that no switches are necessary in them.
Compared to parallel designs, serial designs use half of
the memristors, a feature that only our semi-serial [34] and
semi-parallel [38] design achieve.

Parallel designs [33], [37] need 5n + 16 or 5n + 18 steps,
which is approximately a quarter of the number of steps
needed by serial designs. However, they need 2×−4.5× more
memristors. The smallest parallel design [37] saves 55% over
the parallel design in [33] through a pipeline-type partitioning
of the algorithm. The major drawback of all parallel designs
is the high demand of switches which is proportional to the
bit width of the adder. This is reflected by a comparably
low merit as measured by the FoMs in Equation (6) and

3For n → ∞.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

RADAKOVITS et al.: MEMRISTIVE MULTIPLIER USING SEMI-SERIAL IMPLY-BASED ADDER 1501

TABLE V

SUMMARY OF COMPARISONS BETWEEN IMPLY-BASED ADDERS. NUMBER OF SWITCHES ONLY APPLIES TO ADDITIONAL SWITCHES

TABLE VI

COMPARISON OF IMPLY-BASED ADDERS REGARDING THEIR FIGURES OF MERIT. ALL FIGURES ARE CALCULATED BASED ON n = 32. BOLD NUMBERS

DENOTE THE BEST DESIGN ACCORDING TO EACH FIGURE OF MERIT

Equation (7). This shows, that judging the performance of
IMPLY-based systems solely on low numbers of memristors or
computational steps falls short in providing a comprehensive
image, if the additional CMOS circuitry is not considered. For
instance, this is shown by the fact, that the improvement of
our semi-serial adder over the adder in [37] accounts to only
1% according to the balanced FoM in Equation (3), whereas
considering the necessary additional switches in the parallel
design results in an improvement of 46%, as measured by the
Area-centered FoM in Equation (7).

Among designs, which cannot be assigned to either serial
or parallel group, our semi-serial design [34] uses three more
memristors (2n + 6 instead of 2n + 3) than the semi-parallel
design [38], while using significantly less computational steps
(41% asymptotically). Please note, that the difference in num-
ber of memristors is a constant number of 3, which becomes
less important with growing n. Compared to conventional
parallel and serial designs, the common advantageous feature
of these two designs is that they require as many memristors
as serial designs (which is significantly less than parallel
designs), whereas they are faster than existing serial designs.
In particular, the semi-serial design presented here, which is
faster than the semi-parallel design, requires only 10n + 2
steps. This is, asymptotically, twice as many as the number
of steps a parallel design needs, however, this is balanced by
requiring two times less memristors compared to the parallel
design in [37] and four times less memristors compared
to the parallel design in [33]. This leads to our design
achieving the best FoMB , FoMS , and FoMA among all
designs.

Table V provides an overview of the IMPLY-based adders
in the literature, where their respective number of necessary
memristors, number of steps and number of necessary switches
are given. Table VI provides an overview of all proposed FoMs
(as defined in Section IV) for all SoA adders we analyzed
in this work. As can be seen from the table, our design
outperforms all other designs as measured by 3 out of 5 FoMs.

VI. SEMI-SERIAL ADDER-BASED MULTIPLIER

Here, we present our fourth contribution of the paper by
proposing a new multiplier design, which is based on our semi-
serial adder. In order to form an n×n-multiplier, a (2n − 1)-bit
semi-serial adder circuit is replicated � n

2 � times for a × b,
where a and b are binary numbers (inputs) of size n. In the
beginning, the i -th adder holds a2i and a2i+1 in its work
memristors wi,0 and wi,2, respectively. Each adder holds,
in both summand registers4, (i.e., sections a and b in the
semi-serial adder design, cf. Section III) b shifted to the
left (one bit), where b is the second input of the product
a × b. First, the respective set of partial products is calculated
in every adder, i.e., in the i -th adder the partial products
a2i b j and a2i+1b j are calculated simultaneously, where j is a
natural number belonging to [0, n−1]. Therefor, the operation
ak×b j = ak∧b j is performed, which represents the calculation
of one partial product. This expression is reformulated to

4Since an n × n-bit multiplier is constructed of adders with a summand
register width of 2n−1 only, in the last adder the Most-Significant Bit (MSB)
of the stored factor has to be placed in the Least-Significant Bit (LSB) of the
summand register.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

1502 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

TABLE VII

EXECUTION STEPS OF PARTIAL PRODUCT CALCULATION IN THE PROPOSED TOPOLOGY FOR THE EXAMPLE OF A 2 × 2-bit MULTIPLIER. UPPERCASE
LETTERS DENOTE THE BITS OF THE OPERANDS OF THE MULTIPLICATION A×B , LOWERCASE LETTERS DENOTE MEMRISTORS. THE OPERATIONS

IN BOLD BLUE ARE PERFORMED ONLY ONCE IN EACH ADDER, AT THE END OF PARTIAL PRODUCT CALCULATION. UNNUMBERED LINES

ARE EXECUTED SIMULTANEOUSLY WITH THE PREVIOUS LINE

Equation (9) and implemented step-wise in every adder.

akb j = (ak → (b j → 0)) → 0 (9)

This logic operation requires three IMPLY steps (and two
FALSE steps in the general case). After calculating the partial
products, the adders calculate the overall product by calculat-
ing the sum of all partial products steps by step. This means,
that first the sets of partial products inside every adder are
summed up (every adder runs a semi-serial algorithm), then
two by two adders are connected to calculate the intermediate
sums until all sets of partial products are summed up. This
overall sum represents the output or the calculated product
of a × b. The result of multiplication and its carry out will
be located in cin&a memristors of the very first adder of the
system (cin as the most significant bit or carry-out, and a
as the rest of the output value). A 2 × 2-bit example of the
algorithm that is used to calculate the partial products can be
found in Table VII.

Once partial products are calculated, the adders continue
in their usual semi-serial adding algorithm. Figure 8 shows an
example of a 4×4-bit multiplier, consisting of two semi-serial
adders and one additional switch to connect the adders during
summation phase. Note that apart from the additional switch,
no changes to the semi-serial adder circuit are necessary.
In other words, the adder is only duplicated � n

2 � times for
an n × n-bit multiplier. The number of necessary additional
switches therein is � n−1

2 	.

A. Simulations

The simulation of our multiplier design was carried out on
two levels of abstraction. The behavioral correctness of the
multiplier algorithm was examined using a Matlab simula-
tion, assuming ideal memristor behavior. Since the multiplier
algorithm breaks down into the calculation of partial products
and the subsequent addition of those products, we verified
the correct calculation of partial products on circuit level
by simulating it in SPICE using the VTEAM model, using
the same setup mentioned in Section III-B. The subsequent
addition is carried out using our semi-serial adder algorithm,
which was verified in Section III. Figure 9 shows the LTSpice
simulation of the calculation of one partial product a ∧ b,

Fig. 8. 4 × 4-bit multiplier consisting of two semi-serial adders.

Fig. 9. IMPLY realization of w2 = a∧b = 1∧1 = 1, shown in Equation (9).
One IMPLY step takes 30µs.

where a = 1 and b = 1. Here the work memristors w1 and w2
are assumed to be already initialized to HRS (logic ‘0’). The
result of a ∧ b is stored in w2. Figure 10 shows the correct
calculation of w2 = a ∧ b for all input combinations of a
and b. An IMPLY step takes 30µs in both simulations. As in
Section III-B, a SPICE implementation of the VTEAM model
was used for the simulation. The same parameters where used
as described above.

Figure 11 shows the simulation of a 2 × 2-bit multiplier in
our proposed topology. This simulation was done in Matlab

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

RADAKOVITS et al.: MEMRISTIVE MULTIPLIER USING SEMI-SERIAL IMPLY-BASED ADDER 1503

TABLE VIII

COMPARISON OF IMPLY-BASED MULTIPLIERS FOR n = 32

TABLE IX

COMPARISON OF IMPLY-BASED MULTIPLIERS FOR n = 8

Fig. 10. IMPLY realizations of w2 = a ∧ b, see Equation (9), for all input
combinations. One IMPLY step takes 30µs.

on a functional level, i.e., the memristors are assumed to have
ideal behavior. As can be seen in Figure 11, the result of the
multiplication a × b is available after 40 steps, where inputs
are a = 11 and b = 11. The correct result can be found in
cin&a3−1 = 1001.

B. Comparison and Discussion

Table VIII provides a summary of the features and per-
formance figures (number of memristors, computational steps
and switches) of our proposed IMPLY-based multiplier design
and others in the literature for a 32-bit multiplier. Since [42]
does not provide any expressions for the number of necessary
memristors, steps and switches, we could not calculate them
for n = 32. Hence, we used the the respective numbers which
they provide for an 8-bit multiplier and created a second table,
namely Table IX, which provides performance figures for all
designs based on n = 8. Table X and Table XI provide

Fig. 11. Simulation of a 2×2-bit multiplier with a = 11, b = 11 and cin = 0.
The calculated product is located in cin &a3−1 = 1001 after 40 execution
steps.

an overview of the FoMs for each of the multiplier designs
studied here. In Table X the FoMs are calculated based on
n = 32, whereas in Table XI the FoMs are calculated based on
n = 8, since, as mentioned before, the source for the Dadda-
multiplier [42] reports performance and feature numbers only
for an 8-bit multiplier. The best design according to each
FoM is boldfaced in both tables to facilitate its identification.
The improvements were calculated using Equation (8). As
can be seen in Table X, our multiplier design manages to
improve over the array- and Dadda-type multipliers up to a
50×, thanks to significant savings in the number of memristors
and switches. A 32-bit implementation of Shift&Add multi-
plier [40] outperforms all other multiplier designs as measured
by 4 of 5 FoMs, whereas its 8-bit implementation outperforms
others in 3 out 5 (due to Dadda winning the best FoMS in
the 8-bit implementation). This is caused by a few factors;

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

1504 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

TABLE X

COMPARISON OF IMPLY-BASED MULTIPLIERS REGARDING THEIR FIGURES OF MERIT. ALL FIGURES ARE CALCULATED BASED ON n = 32. BOLD
NUMBERS DENOTE THE BEST DESIGN ACCORDING TO EACH FIGURE OF MERIT

TABLE XI

COMPARISON OF IMPLY-BASED MULTIPLIERS REGARDING THEIR FIGURES OF MERIT. ALL FIGURES ARE CALCULATED BASED ON n = 8. BOLD

NUMBERS DENOTE THE BEST DESIGN ACCORDING TO EACH FIGURE OF MERIT

i) the underlying efficiency of Shift&Add multipliers,
ii) the high degree of optimization that is inherent to the

building blocks of the design, such as multiplexers and
shift registers, and

iii) extensive usage of external CMOS circuitry such as
multiplexers and shift registers.

In particular, the last factor makes the comparison with our
proposed multiplier difficult, since our design relies signifi-
cantly less on external CMOS circuitry. Moreover, we have
not, and cannot, consider the CMOS circuits which are
necessary to implement the state machine controlling the
Shift&Add, Array, and Dadda multiplier. This could further
change the balance to our advantage, in particular, regarding
FoMA . We note that our proposed multiplier, even when
the aforementioned factors are not considered, outperforms
all other designs in both 8-bit and 32-bit implementations in
terms of FoMA . In particular, compared to the Shift&Add
multiplier [40], which is the best design according to the
majority of FoMs, our design is better in terms of FoMA

by a large margin of 532%. In other words, our proposed
design is more than 5× more area-efficient than the Shift&Add
multiplier [40].

We contend that the Area-centered FoM from Equa-
tion (7) (cf. Section IV) provides the most realistic estimation
of merit when it comes to die area, because not only it takes
the CMOS circuitry into account, but also it considers the fact
that supplementary CMOS circuitry is lying underneath the
memristor crossbar thanks to implementation of memristors in
BEOL, which is the most common practice [50]–[53]. Besides
that, our multiplier is designed by simply duplicating our semi-
serial adder without adding any additional building blocks,
which helps to keep complexity of CMOS circuitry low.

We note that even though our design is 36% faster than
Shift&Add multiplier [40], and uses 19% less switches,
but needing 89% more memristors leads to Shift&Add

multiplier [40] having a better FoM in 4 out of 5 FoMs.
Additional improvements in latency can be achieved by
pipelining consecutive multiplications, as suggested in [58].
For instance, the latency of the Shift&Add multiplier can be
reduced to 24n [58], which is a significant improvement over
the 2n2 +21n. However, pipelining is outside the scope of this
work and a future plan. Even though it is plausible to assume
that pipeling improves the performance of our multiplier too,
since we have not pipelined our design, we cannot compare
the latency of pipelined designs. Therefore, here we report
the numbers for designs without pipelining them.

Another example on the lack of respresentativeness of one
parameter in the merit of a design is comparison of our design
with Array Multiplier [41]. Our design is 58% slower than
Array Multiplier [41], however, needing 70% less memristors
leads to our design outperforming that design in 4 out of 5
FoMs. These two examples (comparison with Shift&Add and
Array multipliers) show us that being better or worse in one
aspect does not present a holistic view on the merit of a design.
Therefore, a designer needs to choose a FoM, which represents
the design constraints the best and assess any design with
appropriate FoM and decide on design decisions which help
the design in meeting the requirements.

VII. CONCLUSIONS

In this paper, we extended the evaluation of our semi-
serial IMPLY-based memristive full-adder design, which out-
performs other designs in the literature, as measured by 3 out
of 5 Figures of Merit (FoMs). To enhance the comparability of
memristive systems regarding their performance, we proposed
four new FoMs. A designer can choose the best suiting FoM
with respect to the design goal (smallest or fastest possible
design or a balanced design). Moreover, inspired by the
proposed FoMs they can come up with a new FoM which

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

RADAKOVITS et al.: MEMRISTIVE MULTIPLIER USING SEMI-SERIAL IMPLY-BASED ADDER 1505

better represents the specifics of their design constraints and
trade-offs. We also reviewed IMPLY-based multiplier designs
in the literature and proposed a new multiplier design that
is based on our semi-serial full-adder. This multiplier design
manages to perform well compared to the designs in the
literature, especially if the area overhead caused by additional
necessary CMOS switches is considered. To further improve
comparability and quality of performance, calculations of
power consumption (based on memristor models that are
calibrated with experimental data and verified with practical
implementations) and die area (as provided in this paper,
by simulation and/or implementation of the necessary CMOS
circuitry for switches and control logic) should be carried out
for future works.

ACKNOWLEDGMENT

Access to CAD tools and technology was facilitated by
CMC Microsystems.

REFERENCES

[1] D. Niu, Y. Chen, and Y. Xie, “Low-power dual-element memristor
based memory design,” in Proc. 16th ACM/IEEE Int. Symp. Low
Power Electron. Design (ISLPED), New York, NY, USA, Aug. 2010,
pp. 25–30.

[2] Y. Ho, G. M. Huang, and P. Li, “Dynamical properties and design
analysis for nonvolatile memristor memories,” IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 58, no. 4, pp. 724–736, Apr. 2011.

[3] B. Mohammad, D. Homouz, and H. Elgabra, “Robust hybrid memristor-
CMOS memory: Modeling and design,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 21, no. 11, pp. 2069–2079, Nov. 2013.

[4] V. S. Baghel and S. Akashe, “Low power memristor based 7T SRAM
using MTCMOS technique,” in Proc. 5th Int. Conf. Adv. Comput.
Commun. Technol., Feb. 2015, pp. 222–226.

[5] H. Kim, M. P. Sah, C. Yang, and L. O. Chua, “Memristor-based
multilevel memory,” in Proc. 12th Int. Workshop Cellular Nanosc. Netw.
Appl. (CNNA), Feb. 2010, pp. 1–6.

[6] M. Zangeneh and A. Joshi, “Design and optimization of nonvolatile
multibit 1T1R resistive RAM,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 22, no. 8, pp. 1815–1828, Aug. 2014.

[7] N. TaheriNejad, P. D. S. Manoj, and A. Jantsch, “Memristors’ potential
for multi-bit storage and pattern learning,” in Proc. IEEE Eur. Modelling
Symp. (EMS), Oct. 2015, pp. 450–455.

[8] N. TaheriNejad, M. P. D. Sai, M. Rathmair, and A. Jantsch, “Fully
digital write-in scheme for multi-bit memristive storage,” in Proc. 13th
Int. Conf. Elect. Eng., Comput. Sci. Autom. Control (CCE), Sep. 2016,
pp. 1–6.

[9] D. Radakovits and N. TaheriNejad, “Implementation and characteriza-
tion of a memristive memory system,” in Proc. IEEE Can. Conf. Elect.
Comput. Eng. (CCECE), May 2019, pp. 1–4.

[10] G. Hilson. (2015). IMEC, Panasonic Push Progress on ReRAM,
EETimes. [Online]. Available: https://www.eetimes.com/document.asp?
doc_id=1327307

[11] ReRAM. (2017). Crossbar. [Online]. Available: https://www.crossbar-
inc.com/en/

[12] B. Govoreanu et al., “10×10 nm2 Hf/HfOx crossbar resistive RAM with
excellent performance, reliability and low-energy operation,” in Proc.
Int. Electron Devices Meeting, Dec. 2011, pp. 31.6.1–31.6.4.

[13] A. Sinha, M. S. Kulkarni, and C. Teuscher, “Evolving nanoscale
associative memories with memristors,” in Proc. 11th IEEE Int. Conf.
Nanotechnol., Aug. 2011, pp. 860–864.

[14] R. S. Williams. (2010). Finding the Missing Memristor.
Accessed: Nov. 6, 2017 [Online]. Available: https://www.youtube.com/
watch?v=bKGhvKyjgLY

[15] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in Proc.
Conf. Design, Autom. Test Eur. (DATE). Leuven, Belgium: European
Design and Automation Association, 2017, pp. 722–731.

[16] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future of electronics
based on memristive systems,” Nature Electron., vol. 1, no. 1, pp. 22–29,
Jan. 2018.

[17] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo:
A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories,” in Proc. ACM 53rd Annu. Design
Autom. Conf. (DAC), New York, NY, USA, 2016, pp. 173-1–173-6,
doi: 10.1145/2897937.2898064.

[18] R. B. Hur and S. Kvatinsky, “Memory processing unit for in-
memory processing,” in Proc. IEEE/ACM Int. Symp. Nanosc. Archit.
(NANOARCH), Jul. 2016, pp. 171–172.

[19] P. Gaillardon et al., “The programmable logic-in-memory (PLiM)
computer,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE),
Mar. 2016, pp. 427–432.

[20] G. Papandroulidakis, I. Vourkas, A. Abusleme, G. C. Sirakoulis, and
A. Rubio, “Crossbar-based memristive logic-in-memory architecture,”
IEEE Trans. Nanotechnol., vol. 16, no. 3, pp. 491–501, May 2017.

[21] S. Gupta, M. Imani, and T. Rosing, “FELIX: Fast and energy-efficient
logic in memory,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), Nov. 2018, pp. 1–7.

[22] L. Gao, F. Alibart, and D. B. Strukov, “Programmable CMOS/memristor
threshold logic,” IEEE Trans. Nanotechnol., vol. 12, no. 2, pp. 115–119,
Mar. 2013.

[23] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary
resistive switches for passive nanocrossbar memories,” Nature Mater.,
vol. 9, no. 5, pp. 403–406, May 2010.

[24] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser,
“Beyond von Neumann—Logic operations in passive crossbar arrays
alongside memory operations,” Nanotechnology, vol. 23, no. 30,
Aug. 2012, Art. no. 305205.

[25] S. Kvatinsky et al., “MAGIC–Memristor-aided logic,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.

[26] I. Vourkas and G. C. Sirakoulis, Memristor-Based Nanoelectronic Com-
puting Circuits and Architectures, vol. 19. Cham, Switzerland: Springer,
2016.

[27] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 5, no. 1, pp. 64–74, Mar. 2015.

[28] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (MAGIC),” IEEE
Trans. Nanotechnol., vol. 15, no. 4, pp. 635–650, Jul. 2016.

[29] L. Xie et al., “Scouting logic: A novel memristor-based logic design for
resistive computing,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2017, pp. 176–181.

[30] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.
A, Solids Surf., vol. 80, no. 6, pp. 1165–1172, Mar. 2005.

[31] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,”
in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2009, pp. 33–36.

[32] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, no. 7290, p. 873, 2010.

[33] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and
U. C. Weiser, “Memristor-based material implication (IMPLY) logic:
Design principles and methodologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.

[34] N. TaheriNejad, T. Delaroche, D. Radakovits, and S. Mirabbasi, “A semi-
serial topology for compact and fast IMPLY-based memristive full
adders,” in Proc. IEEE New Circuits Syst. Symp. (NewCAS), Jun. 2019,
pp. 1–5.

[35] M. Teimoory, A. Amirsoleimani, J. Shamsi, A. Ahmadi, S. Alirezaee,
and M. Ahmadi, “Optimized implementation of memristor-based full
adder by material implication logic,” in Proc. 21st IEEE Int. Conf.
Electron., Circuits Syst. (ICECS), Dec. 2014, pp. 562–565.

[36] S. G. Rohani and N. TaheriNejad, “An improved algorithm for IMPLY
logic based memristive full-adder,” in Proc. IEEE 30th Can. Conf. Elect.
Comput. Eng. (CCECE), Apr. 2017, pp. 1–4.

[37] A. Karimi and A. Rezai, “Novel design for a memristor-based full adder
using a new IMPLY logic approach,” J. Comput. Electron., vol. 17, no. 3,
pp. 1303–1314, Sep. 2018.

[38] S. G. Rohani, N. Taherinejad, and D. Radakovits, “A semiparallel full-
adder in IMPLY logic,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 1, pp. 297–301, Jan. 2020.

[39] K. C. Rahman, M. R. Khan, and M. A. Perkowski, “Memristor based
8-bit iterative full adder with space-time notation and sneak-path protec-
tion,” in Proc. IEEE 60th Int. Midwest Symp. Circuits Syst. (MWSCAS),
Aug. 2017, pp. 695–698.

[40] L. Guckert and E. E. Swartzlander, “Optimized memristor-based mul-
tipliers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 2,
pp. 373–385, Feb. 2017.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2897937.2898064

1506 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 67, NO. 5, MAY 2020

[41] L. E. Guckert et al., “Memristor-based arithmetic units,”
Ph.D. dissertation, Univ. Texas Austin, Austin, TX, USA, 2016.
[Online]. Available: http://hdl.handle.net/2152/46491

[42] L. Guckert and E. E. Swartzlander, “Dadda multiplier designs using
memristors,” in Proc. IEEE Int. Conf. IC Design Technol. (ICICDT),
May 2017, pp. 1–4.

[43] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, 1965.

[44] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM:
A general model for voltage-controlled memristors,” IEEE Trans. Cir-
cuits Syst. II, Exp. Briefs, vol. 62, no. 8, pp. 786–790, Aug. 2015.

[45] M. Jungwirth, D. Radakovits, and N. TaheriNejad. (Mar. 2018).
SPICE Implementation of VTEAM Model. [Online]. Available:
https://www.ict.tuwien.ac.at/staff/taherinejad/projects/memristor/files/
VTEAM.sub

[46] Neuro-Bit. (2017). Bio Inspired Technologies LLC. [Online]. Available:
http://www.bioinspired.net/home.html

[47] Knowm. (2019). Knowm Inc. [Online]. Available: https://knowm.org
[48] P. Clarke. (Dec. 2018). Leti 300 mm Fab Extended for PCM, ReRAM,

Quantum Computing. [Online]. Available: https://www.eenewsanalog.
com/news/leti-300mm-fab-extended-pcm-reram-quantum-computing

[49] P. Clarke. (Aug. 2018). Leti, CMP Offer OxRAM Multiproject Wafer
Service. [Online]. Available: https://www.eenewsanalog.com/news/leti-
cmp-offer-oxram-multiproject-wafer-service

[50] S. Bhat, S. Kulkami, J. Shi, M. Li, and C. A. Moritz, “Skynet:
Memristor-based 3D IC for artificial neural networks,” in Proc.
IEEE/ACM Int. Symp. Nanosc. Archit. (NANOARCH), Jul. 2017,
pp. 109–114.

[51] H. Manem, K. Beckmann, M. Xu, R. Carroll, R. Geer, and N. C. Cady,
“An extendable multi-purpose 3D neuromorphic fabric using nanoscale
memristors,” in Proc. IEEE Symp. Comput. Intell. Secur. Defense Appl.
(CISDA), May 2015, pp. 1–8.

[52] C. Li et al., “Three-dimensional crossbar arrays of self-rectifying
Si/SiO2/Si memristors,” Nature Commun., vol. 8, p. 15666, Nov. 2017.

[53] M. Hu et al., “Memristor-based analog computation and neural network
classification with a dot product engine,” Adv. Mater., vol. 30, no. 9,
Mar. 2018, Art. no. 1705914.

[54] H. Wan et al., “In situ observation of compliance-current overshoot and
its effect on resistive switching,” IEEE Electron Device Lett., vol. 31,
no. 3, pp. 246–248, Mar. 2010.

[55] C. Li et al., “Analogue signal and image processing with large memristor
crossbars,” Nature Electron., vol. 1, no. 1, pp. 52–59, Jan. 2018.

[56] C. Li et al., “In-memory computing with memristor arrays,” in Proc.
IEEE Int. Memory Workshop (IMW), May 2018, pp. 1–4.

[57] N. TaheriNejad and D. Radakovits, “From behavioral design of mem-
ristive circuits and systems to physical implementations,” IEEE Circuits
Syst. Mag., vol. 19, no. 4, pp. 6–18, 2019.

[58] L. Guckert and E. E. Swartzlander, Jr., System Design With Memristor
Technologies. Edison, NJ, USA: IET, 2018.

David Radakovits received the B.Sc. degree in
electrical engineering and information technology
from TU Wien, Vienna, Austria, where he is cur-
rently a Graduate Student. His B.Sc. thesis was
on Binary Storage on Memristors. He continues
to work on memristive circuits and systems for
his M.Sc. degree in embedded systems. His main
research interests are memristive circuits and sys-
tems, embedded systems, systems-on-chip, and hard-
ware security. He has published five articles at IEEE
journals and conferences on different aspects of

memristive circuits and systems.

Nima TaheriNejad (Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from The University of British Columbia, Vancou-
ver, Canada, in 2015. He is currently a Univer-
sität Assistant with the TU Wien (formerly known
as the Vienna University of Technology), Vienna,
Austria, where his areas of work include self-
awareness in resource-constrained cyber-physical
systems, embedded systems, systems on chip,
memristor-based circuit and systems, health-care,
and robotics. He has published two books and more

than 40 peer-reviewed articles. He has also served as a reviewer, an editor,
an organizer, and the chair for various journals, conferences, and workshops.
In the field of memristive circuits and systems, his focus has been on
physical implementations, reliability, memory, logic (particularly IMPLY), and
in-memory calculations. He has received several awards and scholarships from
universities and conferences he has attended.

Mengye Cai (Student Member, IEEE) received the
Ph.D. degree in electrical and computer engineering
from The University of British Columbia, Vancou-
ver, Canada, in 2019. From 2013 to 2015, he was
a Research Assistant with the Implantable Systems
Laboratory, Western University, London, Canada.
He is currently a Post-Doctoral Fellow with the
Systems-on-Chip (SOC) Laboratory, The University
of British Columbia. His research interests include
analog and mixed-signal integrated circuits design,
implantable or wearable biomedical devices/sensors,

RF monitoring and diagnosing, low-power radio system, in-memory compu-
tations, CMOS image sensor, and wireless power transmission/management.

Théophile Delaroche, photograph and biography not available at the time of
publication.

Shahriar Mirabbasi (Member, IEEE) received the
B.Sc. degree in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 1990, and
the M.A.Sc. and Ph.D. degrees in electrical and com-
puter engineering from the University of Toronto,
Toronto, ON, Canada, in 1997 and 2002, respec-
tively. Since August 2002, he has been with the
Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC,
Canada, where he is currently a Professor. His cur-
rent research interests include analog, mixed-signal,

RF, and mm-wave integrated circuit and system design, with an emphasis on
communication, sensor interface, and biomedical applications.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 20,2020 at 08:55:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

