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Abstract— Using the Photoplethysmogram (PPG) sensor of a
smartwatch to extract Respiratory Rate (RR) is very attractive.
However, existing algorithms suffer from lack of accuracy
and susceptibility to noise and movement artifacts. To tackle
this issue, we propose performing Frequency Domain Peak
(FDP) analysis using the Frequency Modulation (FM) feature.
Moreover, our analysis of existing methods show that in contrast
to the common practice Smart Fusion (SFU), despite incurring
extra computational costs, is very little helpful. It is hence more
preferable and efficient to avoid SFU. The proposed method
shows an improvement of at least 130% in the Figure of Merit
(FoM) and has more than 60% smaller mean error. Therefore,
it can be reliably used in a wide range of applications.

I. INTRODUCTION

Wearable devices are used in many applications such as
well-being and sport activities [1], [2], physical health [3]–
[6], and mental health [1], [7], [8]. However, they face several
challenges, such as constrained resources [9], changes in the
environmental conditions [9]–[11], and excessive noise and
artifacts introduced by users’ activities [12]. Typically extra
processing of the signals and more complex algorithms are
adopted to tackle these challenges, however, those require
additional resources which are often scarce on these de-
vices [4], [6], [9]. Here, we propose a new algorithm for
Respiratory Rate (RR) extraction, which is more reliable in
face of movement artifacts, while using less steps than the
State-of-the-Art (SoA).

RR is an important physiological measure used in various
medical studies [13]. However, measuring RR directly, e.g.,
using a mouth piece, is rather impractical in daily setups
since intervenes with their activities, is uncomfortable, and
comes with social stigmas. On the other hand, we know that
breathing influences the cardiac system [14]. These influ-
ences, visualized in Figure 1, are amplitude and frequency
modulation as well as wandering of baseline. This enables
us to extract RR using Photoplethysmogram (PPG) signals
of wearable devices such as smartwatches. One of the main
challenges of this method is the movement artifact contam-
ination [9], [12]. Most methods for alleviating the effect of
movement artifact use extra sensors, computations and power
to perform extra complex calculations, an overview of which
can be found in [12]. In contrast, here, we present a method
that does not need any extra sensors. Moreover, by a closer
look into performance factors, we show that the Smart Fusion
(SFU) step -which is common in the literature- is not needed.
Our analysis show that while incurring a larger amount of
computation overhead, SFU provides insignificant benefits in
the proposed algorithm. This makes it an even simpler and
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Fig. 1. Modulations caused by respiration: (a) none (b) Baseline Wanderer
(BW) (c) Amplitude Modulation (AM) (d) Frequency Modulation (FM).

more efficient algorithm. More importantly, without any extra
sensors it reduces the error to a range that is acceptable for
many applications such as Early Warning Score (EWS) [10],
[11] The proposed algorithm, Frequency Domain Peak (FDP)
using Frequency Modulation (FM) only, is considerably more
robust against movement artifacts; i.e., compared to SoA
algorithms it shows an improvement of 60-72% and 130-
174% in mean error and Figure of Merit (FoM), respectively.
This indicates the improved reliability of the RR extraction
on a smartwatch using the proposed algorithm. Further, by
skipping Amplitude Modulation (AM) and Baseline Wan-
derer (BW) feature extraction and their fusion, it reduces
necessary computations and increases efficiency.

II. PROPOSED METHOD

Figure 2 depicts an overview of our RR extraction method,
which we describe in the remainder of this section.

1) Pre-Processing Step: Before extracting features of the
signal, the raw data needs to be prepared. This preparation
includes band-pass filtering of the signal. This eliminates the
offset and any noise that lays outside the range of interest and
helps in extracting the location of local maxima and minima
of the Blood Volume Pulse (BVP) signal. A finite impulse
response filter [15], e.g., Butterworth, leads to sharper peaks
and easier detection of the maxima of the BVP signal. The
order of the filter, N , is determined using N = 2fs/25,

Fig. 2. Flow chart of the implemented RR extraction algorithm.
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Fig. 3. (a) The original PPG signal and (b) the filtered PPG signal.

where fs is the sampling rate. The filter coefficients [15] are

bk =

{
−1 for k = 0, ...N2 − 1
1 for k = N

2 , ..., N − 1
(1)

Figure 3 shows the visible improvement on a sample PPG
signal before and after application of the filter. Out of the
filtered signal, the local extrema are searched using three
criteria: (i) Extrema are recognized as such only if they are
bigger than the mean value of the signal, (ii) only extrema
that are 0.4fs apart are considered, (iii) a trough must be
surrounded by two peaks and the other way around. Next,
only the relevant peaks and troughs remain and the extraction
of the features can start.

2) FM Feature Extraction: The proposed method relies
only on the FM feature of the PPG signal, therefore, in
contrast to the literature, we do not need to extract AM
and BW. FM, is calculated by subtracting the temporal
location of each peak and the the peak after it. At the end
it is normalized to the mean of the signal. This gives us a
continuous FM signal which we process in the next step.

3) Proposed RR Estimation: For estimation of RR, exist-
ing methods [16]–[18] process the AM, FM, and BW features
and their properties in the time domain. In our algorithm,
FDP-FM, we use only one feature, namely FM, which we do
not process in the time domain, as others do, but rather in the
frequency domain. Our algorithm searches for the Dominant
Frequency (DF) in the extracted signal. First, the signal is
detrended. Next, dominant peaks in the range of 0.033−2Hz
(associated to a breath rate of 2 to 120 Breath per Minute
(BPM)) are found. The breath rate corresponding to the DF
is the estimated RR.

III. EXPERIMENTS AND RESULTS

1) Experimental Data and Setup: The data set1 is
composed of 41 samples taken from four male healthy
volunteers, aged between 26 and 29 years, breathing and
moving while wearing Empatica E4 smartwatch. The first
task was normal breathing in the range of 10 to 15 BPM.
The second, fast breathing with a breath rate over 15 and
the last, slow breathing with a breath rate below 10. During
the 60 seconds of measurement, they moved their arms from
the table straight into the air three times and counted their

1At the time of conducting the research, our institution had no formal
research ethics committee or institutional review board to approach for
approval of the research. We confirm that we followed the principles of the
WMA Declaration of Helsinki (adopted in 1964, most recently amended
in 2013); the participants were healthy volunteers who gave their written
informed consent.

TABLE I
DISTRIBUTION OF THE USED EXPERIMENTAL DATA

Normal Fast Slow
With Movement 12 4 7
Without Movement 10 4 4

TABLE II
SUMMARY OF THE RESULTS OF THE PROPOSED METHOD.

Window Mean|Error| STD Samples Window FoMOverlap [BPM] [%] length [s]
No 4.229 3.996 100 16 12.16
Yes 4.567 4.253 100 20 11.33

breaths to use as the ground truth. This movement introduces
noise, more specifically movement artifacts into the recorded
signal. Figure 4 depicts an example of a Blood Volume Pulse
(BVP) signal with a noisy portion in the middle introduced
due to movement. Table I shows a summary of the used data.

The proposed method is implemented in Matlab. For the
filter we have used a 4th order high-pass Infinite Impulse
Response (IIR) filter, namely Butterworth, with a 0.05 Hz
cut-off frequency and a low-pass one with a 5 Hz cut-off
frequency. Sampling frequency of the BVP is 64 Hz.

2) Sliding Window: The performance of the system is
affected by the processing window size. To find a suitable
window size, a parameter sweep was performed, where the
window range was swept from 4 to 30 seconds in a step size
of 2 seconds. The maximum was set to 30 because the test
data are 60 seconds long. If the range exceeds 30 only half of
the signal could be analyzed since no second window could
be fully formed. That is the reason why the range was not
increased further. In addition, the same range was tested with
50% overlapping windows. The best window length was in
this manner selected for each algorithm.

3) FoM: The merit of an RR extraction algorithm does
not solely depends on its average accuracy, but also factors
such as the amount of variation or dispersion in prediction,
i.e., Standard Deviation (STD), as well as the percentage of
times it is successful in calculating an RR (regardless of its
accuracy). To better compare algorithms, we define a FoM,
which captures all these effects under one umbrella. That is,

FoM =
CSR

Mean(|Error|) + STD
(2)

where error is measured in BPM and CSR stands for the
Computed Samples Ratio, that is the number of samples with
successful estimation of RR divided by the overall number
of samples. Thus, the proposed FoM combines the amount of
error and reliability (represented by STD) of RR estimation,
with the number of samples it can successfully estimate. The
larger FoM, the better the algorithm.

Fig. 4. The effect of movement artifact in BVP.
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4) Results of the experiments: The proposed algorithm,
showed to be able to successfully estimate all samples in
our data set, with a mean error and standard deviation of
approximately 4 BPM. This is an acceptable performance
for many applications (e.g., EWS [3], [5], [10]), especially
given the fact that the data was contaminated with movement
artifacts. Moreover, as we can see in Section IV, it has a
better FoM than other existing algorithms. A summary of the
results that we obtained for the proposed algorithm is inserted
in Table II. As we see in this table, the performance of the
system with and without windows overlap is very similar.
However, the algorithm without overlapping windows gives
slightly better results, which makes it overall favorable.

IV. COMPARISONS

1) Algorithms in the Literature: To have a fair compari-
son, we implemented other principle algorithms in the liter-
ature, namely Time Domain Peak Detection (TDPD), Time
Domain - Count Origin (TDCO), and Count Origin - Smart
and Time Fusion (COSTF). Moreover, we implemented an
algorithm based on the same analysis mode, i.e., FDP, which
uses all three features (as opposed to only FM, as used in
our proposed algorithm) and their SFU [19].

The first extraction algorithm [16], TDPD, uses the Peak
Detection (PD) for estimation of RR. The second and third
algorithms, TDCO and COSTF [17], use Count Origin (CO)
method to detect peaks and troughs. In this method, a
threshold as 0.2 times the 75th percentile of peak values
is defined, and any peaks with an amplitude smaller than
this threshold is dismissed. A breath is detected as two
consecutive peaks separated by only one trough (with an
amplitude less than zero). COSTF uses an additional fusion
method called Temporal Fusion (TFU) [18]. In Table III, a
summary of all analyzed algorithms, including the proposed
method (FM) and the proposed algorithm, and their features
are shown. The key new feature of the proposed algorithm
is using DF and only DF for its estimation.

2) Simulation of Existing Algorithms: We implemented
all aforementioned algorithms and ran them on our data in a
similar condition. We performed extensive analysis of their
performance, when the RR was estimated using one of the
features only, as well as when it was obtained using a fusion
algorithm. It should be noted that compared to the original
implementation, in our implementation of other works, we
enhanced TDPD, TDCO, and COSTF by changing the PPG
peak detection from the detection of the maximum in the raw
signal to finding it after applying a filter. As seen in Figure 3,
application of this filter increases the quality of the input
PPG signal and helps to achieve a more robust detection. In
addition, the SFU algorithm was changed so that it can fuse
two estimated values instead of only all three (original case)
to increases the percentages of calculated samples.

In the enhanced SFU, first, the STD of the estimated values
from each feature (BW, AM and FM) is calculated for each
window. If the STD is below 4, the mean value of these
values is calculated and is taken as the RR value of the fusion
method. On the other hand, if only two estimations have a

TABLE III
A SUMMARY OF ALL ANALYZED RR EXTRACTION ALGORITHMS.

Feature Extraction RR Estimation Fusion
AM BW FM CO PD DF SFU TFU

TDPD D D D D D
TDCO D D D D D
COSTF D D D D D D
FDP D D D D D
Prop. Alg. D D

STD below 4 and this value is lower than the STD of all
three estimations, the mean value of these two estimations is
calculated and set as the final RR value of the fusion method.
If all STDs exceed 4 then the value of the SFU is set to NaN
(Not a Number). In addition to SFU, for COSTF a TFU is
calculated using [18] RRi = 0.2RRest+ 0.8RRi−1, where
RRest is the estimated value from the SFU algorithm. If
some values are not calculated because the STD is above 4,
this fusion algorithm can be used to smoothen the values.
In practice TFU works similar to a low pass filter, which
reduces errors due to numbers widely out of range [18].

A summary of the results we obtained for each algorithm,
including variations of the proposed method, is inserted in
Table IV to Table VI. In Table IV, the STDs for TDPD
in the cases of BW and SFU are 0 because only 2.44% of
the samples were calculated. That is only one sample and
therefore, no STD could be calculated.

3) Comparative Analysis: We have summarized the
comparison for the best result of each algorithm and their
respective FoM improvements in Table VII. In this table,
the improvements of factor F are calculated using Imp. =
FL−Fs

FL
, where L indicated the larger number and s the

smaller number between the two.
We observe that the proposed system has the best (largest)

FoM, that is 12.16, with a mean error of 4.2 BPM and STD
of 3.9, while successfully calculating all samples. As we see
in Table VII, the mean error of other SoA algorithms are 2.5-
3.6 times larger than the proposed method. Similarly, they
have 1.5-1.7 times larger STD which represent their lack of
reliability compared to the proposed algorithm. In particular,
we note that a mean error of 11-15, associated with existing
algorithms, is extremely large and being comparable to
the actual number of breath per minutes, in most cases,
renders it unacceptable. We observe that FoMs reflect these
decisive factors too. In summary, as we can see in Table VII,
the proposed method (FDP-FM), compared to other three
existing methods (TDPD, TDCO, COSTF, and FDP), has a
130-174% better performance (largest FoM)

Among the various modalities of the proposed algorithm,
the best combination –as seen in Table VI– is the FM,
without overlapping windows. In this method, all samples
were successfully calculated, with an average error of only
4.2 BPM, and a STD of 3.99. Almost as good as that method
is AM without overlapping windows, where the FoM is
11.68 mainly due to the somewhat higher STD. The best
window length is 16 seconds for both combinations. Lastly,
we notice that the smallest mean error and STD (with a small
margin) belongs to SFU of the proposed method, which ranks
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TABLE IV
STATISTICAL RESULTS OF TDPD.

Estimation Mean|Error| STD Samples Window Window FoMMethod [BPM] [%] Length [s] Overlap
AM 15.923 9.032 9.76 8 0.39
BW 12.248 0 2.44 8 0.20
FM 10.738 6.921 92.7 24 5.25
SFU 9.226 0 2.44 12 0.26
AM 16.222 10.001 9.76 8 D 0.37
BW 17.590 0 2.44 8 D 0.13
FM 10.656 6.911 92.7 24 D 5.27
SFU 6.877 0 2.44 12 D 0.35

TABLE V
STATISTICAL RESULTS OF TDCO AND COSTF.

Estimation Mean|Error| STD Samples Window Window FoMMethod [BPM] [%] length [s] Overlap
AM 14.618 6.914 100 28 4.64
BW 16.789 6.057 100 30 4.37
FM 13.937 6.450 100 24 4.90
SFU 15.418 6.353 97.6 22 4.48
TFU 16.257 6.753 100 28 4.35
AM 14.589 5.883 100 28 D 4.88
BW 17.154 5.883 100 22 D 4.34
FM 13.924 6.523 100 22 D 4.89
SFU 15.323 6.156 95.1 22 D 4.42
TFU 15.676 6.877 100 30 D 4.43

TABLE VI
STATISTICAL RESULTS OF THE FDP AND FDP-FM.

Estimation Mean|Error| STD Samples Window Window FoMMethod [BPM] [%] length [s] Overlap
AM 4.226 4.335 100 16 11.68
BW 8.157 5.009 100 12 7.59
FM 4.229 3.996 100 16 12.16
SFU 3.148 3.214 75.61 28 11.88
AM 4.568 5.524 100 16 D 9.91
BW 7.838 5.261 100 16 D 7.63
FM 4.567 4.253 100 20 D 11.34
SFU 3.351 3.387 75.61 28 D 11.22

TABLE VII
COMPARISON OF THE BEST PERFORMANCE OF ALL ALGORITHMS.

Algorithm Mean|Error| Impr. STD Samples FoM Impr.[BPM] [%]
TDPD - FM 10.656 60% 6.911 92.7 18.977 130%
TDCO - FM 13.937 70% 6.450 100 20.387 148%
COSTF - SFU 15.323 72% 6.156 95.1 22.431 174%
Proposed - FM 4.229 - 3.996 100 8.225 -

second in terms of FoM. The reason for that is its relatively
lower success rate in estimating samples, that is, only 75%.
In other words, in every 4 samples, the RR of one cannot
be properly estimated, which -as properly reflected in FoM-
affects its merit and reliability. Moreover, we need to bear
in mind that for SFU, all three features (AM, BW, and FM)
need to be extracted and their associated RR estimated and
fused, whereas in the proposed algorithm (FDP-FM) only
one feature (FM) needs to be extracted and its associated RR
estimated. All this extra calculations require hardware and
energy resources and to lead to only 1 BPM improvement in
the mean error. Hence, the proposed algorithm (FDP-FM),
not only has a better FoM, but also is simpler and requires
less calculations than FDP-SFU, making it more efficient.

V. CONCLUSION

In this work, we proposed a new RR extraction algorithm,
FDP-FM, which uses DF and FM features to estimate the
RR. The proposed algorithm showed to be significantly more
reliable than existing ones. Our algorithm has an average

error of only 4.2 BPM and a STD of 3.9, while successfully
calculating all samples. For a better comparison, we intro-
duced a FoM, which combines the mean error, STD, and
the percentage of successfully estimated samples. Compared
to others, the proposed algorithm shows more than 130%
improvement in the FoM. A noteworthy observation of our
study is that in the presence of movement artifacts, in almost
all existing methods, the estimations based on the FM feature
showed to be more reliable than other combinations. In other
words, the common practice of using fusion methods, which
incur considerable extra calculations costs, seem to bring no
significant additional value to the table compared to the ones
using the FM feature (especially, considering their additional
calculations and complexity costs). This observation invites
further investigations.
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