
A Semi-Serial Topology for Compact and Fast
IMPLY-based Memristive Full Adders

N. TaheriNejad∗, T. Delaroche†‡, D. Radakovits ∗, and S. Mirabbasi‡
∗ TU Wien, Vienna, Austria

E-mail: {nima.taherinejad, david.radakovits}@tuwien.ac.at
† University of Bordeaux INP, Bordeaux, France

E-mail: theophile.delaroche@gmail.com
‡ University of British Columbia, Vancouver, Canada

E-mail: shahriar@ece.ubc.ca

Abstract—Memristive systems are among the emerging tech-
nologies that hold a great promise. They are compact, CMOS
compatible, easy to fabricate and can serve for storage as well
as computation purposes. Adders are one of the most basic and
critical building blocks of any computing system. One of the
main application areas of memristors is in Material Implication
(IMPLY) based logic. IMPLY-based adders are implemented
either in serial, which has a compact implementation but needs
many steps for calculation, or in parallel, which is fast, however,
requires a large number of memristors. In this paper we propose
an IMPLY-based adder topology and its respective addition
algorithm which is 54-to-65% faster than serial adders and
requires 46-to-76% less memristors than parallel adders. This
topology is a favorable candidate for applications where neither
speed, nor cost (i.e., area or number of memristors) could be
compromised to gain the required performance.

I. INTRODUCTION

Memristors, given their characteristics, are a promising

base for new, fast, compact and efficient computing systems.

While memristors are nominally used in memory applications

[1, 2, 3, 4, 5], they can also be employed in logic, which

makes them an ideal candidate for In-Memory Processing

(IMP) systems, performing memory and logic operations on

the same hardware without the need of data transport to a

Central Processing Unit (CPU). The logic family that is used

in the proposed design is Material Implication (IMPLY) [6],

which is one of the most prominent logic families used in

memristive IMP systems. Since in IMPLY the logic value is

stored in the resistance, i.e., state of the memristor, rather

than in voltage or current, it is considered as a so called

stateful logic [7]. As its name suggests, IMPLY performs a

material implication b = a → b, where a and b are both

input memristors before the logic operation and the result of

the implication is stored in b, making it the output memristor

after the logic operation. In IMPLY, the output (b′) is false

(‘0’) only if a = 1 and b = 0, in which logic ‘1’ is mapped to

Ron and logic ‘0’ is mapped to Roff . For all other values of

a and b the output (b′) is valid (‘1’). For more information

regarding the details of the operation in IMPLY logic, we

refer the readers to [6, 7, 8]. Because of its structure and

operation principles, IMPLY is highly suitable for standard

crossbar design, a structure broadly used in memory design.

Adders are among the most critical building blocks of

all computational systems, and they are used in practically

every processed command. Therefore, making adders more

compact, more efficient, and faster is an important step towards

improvement of the memristive IMP systems. However, the

improvement space in IMPLY-based adders seems saturated as

the progress has been considerably scarce and slow in recent

years. Therefore, we contribute in advancing the state-of-the-

art by introducing a new topology and a new algorithm for it.

The proposed adder is faster than existing serial adders and

requires less memristors compared to its parallel counterparts.

Moreover, it has the best Figure of Merit (FoM) among all

existing IMPLY-based adders.

Among existing adder architectures, serial topology shown

in Figure 1(a) is the most popular approach [7, 9, 8, 10, 11].

The main reason for its widespread use is the fact that it has the

most compatibility with cross-bar, that is, minimum changes

or peripheral elements are needed to use it in a cross-bar.

The main advantage of this topology is its low number of

memristors. In [11], a serial adder with the smallest number

of memristors to date, that is, 2n + 3 memristors for an n-

bit adder, is proposed. This is achieved by re-using input

memristors to store the output value too. Number of steps

required in this design for an addition is 22n.

Parallel topology is the other prominent approach, shown in

Figure 1(b), which was first proposed in [8]. The main feature

of this topology is its reduced calculation time, 9n, which

comes at the cost of increased number of memristors needed,

5n + 18. An alternative parallel adder topology is recently

proposed in [12], where the total number of memristors in

this design is 4n+1 and they manage to perform an addition

in 5n+ 18 steps1.

II. PROPOSED FULL ADDER STRUCTURE

A. Topology

In the serial structures reviewed in Section I, the main goal

of the designers has been to minimize the number of work

1It should be noted that in [12] the number of required steps is quoted as
5n+ 16, however, we believe that this is excluding the 2 steps required for
initialization of the work memristors.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on September 02,2020 at 15:48:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXECUTIONAL STEPS OF ADDITION IN THE PROPOSED SEMI-PARALLEL TOPOLOGY. VALID: 10n+ 2 STEPS, 2n+ 6 MEMRISTORS AND c = cin . WORK

MEMRISTORS AND c CAN CONNECT TO ANY OF THE TWO SECTIONS. THE OPERATION IN BLUE (UNNUMBERED STEPS) ARE PERFORMED ONLY FOR THE

VERY FIRST AND VERY LAST BIT OF THE OPERATION.

Steps
Operation Executed in: Equivalent Logic

Section 1 Section 2 Section 1 Section 2

1 c = 0 & w1 = w2 = 0 w3 = w4 = 0 False(c) & False(w1, w2) False(w3, w4)
- cin → c c = cin
2 a → w1 = w′

1 b → w3 = w′
3 w′

1 = a w′
3 = b

3 a → w′
3 = w′′

3 w′
1 → b = b′ w′′

3 = a → b b′ = a → b

4 c → w2 = w′
2 w′′

3 → w4 = w′
4 w′

2 = c = c w′
4 = a → b

5 a = w1 = 0 b′ → w′
4 = w′′

4 False(a,w1) w′′
4 = (a → b) → (a → b) = a⊕ b

6 w′′
3 → w′

2 = w′′
2 w′′

4 → c = c′ w′′
2 = (a → b) → c c′ = a⊕ b → c

7 c′ → a = a′ w′′
2 → w1 = w′

1 a′ = a⊕ b → c w′
1 = (a → b) → c

8 cin = 0 & c = w3 = 0 b′ → w′′
2 = w′′′

2 False(cin) & False(c, w3) w′′′
2 = (a → b) → [(a → b) → c]

9 w′
1 → w3 = w′

3 b′ → c = c′ w′
3 = (a → b) → c c′ = a → b = b → a

10 w′′′
2 → a′ = a′′ w′

3 → c′ = c′′ a′′ =
(
(a → b) → [(a → b) → c]

) → a⊕ b → c c′′ = [(a → b) → c] → (b → a) = Cout

= S(Sum)
- c → cin cin = c = Cout

(a) Serial

(b) Parallel

Fig. 1. Typical IMPLY-based Full Adder topologies.

memristors. This comes at the cost of speed. Furthermore,

the fully serial approach leads to having a large number of

steps, i.e., longer calculation time. As mentioned in Section I,

another approach is the parallel one which comes with a large

number of memristors and switches. In this work, we propose

the topology shown in Figure 2. This topology is similar to the

Fig. 2. The topology of the proposed semi-serial full-adder.

serial one, however, the input variables, ai and bi, constitute

two separate sections. There is a third section as well, where

carry and work memristors sit. This third section can be

selectively connected to each of the two input variable sections

(or to none). This third section uses five work memristors

(W1 to W4 and c) for the entire adder. Thus the total number

of memristors is n + n + 1 + 5 = 2n + 6. This number is

significantly less than parallel approaches where the number

of work memristors is proportional to the size of the adder, n.

Most serial adders use only two work memristors, however,

our three additional work memristors results in a negligible

overhead since in practical applications n = 32 or n = 64
this would mean less than 3% additional area. Lastly, similar

to [11] and [12], we reuse variables a (n-bit variable) and cin
to store the output sum and carry. To calculate the Sum (S)

and Carry-out (Cout) we use the following presentations;

S =
[
(a → b) →

(
(a → b) → c

)]
→

(
(a⊕ b) → c

)
(1)

Cout =
[(

(a → b) → c
)
→ (b → a)

]
(2)

The detailed steps of the algorithm for the proposed topology

are presented in Table I. In this algorithm, it is assumed c is

provided in the input and is propagated to the next bit. Hence,

on top of the 10 steps for each bit (10n) we consider one

additional step for the initial inversion at the first bit (that is,

cin to c = cin) and one for the the final inversion at the last bit

(that is, c to cout = c). These steps, which are taken only for

the first bit and the last bit calculation, respectively, are shown

in Table I using blue color. Therefore, the overall number of

steps in this design is 10n+ 2.
In this topology each bit is calculated one after another

(in a serial fashion) and has some structural similarities with

the serial topology (in terms of connections and number of

memristors), however, the structure of the work memristors

section is different than that of serial topology. Hence, we

refer to the proposed structure as semi-serial topology. We

note that the work memristor section requires a 1T1M crossbar

architecture (and external Complementary Metal-Oxide Semi-

conductor (CMOS) switches). Even though the operands could

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on September 02,2020 at 15:48:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SETUP VALUES FOR VTEAM MODEL.

Parameter voff von αoff αon Roff Ron

Value 0.7 V −10 mV 3 3 1 MΩ 10 kΩ

kon koff woff won wC aoff aon

−0.5 nm/s 1 cm/s 0 nm 3 nm 107 pm 3 nm 0 nm

be implemented in a 1M crossbar architecture too, it is simpler

to implement the entire design using a 1T1M crossbar.

B. Simulations

1) Setup: Using the LTSpice software and the VTEAM

model [13] imported to SPICE [14], the algorithm is tested

with the parameters in Table II. The parameters in the table are

selected such that they describe the behavior of real memristors

we have at hand2. Given the memristor model setup, to ensure

proper IMPLY logic parameters, the following values are used

in our simulations: {VSET , VCOND, VRESET , RG, tpulse} =

{1V, 900mV,-5V, 40kΩ, 30μs}.

2) Results: The proposed algorithm is first tested as a

single-bit adder with all of the different input combinations,

which resulted in the correct outputs. Figure 3 shows the

simulation for the single-bit adder with the inputs a = 0, b =
0, cin = 1 = c. As expected, the results of the computation

are: Sum = a = 1 and Cout = c = 0. By simulating all

of the different input combinations for the proposed one bit

full adder, we calculated the average energy consumption to

be 9.87 nJ per bit, excluding the one time inversion of carry

bit at the very first bit input and the very last bit output. The

overhead of these inversions is 1.33 nJ leading to the overall

energy consumption of 9.87n+1.33 nJ for the n-bit full adder.

Next, we simulated a 4-bit full adder to validate our design.

The simulation example shown in Figure 4 gives the expected

outputs, Sum = a4−1 = 0110 and Cout = c = 1, for its

inputs; a4−1 = 1001, b4−1 = 1100, c = 0 = cin.

C. Scope and Limitations

We note that this work mainly concerns topology and

algorithm design for IMPLY-based adders and regards the

basic IMPLY gates at a behavioral level. That is, the details

of IMPLY operations in practice are outside the scope of

this work. Thus, practical aspects such as parasitic elements,

variations in memristance, and noise are not studied.

Moreover, we acknowledge that a fully fair and compre-

hensive comparison requires implementation or post-layout

simulations, which is not possible to us, nor is reported

by others. Therefore, currently some factors such as area

or processing time can be only estimated or compared by

proxy3. For example, due to additional switches, the proposed

adder is more complex compared to a traditional serial adder.

However, these switches could be implemented underneath the

2Our memristors are tungsten chalcogenide Resistive Random Access
Memorys (ReRAMs) produced by KNOWM [15]. The data-sheet of the used
memristors including more detailed information can be found at [16].

3Area using the number of memristors and processing time via number of
steps.

memristors array and thus not affect the die area. With respect

to the parallel adder, the complexity depends on the number

of bits. In a parallel adder, with the increase in the number of

bits the number of required switches also increase linearly (2n
for an n-bit adder) whereas in the proposed design the number

of switches is constant (12 switches for any n). Therefore, for

any n > 6, the proposed adder is expected to be less complex.

Fig. 3. One bit adder simulation with a = 0, b = 0, cin = 1, each step
is 30μs long in the simulation settings.

Fig. 4. 4-bit adder simulation with a4−1 = 1011, b4−1 =
0100, c = 0 = cin, the calculation time for one bit is 300μs.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on September 02,2020 at 15:48:44 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SUMMARY OF COMPARISONS BETWEEN THE PROPOSED ALGORITHM AND OTHER IMPLY-BASED ADDERS.

Designs
Number of Memristors Number of Steps FoM

Reused Work Total n = 32 Imp. Total n = 32 Imp. Imp.

Serial [8] 1 2 3n+ 3 99 29% 29n 928 65% 91.9 76%
Serial [10] 1 2 3n+ 3 99 29% 23n 736 56% 72.9 69%
Serial [11] n+ 1 2 2n+ 3 67 -4% 22n 704 54% 47.2 52%
Serial [12] n+ 1 2 2n+ 3 67 -4% 23n 736 56% 49.3 54%
Parallel [8] 1 6n 9n 288 76% 5n+ 18 178 -45% 51.3 56%
Parallel [12] n+ 1 2n 4n+ 1 129 46% 5n+ 18 178 -45% 23.0 2%

Proposed n+ 1 5 2n+ 6 70 - 10n+ 2 322 - 22.5 -

III. COMPARISON

To explore the advantages and disadvantages of the pro-

posed design, we have compared it with the most recent

IMPLY-based full adders. A summary of this comparison is

presented in Table III. In these comparisons, FoM using the

product of the number of memristors and the number of steps,

divided by a thousand. This facilitates comparison in system

where are and speed are equally important. The percentages

of improvement are calculated based on Pworse−Pbetter

Pworse
× 100,

where Pbetter is the respective parameter of the better design

and Pworse is that of the worse design used as the base for

comparison. We note that we do not compare the power con-

sumption due to two reasons. First, many of the works do not

report any values regarding the power consumption. Second,

power consumption depends on the type of the memristors

used and their characteristics, and the comparisons between

adders simulated with different models is not fair and does

not represent their merit.

As shown in Table III, in terms of FoM, the proposed design

is better than all other designs. In terms of improvements in

the number of memristors compared to parallel designs, the

proposed approach is 50% and 78% better than [12] and [8]

respectively. In the case of other serial designs, when better,

the proposed architecture is 29% smaller. Note that for the

serial designs in [11] and [12] have 3 memristors less than the

proposed design. However, this difference is quite negligible

(only 4%) and in adders with large number of bits it is zero

(for n approaching infinity). In terms of number of steps, the

proposed design is 54 to 65% better than other serial designs.

Compared to parallel designs it is 45% slower, however, we

note that the proposed topology has a more compact area,

i.e., less number of memristors. In both cases, the FoM has

improved. Hence, for applications where both area and speed

have equal weights, or where the area of the design has a

larger weight, the proposed design would compare favorably

with all other designs.

IV. CONCLUSION

In this paper, we propose an IMPLY-based adder topology,

along with its associated algorithm to run the addition opera-

tion. The proposed semi-serial adder uses 2n+ 6 memristors

and the addition of two n-bit inputs is completed in 10n+ 2
steps. This gives the proposed solution an edge — in terms

of FoM — compared to all IMPLY-based adders. Compared

to serial designs, the improvement are anywhere between

29 to 65%. Compared to parallel adders, it is 45% slower,

however, this compromise in speed is compensated by a larger

improvements in the number of required memristors.

REFERENCES

[1] H. Kim et al. Memristor-based multilevel memory. In

CNNA2012, pages 1–6, Feb 2010.

[2] M. Zangeneh and A. Joshi. Design and optimization

of nonvolatile multibit 1T1R resistive RAM. VLSI2014,

22(8):1815–1828, Aug 2014.

[3] N. Taherinejad et al. Memristors’ potential for multi-bit

storage and pattern learning. In EMS, pages 450–455,

2015.

[4] N. Taherinejad et al. Fully digital write-in scheme for

multi-bit memristive storage. In CCEC, pages 1–6, 2016.

[5] Kuk-Hwan Kim et al. A functional hybrid memristor

crossbar-array/cmos system for data storage and neuro-

morphic applications. Nano letters, 12(1):389–395, 2011.

[6] Julien Borghetti et al. memristiveswitches enable state-

fullogic operations via material implication. Nature,

464(7290):873–876, 2010.

[7] Eero Lehtonen and Mika Laiho. Stateful implication

logic with memristors. In NANOARCH2009, pages 33–

36. IEEE Computer Society, 2009.

[8] Shahar Kvatinsky et al. Memristor-based material impli-

cation (imply) logic: design principles and methodolo-

gies. VLSI2014, 22(10):2054–2066, 2014.

[9] Bickerstaff K’A and Earl E Swartzlander. Memristor-

based arithmetic. In ACSSC2010, 2010.

[10] Mehri Teimoory et al. Optimized implementation of

memristor-based full adder by material implication logic.

In ICECS2014, pages 562–565, 2014.

[11] S. G. Rohani and N. TaheriNejad. An improved algo-

rithm for imply logic based memristive full-adder. In

CCECE2017, pages 1–4, April 2017.

[12] Ahmad Karimi and Abdalhossein Rezai. Novel design

for a memristor-based full adder using a new imply

logic approach. Journal of Computational Electronics,

17(3):1303–1314, Sep 2018.

[13] Shahar Kvatinsky et al. VTEAM: A general model

for voltage-controlled memristors. CSII2015, 62(8):786–

790, 2015.

[14] https://www.ict.tuwien.ac.at/staff/taherinejad/projects/

memristor/files/vteam.sub, March 2018.

[15] https://knowm.org/, February 2019.

[16] https://knowm.org/wp-content/uploads/dm8-16dip-bs-af-

w.pdf, February 2019.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on September 02,2020 at 15:48:44 UTC from IEEE Xplore. Restrictions apply.

