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Editor’s notes:
Trustworthiness is key for the acceptance of autonomous systems. The 
authors advocate deterministic methods with hard-bounded corridors for 
operational parameters to guarantee dependable autonomy considering 
both functional and extra-functional properties.

—Selma Saidi, TU Dortmund

 In an ideal world, autonomy in the operation 
of technical systems promises several advantages 
such as extended capabilities as well as reduction of 
the design and supervision efforts. Despite that goal, 
currently in practice, more often than not, it leads 
to extra burden on the design process and a shift 
of efforts to additional supervision of autonomic 
aspects. Moreover, current autonomous systems 
face other challenges too, trustworthiness and abil-
ity to provision hard guarantees among them. Lack 
of predictability of system operations, especially in 
corner cases, is also part of these challenges. This 
is in contrast to traditional system design and can 
range—particularly for functional tasks and capabil-
ities—anywhere from undesired to prohibited. For 
example, in safety critical applications, providing 
guaranteed operations and performance is para-
mount and rather nonnegotiable. In many industrial 
applications, for example, a production line, some 
variations from an expected behavior may be accept-
able (when they cause no considerable change in 
the quality of the final product), some may lead to 
product losses, and some may lead to safety issues. 
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Therefore, variations 
in the behavior of such 
an autonomous system 
might be acceptable, 
undesired, or unaccept-
able. For extra-functional 
tasks, as we will discuss 
in the “Toward (more) 

dependable autonomy” section, these constraints 
are sometimes less pressing as they do not have to 
follow precise standards or specifications and, more 
often than not, any gains due to autonomy are highly 
appreciated. The focus of this section, however, is 
on the concerns regarding functional tasks and prop-
erties and their respective guarantees.

A traditional solution for providing guarantees 
for a system is using verification methods to test the 
behavior of the system under various conditions and 
determine the boundaries of behaviors and provide 
guarantees accordingly. However, the space of pos-
sible behaviors and conditions grows exponentially 
with the increase in complexity and autonomy. For 
example, testing an autonomous driving car for 
its behavior in every possible condition (caused 
by other cars, pedestrians, animals crossing the 
road, objects fallen on the road, as well as different 
weather and road conditions) is practically impos-
sible. Consequently, providing full guarantees for 
such systems is also impossible. However, they can 
be partially tested and verified for a subset of possi-
ble conditions.

One could argue that providing such guarantees 
for a human driver is also impossible and therefore, 
expecting them from autonomous driving vehicles 
is not reasonable. However, we need to consider 
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two factors. First, any mistake by an autonomous sys-
tem is probably an indicator of a systematic error. That 
means that all such autonomous systems—which may 
add up to a very large number—may commit the same 
mistake with a high likelihood, whereas this is not the 
case for human drivers. That is one of the reasons why 
targeting trust and guarantees are so pressing.

Second, regulators and the public at large may not 
be quite ready yet for accepting that machines are 
allowed to fail stochastically. We cannot ignore the 
cultural element of such expectations, set—at least in 
part—by the predictable operations of the machines 
and systems designed and built from the beginning of 
the industrial revolution. In the Cyber-Physical Euro-
pean Roadmap and Strategy,1 the European Com-
mission explicitly mentions the societal challenges 
as one of the six main challenges to be overcome 
and emphasizes the importance of raising awareness 
and ensuring trustworthiness. Raising awareness and 
establishing trust normally take a rather longer time to 
prove effective and only in the long run may relax the 
requirements on autonomous system design.

In a different approach, the Information and Com-
munication Technologies program of Horizon 2020 
of the European Commission1 invites researchers and 
innovators to “focus on autonomic solutions capable 
of guaranteeing the overall reliability and security even 
when the components or subsystems are not fully reli-
able and unforeseen conditions emerge in the course 
of operation.”1 Presenting dependability and reliability 
of the cyber–physical system (CPS) as one the main pil-
lars of their development. Even though achieving this 
goal is complex and hard, it is reasonable to think that 
using current engineering approaches, such a vision 
can—to an extent—come to realization, probably ear-
lier than cultural preparations for acceptance of unpre-
dictable machine behaviors by public at large.

For these reasons, there is hesitation, even resist-
ance, against fully embracing autonomous systems in 
many sections of industry too. Even though initiatives, 
such as Industry 4.0, have helped in creating a more 
open approach toward such techniques, often auton-
omy of the systems is significantly reduced to prede-
termined scenarios to provide guaranteed behaviors.

Toward (more) dependable autonomy
In systems engineering, dependability is consid-

ered as a measure for the availability, reliability, 

1http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/
topics/ict-01-2019.html [Online since 2017; last access July 27, 2018].

and maintainability of a system. These qualities can 
either be obtained in a deterministic manner, by 
design and prior to system deployment, and/or in a 
probabilistic manner during dynamic, autonomous 
control of a system at runtime. An (incomplete) 
selection of best practice approaches for combining 
autonomous control with improved dependability 
in system operation is subject of the following sub-
sections. We consider improvements in dependable 
autonomy as a prerequisite for increasing trust.

Guarded guarantees
Here, we present one of the approaches which 

can provide certain guarantees and is compatible 
with autonomous behavior is using operational 
corridors. Working within hard-bounded corridors 
for operational parameters guarantees functional 
and extra-functional lower and upper bounds for 
system operations. For instance, in the context of a 
multiprocessor system-on-chip (MPSoC), supply volt-
age (Vdd), frequency (f), and number of time divi-
sion multiplexed (TDM)-slotted tasks within work 
queue per core could be considered as these (hard-
bounded) operational corridors, which guarantee 
performance (functional) and other characteristics 
of the system such as power dissipation and tem-
perature (extra-functional). Furthermore, varying 
these parameters with relative step functions (e.g., 
increase/decrease by ±10%, or more conservative, 
±5%) typically allows the identification of trends or 
at least the direction in which the system operation 
point is moving. Defining safety margins around 
the hard corridor bounds represent buffer zones in 
which corresponding counter actions toward current 
trends can be applied when individual components 
or subsystems of the autonomous system leave the 
target area of desired performance-power tradeoff, 
symbolically shown as the green area in Figure 1 [1]. 
In general, the safety margin (shown in yellow on 
Figure 1) shall be dimensioned such that multiple 
steps of varying an operation parameter would be 
necessary to cross the margin into a violation. This 
ensures that there are multiple opportunities for the 
autonomous system to apply counter actions and 
prevent violations. Depending on the application 
domain of an autonomous system, satisfying the 
minimum operation bounds must at least guarantee 
that the system gets into a safe halt (i.e., “fail-safe” 
through temporally limited guarantee of minimum 
performance bound) or continues operation at 
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degraded but still acceptable performance (i.e., 
“fail-operational” or “limp home” strategy).

One way of implementing such strategies is using 
learning classifier-based reinforcement machine 
learning [2] which allows conducting autonomous 
control on the basis of predefined, pretested con-
ditional rules which are not only human interpreta-
ble, but also can be specified such that they reflect 
best-practice human engineering knowledge and 
practice. This is an important property to increase 
trust in the applied control actions. Counterintui-
tive condition–action pairs or fitness values can be 
explicitly double-checked or eliminated without 
disrupting the remaining rule sets. This is an impor-
tant conceptual difference to weight adjustments in 
(deep) convolutional neural network (NN).

Divide and conquer
Another approach that we recommend is classifi-

cation of tasks into different criticality bins (e.g., best 
effort, real-time, and safety-critical bins). This enables 
the relaxation/constraining of application-specific deci-
sion-making. That is, the system can make decision in 
a self-aware fashion and depending on the criticality 
of respective tasks. For example, best effort tasks/appli-
cations may benefit from (and also tolerate) a more 
proactive “risky” behavior, whereas to critical tasks and 
applications conservative policies with firm guarantees 
shall be applied [3]. Prerequisite for applying different 

policies per criticality class is the availability of tech-
niques for proper task isolation. Virtualization methods 
or hypervisors, which consequently separate process-
ing, interconnect, I/O, and memory resources of differ-
ent virtual machines, also known as task classes, are 
examples of such isolation techniques.

Orthogonality in design
Orthogonal redundancy is a form of redundancy 

where the backup device or method is completely 
different from the primary device or method that is 
prone to error. Therefore, the failure modes of the two 
devices or methods do not intersect with each other. 
This safeguards the total system against catastrophic 
failures. Here, analogous to orthogonal redundancy, 
we propose “orthogonal design.” Orthogonality in 
design can, for example, be achieved through diverse 
spatial redundancy. Like conventional functional 
units, autonomous entities too can be deployed in 
redundant manner [e.g., dual modular redundancy 
(DMR) and triple modular redundancy (TMR)] and 
in form of different architectural realizations to avoid 
identical misbehavior. This characteristic, avoiding 
identical misbehavior, is also a mandatory prereq-
uisite for provisioning fail-operational properties, as 
described in [4] for example. Of course, this comes 
at additional resource expenditure and hence should 
be reserved for critical tasks that truly demand it.

However, we believe this method can be used for 
less critical applications too. All system behaviors can, 
in general, be partitioned into intended functional 
duties (i.e., the functional specs) and extra-functional 
characteristics, such as power dissipation, temper-
ature variation on a silicon chip, or printed circuit 
board, as well as environmental and/or manufac-
turing induced variability exposures (e.g., in deep 
submicron CMOS technologies). If extra-functional 
characteristics, which can be considerably important 
for the proper system operation, can independently 
be tuned and modified from the functional duties, 
one can consider functional and extra-functional 
requirements orthogonal to each other (see Figure 
2). We define orthogonal autonomy as when either 
functional or extra-functional properties (or both) 
are autonomously controlled and optimized. In the 
context of autonomous systems, we particularly see 
a high potential in the autonomous optimization of 
extra-functional properties. Such optimization tech-
niques may also include the exploitation of emergent 
behavior, which is known to be highly effective (when 

Figure 1. Tendency of the component or 
system operation to move into the safety 
margin zone with degraded behavior allows 
for corrective actions to prevent constraint 
violation possibly leading to a failure [1].
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applicable). Its applicability to the pure functional 
domain depends on whether the functional behav-
ior, which very often follows industrial standards or 
human generated specifications, can be mapped 
onto a suitable emergent behavior, which is rarely 
the case. However, often explicit standards or guide-
lines for extra-functional properties, such as how to 
achieve better power efficiency or balanced temper-
ature profiles, do not exist. Hence, any improvement 
obtained from autonomous emergent behavior on 
those aspects is highly appreciated.

An example of orthogonal autonomy is the early 
warning score (EWS) system presented in [5], where 
“attention” [6] is used to improve power efficiency 
of the system. To this end, the system adjusts the fre-
quency of sensory data transmission and thus reduces 
the power consumption to half. However, this does not 
affect the functionality of the system which is the cor-
rect assessment of the health condition of the subject.

Expressive autonomous system

Establishing trust
As discussed in the introductory section, a major issue 

in adopting autonomous systems is the trust between 
the (human) user and the system (or machine). One 
way of increasing trustworthiness—which we advocate 

in this article—is by improving transparency and pro-
viding explanations and reasons behind the behaviors, 
decisions, and operations of an autonomous system. 
This does not necessarily improve the dependability 
of the system, however, it improves the predictability 
from the perspective of the user and paves the way for 
its wider adoption.

The need for machines to provide such expla-
nations is widely acknowledged and its reflection 
can be seen in examples such as the explainable 
artificial intelligence (XAI) program of the Defense 
Advanced Research Projects Agency (DARPA).2 The 
aim of XAI is to “understand, appropriately trust, and 
effectively manage an emerging generation of artifi-
cially intelligent machine partners.”2 To this end, the 
ideal is depicted as a machine that can respond (in 
a fashion understandable for its human users) to the 
following questions2:

•	 Why did you do that and not something else?
•	 How do I correct an error?
•	 When can I trust you?
•	 When do you succeed or fail?

To that we propose to add questions such as:

•	 How do I change a certain behavior of yours 
(regardless of its correctness)?

•	 What were other possible courses of action?
•	 What are probable consequences of each poten-

tial action?
•	 How do I add a new option/course of action?

Symbolic artificial intelligence (AI), in particular, 
between 1950s and 1980s aimed at similar objectives 
and explored some parts of the field [7]. However, 
many of currently main stream AI algorithms (such 
as NN) compromise explanation in favor of predic-
tion [8]. Therefore, systems using them cannot pro-
vide explanations or justifications for their decisions. 
These systems can be represented by curves similar 
to A (blue) on the radar chart of Figure 3.

In some other systems, such as the ones represented 
by the B curve (orange) on Figure 3, even the accu-
racy of the system might be compromised to achieve 
the necessary speed requirements. One of the major 
issues with expressive system development is that the 
complexity of the system explodes exponentially when 
addition of explanation is considered, in particular, 

2https://www.darpa.mil/program/explainable-artificial-intelligence [Online since 
2016; last access July 23, 2018].

Figure 2. Orthogonal autonomy; 
complexity increases either due to 
functional requirements or consideration 
of pressing extra-functional aspects 
such as security, resilience, and power 
dissipation. Orthogonal autonomoy can 
improve the extra-functional aspects 
without jeopardizing the required 
functional guarantees.
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when this explanation is supposed to be presented 
in human language (or easily understandable by 
humans). That in turn leads to slow systems and it often 
compromises the accuracy of the systems too. There-
fore, current explainable systems can be—at best—
presented by curves similar to C (gray) on Figure 3.

The path forward, we contend, is to consider a com-
bination of these techniques: first, the usage of alterna-
tive more expressive approaches such as probabilistic 
modeling [8]; second, coming up with new infrastruc-
ture and methods for adding explainability features 
(in particular, those understandable by human users) 
which do not require substantial compromise on 
accuracy of the systems and more importantly do not 
require massive computational resources. Although 
some machines can answer to some of those questions 
in limited capacities and more will be attained in the 
near future, such an ideal position in its full glory seems 
attainable only in the farther future.

Machine user cooperation
From the discussion in the introductory section, we 

can see that one of the main reasons for not adopting 
autonomous systems as widely as their potential sug-
gests, is lack of trust. Particularly, lack of trust regarding 
the consequences of the actions these systems take 
(some of which may be undesirable). We argued that 
providing explanations can help users in understand-
ing and accepting these actions better. However, we 

propose another remedy to this issue too, namely 
self-awareness of the autonomous system and machine 
user cooperation. For instance, when the system has 
a low “confidence” [9] regarding its decision, it could 
involve the user in the decision-making process. It has 
been shown [9], [10] that self-awareness of the system 
regarding its confidence can improve its performance 
in an autonomous fashion. However, that is not always 
the case. Therefore, in cases where the system does not 
reach to a conclusive and confident decision, in our 
proposed scheme, it could ask for additional user input 
or delegate the decision entirely to the user. In the lat-
ter case the system does not take any action by itself 
and cannot produce any negative effect. Since this also 
decreases their positive effect, this approach provides 
a suboptimal but short term solution for the near future.

We envision “taking no actions” at two different 
levels. In the first approach, the role of the system can 
be limited to supervision only and to notify the opera-
tor about decision points. It is then the operator who 
needs to evaluate the situation, make a decision, and 
take appropriate actions. In another approach, the 
system can perform extensive analysis and explore 
several potential actions and their probable conse-
quences (when possible verified through simula-
tions) and provide these information to the user. This 
minimizes the burden of the user while allowing the 
user to guide the system toward dependable behav-
iors in conditions where the autonomous system 
might have not behaved very desirably. For example, 
in continuation of the project Self-Aware health Mon-
itoring and Bio-inspired coordination for distributed 
Automation systems (SAMBA) [11], it is planned to 
use the context-aware health monitoring (CAH) sys-
tem [12] to monitor the system, analyze the situation 
of the production line, make decisions, and verify 
them through simulations (since no real action on the 
floor is permitted) and provide a list of suggestions to 
the operator. The operators can decide which option 
meets the goals the best, or pick another solution at 
their own discretion. Thus, this solution can lead to 
more dependable behaviors and increased trust for 
the user (due to improved behavior as well as user’s 
involvement in the decision-making process).

Discussions and conclusions
Truly autonomous systems require a high degree of 

flexibility but also need to provide guarantees for safe-
ty-critical functions and establish trust with human users. 
While many techniques exist, as partially reviewed 

Figure 3. Compromise between accuracy, 
explainability, and speed of intelligent and 
autonomous systems. With a given set of 
resources, achieving a high score on each 
of the axes comes at the price of lower 
scores on one or both of the other two.
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above, a comprehensive solution for autonomous 
system design requires more research. The field of self-
aware computing, that has emerged during the last two 
decades, can provide a key faculty by endowing an 
autonomous system with the capability of continuous, 
extensive self-observation, and self-assessment.

Self-assessment in autonomous systems
Although self-assessment is not necessarily a pre-

requisite for achieving autonomy, we contend that it 
is a fundamental necessity for expressive systems to be 
able to explain their behaviors and status. Similarly, we 
maintain that it is a prerequisite for machine user coop-
eration as sketched in the “Expressive autonomous 
system” section. By self-assessment or computational 
self-awareness here we refer to the ability of the system 
to observe its resources, behaviors, expectations, and 
goals. As such the system knows itself, how well it is 
performing, if it still provides guarantees, how likely it 
is to succeed and when it is lost. In a higher level of 
awareness, the system is able to assess its environment 
(what is external to it) and situate itself with respect 
to its environment. Such information can enhance its 
decision making and enables it to explain itself to the 
user or provide it with options and necessary informa-
tion regarding those options. Moreover, even though 
it is not a prerequisite to autonomy, it can enrich the 
autonomy of the system by helping it in navigating the 
decision space since

•	 it can reflect on its own actions and assess what 
guarantees would be still valid in any given case;

•	 it can know how confident it is in pursuing a line of 
action and how it may affect required guarantees;

•	 it can predict some of the cases which may lead 
to violation or leaving its scope of operation.

We note that self-awareness is by nature orthog-
onal to the functions of the system, however, it can 
affect the functional path, if its outcomes are used 
for decision making of the system regarding its func-
tional operations.

Even though self-awareness and self-assessment in 
computing systems have been studied extensively, we 
believe there is a large opportunity for working on what 
should be done in the context of safety-critical systems 
to support the kind of autonomy discussed in this article.

The rapid development of machine learning 
and other AI technologies gradually facilitate more 

autonomous decision making of systems in complex, 
dynamic environments. While this is laudable because 
it promises to increase safety and comfort at reduced 
design, operation, and maintenance costs, we do 
observe a tension between increased autonomy on 
one hand and a reduced level of hard guarantees and 
trust on the other hand. The complex AI techniques 
that hold these promises are often probabilistic in 
nature, cannot provably demonstrate that all corner 
cases are covered, and their effects are exceedingly 
hard to understand and predict by human users.

We argue that remedies for both concerns, limited 
guarantees and limited trust, have to be found. The 
state of the art offers some solutions in both areas and 
we foresee some solutions with good potential, which 
we have presented in “Toward (more) dependable 
autonomy” and “Expressive autonomous system” sec-
tions. A summary of these approaches and how they 
affect each of the main three factors discussed here 
(i.e., autonomy, guarantees, and trust) is provided in 
Table 1. However, we concede that in practice much 
still needs to be done. In particular, we observe that 
autonomous systems have to be keenly aware of their 
capabilities and their limitations. They have to know, 
when they can provide safety guarantees, when their 
offered line of action will most likely lead to a safe 
and comfortable experience, and when they are at a 
loss facing unknown territories. Based on more accu-
rate and reliable self-assessment, autonomous systems 
can explain their actions, and thus gain the trust of 
users who would then better understand what guar-
antees are provided and what the limitations of the  
system are.� 
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