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Abstract
Cardiovascular diseases are one of the world’s major causes of loss of life. The vital signs of a patient can indicate this
up to 24 hours before such an incident happens. Healthcare professionals use Early Warning Score (EWS) as a common
tool in healthcare facilities to indicate the health status of a patient. However, the chance of survival of an outpatient
could be increased if a mobile EWS system would monitor them during their daily activities to be able to alert in case
of danger. Because of limited healthcare professional supervision of this health condition assessment, a mobile EWS
system needs to have an acceptable level of reliability - even if errors occur in the monitoring setup such as noisy signals
and detached sensors. In earlier works, a data reliability validation technique has been presented that gives information
about the trustfulness of the calculated EWS. In this paper, we propose an EWS system enhanced with the self-aware
property confidence, which is based on fuzzy logic. In our experiments, we demonstrate that - under adverse monitoring
circumstances (such as noisy signals, detached sensors, and non-nominal monitoring conditions) - our proposed Self-Aware
Early Warning Score (SA-EWS) system provides a more reliable EWS than an EWS system without self-aware properties.

Keywords Early warning score · Self-awareness · Data reliability · Consistency · Plausibility · Confidence · Fuzzy logic ·
Hierarchical agent-based system

1 Introduction

Cardiovascular diseases are worldwide considered as one of
the major causes of death [1]. The vital signs of a patient
reflect the patient’s health condition, and monitoring these
vital signs establishes a basis for predicting a possible dete-
rioration of the health condition. Even up to 24 hours before
a sudden health deterioration occurs, specific symptoms are
visible in the vital signs of a patient [2]. The assessment
of the EWS of a patient’s health condition is a common
practice in hospitals and manually done by healthcare pro-
fessionals. The EWS constitutes a number which indicates
the level of criticality [3].

The availability of an autonomous mobile EWS system
that constantly monitors patients’ vital signs to calculate
the EWS could increase the life expectancy of outpatients.
High-risk patients could wear such a system which monitors
them during their daily life activities and alert in case of an
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emergency. Besides a much higher survival rate, a mobile
EWS system could also decrease costs related to healthcare
and reduce the duration of hospitalization periods.

Internet of Things (IoT) - with its small devices and
wearable technologies - is a key enabler to provide
autonomous health monitoring for a mobile EWS system
in a cost-efficient manner [4–7]. Such a system cannot be
supervised continuously by healthcare professionals, but
its reliability and the accuracy of the calculated EWS are
of utter importance. The manual monitoring of a patient
who is admitted and is lying in a hospital bed, done by
healthcare professionals, faces much fewer problems than
automated monitoring of a patient who is at home carrying
out daily tasks [8]. One of the widely acknowledged and
intrinsic challenges for wearable devices is the movement
artifact [9]. Moreover, incorrectly attached or detached
sensors, broken sensors, and noise can affect the calculation
of the EWS that could lead to a false or - even worse - a
missing alarm with all its consequences [10].

Self-awareness has various properties which help to
make computer systems more autonomous, smarter, and
reliable [11, 12]. Therefore, it can also be an enabler to make
the monitoring of patients and the calculation of EWS more
robust as well as reliable. In one of our previous works [13],
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we already presented a data reliability assessment technique
based on fuzzy logic, which gives information about the
trustfulness of the calculated EWS. However, although the
proposed system outputs a reliability value which correlates
with the correctness of the monitored vital signs, the system
can only provide an unmodified EWS, which is incorrect
when the input data is corrupted. To improve the decision-
making ability of a system, another self-aware property
can be utilized, namely, confidence. In other words, data
reliability and confidence are two self-aware properties that
can enhance the conventional EWS system. Both reliability
and confidence are metadata. Reliability is metadata of the
given input data and provides information on to what degree
the data is reliable; in this case, the system can trust its
sensors. Besides, the system can make its decisions based
on confidence, a meta-data for decisions, which have been
motivated by observations of various pieces of information,
and other metadata.

In this paper, we propose a self-aware EWS system
which validates reliability and bases all decisions on a con-
fidence assessment. These validations and assessments are
techniques based on fuzzy logic. To show the effectiveness
of these two mentioned self-aware properties, we recorded
vital signs of a set of persons with high-quality and low-
quality sensors. In our experiments, we demonstrate Self-
Aware Early Warning Score (SA-EWS) system calculates
the EWS correctly or with a small error close the to the
value it should have even if the monitoring circumstances
are adverse. The results show that our proposed SA-EWS
system is more reliable than an EWS system without self-
awareness. In other words, we prove that self-awareness is
a good foundation for a reliable EWS system that trustfully
classifies the EWS even if there is some faulty sensory data.
Our main contributions are:

1. We propose a fuzzy logic based confidence metric for
the quality assessment of the calculated EWS,

2. we show how a fuzzy logic based reliability metric
gives information about the correctness of the input
data,

3. we introduce a method for combing the input data
reliability and the confidence of the system to calculate
output data reliability based on both factors, and

4. using extended experiments, we demonstrate that our
proposed system gives equally good or better results
than a similar system that does not use reliability and
confidence metrics.

After reviewing relevant related work in Section 2, we
explain self-awareness properties reliability and confidence
in Section 3. Section 4 shows system architecture as well
as the implementation of our proposed system. While
Section 5 explains the experimental setup and presents the
results, finally, Section 6 concludes the paper.

2 Background and related work

In 1997, Morgan et al. proposed a medical method called
EWS that is currently widely used in hospitals helping to
determine the degree of patients’ health deterioration. The
patient’s vital signs, such as respiration rate, heart rate,
systolic blood pressure, body temperature, blood oxygen
saturation (SpO2), and the level of consciousness are
manually collected in a regular routine and classified in
different scores. These scores, ranging from 0 to 3, are
determined according to the observations and predefined
ranges of the vital signs. Table 1 indicates an EWS chart
used for obtaining the various scores. In this chart, score 0
is allocated to a vital sign that is in perfect condition; e.g.,
heart rate in a range between 60 and 100. If the value of a
vital sign is a bit worse than this (a bit too low or too high),
the corresponding score is 1.1 If the value of a vital sign is in
even a worse condition (still higher or lower), the vital sign
is classified to be score 2. Any value worse (depending on
the case, higher or lower in absolute value) than the above
ranges is classified as score 3.

The EWS is a simple aggregate of the scores that are
abstracted from the patient’s vital signs. The lower the
calculated EWS, the better the patient’s condition. A high
EWS corresponds to a high risk of death or critical medical
conditions [15]. Therefore, this likelihood reveals early
signs of health deterioration and can be used to trigger
a rapid response team to evaluate the patient. Similarly,
an approach to predict potential sudden patient death have
recently received FDA approval [16].

The EWS itself can be classified into three different
risk levels: low (EWS: 0-3), medium (EWS: 4-6), and high
(EWS: 7 or higher). A low-risk level demands a nurse to
assess the patient periodically. A medium-risk level requires
to inform medical team urgently. In contrast, a high-risk
level should trigger an urgent clinical response as the
patient’s condition is critical [17–19].

There are, nevertheless, various restrictions and issues
such as latency and inaccuracy in this manual data
acquisition. Furthermore, this system is merely restricted to
hospital settings where patients are stationary. In this regard,
an IoT-based health monitoring system is proposed to
monitor the vital signs autonomously and deliver the EWS
score to healthcare providers [20]. Estimations suggest that
the ratio between the world’s population and IoT devices
will be one to four [21]. These small IoT devices and
wearables form a good basis for a well-structured EWS
system which autonomously monitors a patient in a cost-
efficient way while decreasing the mortality rate [4–7].

1As Table 1 shows, not every score corresponds to a value of all vital
signs.
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Table 1 A conventional Early Warning Score (EWS) chart [14]

Vital sign score 3 2 1 0 1 2 3

Heart rate (beats per minute) 0 – 39 40 – 50 51 – 59 60 – 100 101 –110 111 – 129 ≥ 130

Systolic blood pressure (mmHg) 0 – 69 70 – 80 81 – 100 101 –149 150 – 169 170 – 179 ≥ 180

Respiratory rate (breaths per minute) 0 – 8 9 – 14 15 –20 21 – 29 ≥ 30

Body temperature (◦C) ≤ 35 35.1 – 38 38.1 – 39.5 ≥ 39.6

Blood oxygen saturation (%) 0 – 84 85 - 89 90 – 94 95 – 100

AVPU scorea A V P U

aAVPU (the level of consciousness): A = alert, V = reacting to voice, P = reacting to pain and U = unresponsive

Despite IoT provides a potential solution for monitoring
human’s vital signs, the conventional EWS system is still
not applicable for out-of-hospital monitoring since daily
activities, and the environments influence the vital signs and
subsequently the decision making. Usually, a person has a
higher heart rate, blood pressure, respiratory rate, and body
temperature when making physical effort (e.g., running and
riding a bicycle) compared to more relaxed activities such
as sitting or sleeping. Using the same score classification
ranges, such as those in Table 1), would lead to a high
EWS during physically demanding activities although there
is no emergency. Towards this end, a modified EWS system
has been proposed for everyday settings, providing a self-
aware decision (i.e., the score) according to the context
information and five2 vital signs [22].

Autonomous mobile EWS system still faces problems
that have to be solved for being able to offer a reliable
EWS calculation. Incorrectly attached or detached sensors,
broken sensors, or a noisy signal affect the EWS calculation.
If the calculated value is still close to the truth, it may not be
a problem. In contrast, an EWS that deviates more from the
truth could lead to a false or - even worse - a missing alarm
with all its consequences. Self-awareness is a promising
solution to tackle this problem. Self-awareness is the ability
of the system to monitor itself and its environment regarding
the state, behavior, performance, and goals. This is often
accompanied by an adjustment of some of the components
and parameters which lead to achieving or approaching
to the goals of the system [23]. This process has been
modeled different ways by various groups, among which
some of the more well-known ones are Observe-Decide-
Act (ODA) [24] and Monitor-Analyze-Plan-Execute over
a shared Knowledge (MAPE-K) [25]. Several works have
been done in order to implement self-awareness in various
systems, and take advantage of its properties [12, 23, 24,
26–28]. However, most of these works are more focused
on the smart decision-making process, while paying little

2The level of consciousness is excluded because it is not applicable in
out-of-hospital monitoring.

attention to the observation (monitoring) part of the process.
In 2016, TaheriNejad et al. published a paper [29] which
highlighted this aspect and elaborated on different elements
of observation and their potential effect on self-awareness
and the overall performance of the system. Since then,
several publications have appeared in the literature which
demonstrated this effect in various applications [13, 26–28,
30–33].

Our previous works utilize various self-awareness
properties to overcome different issues. Anzanpour et al.
exploited the self-awareness in IoT-based EWS systems. In
this work, situation awareness was utilized to improve the
specificity of the EWS values, considering the impact of
the user’s physical activities in the calculation. Attention as
another self-awareness property was also used to enable a
self-organized system, dynamically adjusting the system’s
configuration for power consumption reduction [26]. Such
a dynamic behavior can increase system battery life, but it
could decrease the reliability of the EWS in the case of low-
quality signals. In another work [13], the proposed system
assess the reliability of the calculated EWS. The fuzzified
reliability validation tackles the fact that the knowledge
about the vital signs as well as their interactions is not
complete. With this technique, it was possible to recognize
erroneous vital signs caused by various measurement
artifacts such as detached sensors, loose sensors, and other
interferences.

Our results show that self-awareness can tackle various
issues that affect the reliability of a mobile EWS system.
Although the proposed system of [13] provides information
about the trustworthiness of the calculated EWS, the EWS
itself is still incorrectly calculated if the input data is
corrupted. Enhancing the decision-making mechanism of
the EWS system is a way to solve this problem and improve
reliability.

3 Self-awareness properties

In this work, we study two aspects of self-awareness,
namely confidence and data reliability, and the interplay



Mobile Netw Appl

between the two as well as their effect on the overall perfor-
mance of the system. Moreover, we have tried to formalize
these concepts, which were initially described in [29] only
conceptually, in order to establish a more uniform under-
standing of these concepts.

3.1 Data reliability

Data Reliability describes the trustworthiness of a set
of data at hand, which can be divided into accuracy,
precision, and truthfulness. A sensor may be accurate and
precise. However, if it is used outside its assumed working
conditions, it does not provide reliable data; i.e., it does
not provide truthful data. Moreover, even though accuracy
and precision provide general measures on the overall
quality of a data set (or performance of a sensor), they
do not provide an explicit meta-data on each data point.
A (resource constrained) self-aware system such as ours,
however, sometimes needs to make decisions based on
single or few data points. Therefore, accuracy and precision
do not provide enough situational information for such
cases, and the system needs to estimate and be aware of
the overall reliability of those data points based on which it
makes a decision.

3.1.1 Formal definition

As mentioned before, data reliability can be broken to accu-
racy, precision, and truthfulness. Accuracy, A(X′), is the
systematic bias of the data set at hand, i.e.,X′ = 〈x′

0, ..., x
′
n〉,

compared to the ground truth values, X = 〈x0, ..., xn〉. As a
measure of statistical bias it can be defined as

A(X′) = 1

n

n∑

i=0

xi − x′
i . (1)

Precision presents the random errors in the data (for a
measurement, it would be the random errors of repeated
measurements under the same conditions). Since precision
is a measure of statistical variability, it can be defined as:

P(X′) = σ ′ =
√√√√1

n

n∑

i=0

(x′
i − μ′)2 (2)

where μ′ = 1
n

∑n
i=0 x′

i .
Truthfulness, t, is the distance of each value at hand, x′

i ,
with the corresponding ground truth value xi :

t (x′
i ) = |x′

i − xi | (3)

The overall truthfulness, T (X′), of a set of values can be
defined as

T (X′) = 1

n

n∑

i=0

t (x′
i ). (4)

Accuracy and precision are defined on one or more
data sets, X′ and X, and hence are a property of a set,3

whereas truthfulness is defined on each data sample, x′
i .

Therefore, even though A, P , and t (and consequently
T ) are correlated, a closed-form formula describing their
dependency often cannot be established. Moreover, in many
cases the ground truth value, xi , is not available which
makes the calculation of t impossible. In consequence, often
an estimation of t , namely t ′, is devised which may or may
not include the effect of accuracy and precision.

In summary, given a sequence of sampled data points X′,
the data reliability R of X′ is given as (the same can be
defined for each value)

Rf (X′) = f (A(X′), P (X′), T (X′)) (5)

where f determines the role of each parameter and thus how
well would R fit its purpose. For example, the reliability of
x′
i ∈ X′ could be calculated as

rf (x′
i ) = fx′

i
(A, P, t) = c1A(X′) + c2P(X′) + c3t (x

′
i ) (6)

with constants c1, c2 and c3 defining the relative weights
given to the three components of the data reliability. Ideally,
the reliability is defined such that the mapping domain is
between one and zero:

R, r : X′ → [0, 1] ∈ 
 (7)

In a cyber-physical system, A and P are usually provided
by the producers of the sensors (even though that is not
always the case), and the t and f are to be calculated or
estimated by the system using the sensor. In the absence of
these values, the designer needs to estimate r or R by r ′ and
R′, respectively, using custom methods. In this work, we
present our proposed method to calculate r ′ and R′, which
we use as our measure of data reliability.

In the following, we present three measures which can
provide an insight into the reliability of the data at hand.
That is consistency, plausibility, and correlation of data. An
important feature of these measures is that they could be
applied to low-level data (obtained directly from sensors) or
higher-level data (obtained from processes and algorithms
within a system).

3.1.2 Plausibility

Data sets can often be associated with a membership
function, specifically in the case of cyber-physical systems,
that translates into how plausible is the existence of a data
with a certain value in the data set. For example, the oxygen
saturation can be only in the range of 0-100%; any other
value reported is a sign of malfunction and unreliability of
the data. The same could be said for a heart-rate of 300

3In a cyber-physical system that would be a property of a measurement
device.
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beats per minute for an adult person. By tagging such data
as less reliable or unreliable, a self-aware system could react
accordingly (e.g., look for further sources of information or
dismiss the data).

3.1.3 Consistency

A certain consistency is often observed within the members
of a data set. This is particularly valid in the case of data
sets representing natural phenomena, i.e., data collected by
a sensor from the real world. Such signals often experience
limited changes from one sample to the next. Therefore, the
history of a signal and its consistency can provide some
information on how reliable is that source of data. For
example, it is established that the body temperature cannot
change several degrees per minute [34]. Hence, if a larger
rate of change occurs in a data set, a self-aware system
should tag such an observation (which may be caused by
a sensor detachment or a fault/failure in the sensor) as
unreliable (regardless of its cause) and react accordingly.

3.1.4 Cross-validity

In some cases, there exists a correlation between the values
of two data sets (or such correlation can be established).
In such cases, this correlation can be exploited to evaluate
the probability or possibility of the coexistence of two or
more values. If their coexistence is not possible (e.g., a
living patient with valid heart rate and respiratory rate but
a negative body temperature) then one or some of those
data could be tagged as an unreliable (in this example body
temperature). If their coexistence is possible but not very
probable (e.g., a body temperature around 30oC with typical
values for other biological signals), the reliability of the data
could be reduced, signaling the system a need for further
analysis. In the use-case of this work, there have been
several works trying to establish such correlations between
vital signals of the body [35–37]. Although they do not
always provide a conclusive insight, they help us to enhance
the robustness of our system by enabling additional data
reliability assessments.

3.2 Confidence

Confidence is a measure of the reliability of an algorithm
or a process in the system4 [29]. Conceptually, we can
say that confidence provides the system with a measure on
how the results of an algorithm or a process can be relied
upon. In other words, how close the output of this algorithm

4Therefore, confidence is a property of an algorithm, process or
system, as opposed to Data Reliability which is a property of the data
at hand.

or process would be to the ideal output. All that with the
assumption that the system has received flawless input data.
Although, more often than not, the input data collected
by the sensors are unideal (which we discussed in the
data reliability subsection). Therefore, the reliability of the
output of a system depends on both its confidence and the
data reliability of its inputs.

The importance of confidence is in its ability to improve
the decision-making processes [12] and allow a self-aware
system to question certain abstracted data it has processed,
and make more reliable decisions based on the reliability
of its sub-processes and sub-algorithms. An important
application of this concept for the decision-making unit is
to enable it to switch between different algorithms based on
their confidence, the usefulness of which has been shown
in [28].

3.2.1 Formal definition

If I is an ideal function defined over X = 〈x0, . . . , xn〉
and g is the unideal function at hand, also defined over
X, then the confidence of g(xi) (defined for each member
of X) can be defined as a function � of g(xi) and I (xi).
� represents the “distance” between f and g based on some
application specific metric for distance, normalized such
that 0 ≤ � ≤ 1. Thus, for the confidence, c, we have:

c (g(xi)) = 1 − �(I (xi), g(xi)). (8)

Overall confidence of g (as opposed to confidence at
each point), represented byC, is the average confidence of g
over X:

C(g) = 1

n

n∑

i=0

c(g(xi)). (9)

We note that 0 ≤ c(g), C(g) ≤ 1 and c(I ) = C(I) = 1.
How to calculate c (and consequently C), however, is case
specific. Often the ground truth (I ) is not available and the
aforementioned distance cannot be calculated. Therefore, a
�′ function is used instead to estimate �, which is what
we do in the rest of this work too. That is, we propose an
estimation of � (i.e., �′). In other words, all the confidence
(c) functions hereafter refer to �′, which is an estimation
of �.

3.3 Combination of data reliability and confidence

In this section, we already discussed the concepts of data
reliability (as a property of a data set) and confidence
(as a property of a process or algorithm) independently.
However, in a real-world system, these two often are tightly
intertwined. Processes consume data and produce data.
Assuming an ideal input, the data reliability of the output
data of a process could be associated with its confidence
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(although not always in a straight forward or in a simple
manner). However, most often, the input data are unideal
and subject to a data reliability below one. Therefore,
the data reliability of the output data of a process is a
function (φ) of the input data reliability and the confidence
of the process. Calculating the output data reliability of a
process (which in turn could be the input data reliability
of another process) is particularly more difficult when
data reliability or confidence are obtained using estimation
functions. In this work, we explore this realm and try
to propose a method which shows a good promise in
the estimation of the output data reliability of different
processes in our system based on respective input data
reliability and confidence of that process. More details on
our practical implementation are found in Section 4.3.

3.3.1 Formal definition

If X′ = 〈x′
0, ..., x

′
n〉, is the data set at hand (i.e., the

unideal values), corresponding to the ground truth values
X = 〈x0, ..., xn〉, we have:
Rg(x

′
i ) = φ

(
rf (x′

i ), c (g(x))
)
. (10)

Since, as mentioned before ∀x; c (g(x)) ≤ c (I (x)) and
Rf (x′

i ) ≤ Rf (xi) we can conclude that

Rg(x
′
i ) ≤ RI (x

′
i ) ≤ RI (xi). (11)

3.4 History

History enables access to time-dependent information
in a system. For example, whether the performance of
a (sub)system has been improving or degrading. The
historical data can provide meta-data on the current status of
the system and its environment. They also help in predicting
the (near) future status of the system and its environment.
Given that most systems have memory limitation, choosing
the type and mode of storing historical value, and a smart
usage of it are important points to be considered when
designing a self-aware system using history for enhancing
its performance.

3.4.1 Formal definition

There are several methods to track the past values in
a sequence. Given the sequence of values or symbols
X = 〈x0, · · · , xn〉, H = 〈h0, · · · , hm〉 is a subsequence of
X, in which m ≤ n. If m = n, the system is memorizing
everything which is undesirable. Therefore, most often m <

n and preferably m � n. We note that history function is
a specific form of abstraction which concerns time, i.e., the
sequence length of X. As of such we can define it as

H = Hy(X) = 〈h0, · · · , hi, · · · , hm〉 (12)

where at the sequence point of xs ,

hi = y(h|rj=0, x|sk=0), r ≤ (i − 1) & i ≤ s, (13)

where the function y determines how exactly the history
H is extracted from X. An interpretation or abstraction of
X (such as the average of certain number of data points),
or a direct storage of the values themselves could be some
examples of y.

4 System architecture and implementation

A hierarchical agent-based architecture (as shown in Fig. 1)
consists of independent modules which can communi-
cate with each other and may be in different hierar-
chical levels. The possibility of hierarchically structuring
the agents enables to process data on different levels of
abstraction [38].

The EWS is the aggregate of various scores abstracted
from different vital signs. The task of abstraction is the
same for each vital sign, but the ranges vary from vital sign
to vital sign. The assessment of reliability and confidence-
based decisions are done on different levels of abstraction.
As an example, a part of the reliability assessment is
based on the absolute value and the slope of the signal
of a vital sign (principle of plausibility and consistency in
Sections 3.1.2 and 3.1.3). To analyze whether a signal is
plausible and consistent, the raw data is of interest. In con-
trast, for making a statement about the correlation between
vital signs (principle of cross-validity in Section 3.1.4)
already abstracted information is needed. Because of
these differences horizontal direction (different vital signs)
and vertical directions (different levels of abstraction),
a hierarchical agent-based model (Fig. 1) constitutes an
appropriate practical architecture for this purpose.

Because an ODA loop is an appropriate approach to
implement self-awareness, our system is also based on this
concept [23, 29, 39]. Each agent acts like an ODA loop,
which means that it monitors its inputs (sensor or agent),
decides what to do, and acts accordingly. Furthermore,
this approach allows implementing a highly modular model
easily.

While the abstraction from the raw sensor value to the
vital sign score (with the help of Table 1) takes place in
the lower hierarchical level, the agent on top aggregates
the five scores to the overall score, the EWS. In other
words, each low-level agent abstracts the actual samples
obtained from its dedicated sensor and sends the result to
the high-level agent, which sums up all these scores. Both,
the reliability assessment, as well as the confidence-based
decision-making, takes place in the lower and in the higher
hierarchical level. However, the implementations of these
processes are different in the two hierarchical levels. In
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Fig. 1 Hierarchical agent-based
system architecture

the next two sections, we explain the reliability assessment
and the confidence-based decision-making process, before
Section 4.3 shows the workflow of the proposed system in
detail.

4.1 Fuzzified reliability assessment

Due to the lack of complete knowledge of all functions of
a patient’s body, it is very challenging to determine whether
a vital sign is monitored correctly or incorrectly. Therefore,
in contrast to one of our previous works [32], we use fuzzy
logic instead of simple boolean logic to assess the reliability
value. The usage of fuzzy logic enables the coverage of the
unsharp ranges in which a patient’s vital sign is not tagged
merely as correct or incorrect, but rather somewhere on the
spectrum of reliability. Hence, the data reliability of a vital
sign is assigned a value in the range between 0 and 1.

The reliability of a patient’s vital sign, vsi , is composed
out of two different reliability assessments: the reliability of
the signal’s absolute value r ′

abs,i and the reliability of the
signal’s slope r ′

slo,i . This corresponds to the plausibility and
consistency of data, as described in Section 3.

The reliability for being plausible, r ′
abs,i , is the output

of a fuzzy membership function (Fig. 2) defined by four
points and three intervals. If the absolute value is in the
interval of [pb, pc], it is certainly reliable. If it falls in one

Fig. 2 Example for a fuzzy membership function to assess the
reliability of the absolute value or the slope of a vital sign

of the intervals of [pa, pb] or [pc, pd ] - depending on the
absolute value, it is more or less reliable. Otherwise, it is
certainly unreliable. The reliability r ′

abs,i and its counterpart
(the estimated unreliability u′

abs,i) of the actual absolute
value va,i are calculated by

r ′
abs,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

va,i−pa

pb−pa
if pa < va,i < pb

1 if pb ≤ va,i ≤ pc
va,i−pd

pd−pc
if pc < va,i < pd

0 otherwise

(14)

and

u′
abs,i = 1 − r ′

abs,i (15)

where the points pa , pb, pc, and pd respectively the
intervals between them are configured in a way to match the
characteristic of the assigned vital sign.

Similar to that, the reliability for being consistent,
r ′
slo,i , and its counterpart (the unreliability, u′

slo,i), a fuzzy
membership function of the same shape exists (Fig. 2).
Again, these functions are defined by for points and three
intervals between them. These are as follows

r ′
slo,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi−pa

pb−pa
if pa < gi < pb

1 if pb ≤ va,i ≤ pc
gi−pd

pd−pc
if pc < gi < pd

0 otherwise

(16)

and

u′
slo,i = 1 − r ′

slo,i (17)

where g is the gradient between the actual value, va,i , to the
previous one, vp,i .

This gradient is calculated by

gi = vp,i − va,i

t
(18)

where t constitutes the time between the samples.
Depending on which of the two reliabilities shall be

assessed, the abscissa constitutes the absolute value or the
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slope of a vital sign. The ordinate of the fuzzy membership
function constitutes then the reliability corresponding to it.
While the abscissa gives space for all values (from −∞
to +∞), the reliability values on the ordinate are limited
between 0 and 1.

After the assessment of r ′
abs,i and r ′

slo,i , the input relia-
bility, r ′

in,i , can be calculated in many different ways such
as conjunction (∧), disjunction (∨), or multiplication of dif-
ferent inputs as well as if-then-rules and other methods. We
decided to use the conjunction operator because a vital sign
is reliable when its absolute value and its slope are reliable.
Therefore the input reliability r ′

in,i of a vital sign is given by

r ′
in,i = r ′

abs,i ∧ r ′
slo,i (19)

where the fuzzy conjunction is equal to a minimum
function [40].

Because the input reliability, r ′
in,i , depends only on

the raw sensor data (absolute value and gradient of the
signal), it is calculated in the low-level agents which are
also responsible for the abstraction of the vital signs.
This input reliability is calculated for every vital sign and
provides information on whether it is reliable or unreliable
considered separately. In other words, the reliability of one
vital sign omits the condition of other vital signs.

Since vital signs impact each other, and therefore, one
vital sign, vsi , usually does not have a terrible score while
others have a perfect score, a cross-validation reliability
value is needed. For this purpose, the cross-validation relia-
bility, r ′

cro,i,j , for the vital signs vsi and vsj is calculated by

r ′
cro,i,j =

{
1 if si = sj

1
pcro,i,j |si−sj | if si �= sj

(20)

where pcro,i,j ∈ (0, ∞) denotes a coefficient of the strength
of the correlation5 between vital signs vsi and vsj , and si , as
well as sj , are the abstracted scores of these two vital signs.

Because the cross-validity reliability, r ′
cro,i,j , already

makes use of the abstracted information (the various vital
sign scores), it is calculated in the high-level agent which is
responsible for the calculation of the EWS.

4.2 Fuzzified confidence-based decisions

As already stated in Section 3.1, data reliability describes
the trustworthiness of a set of data at hand, which can be
divided into accuracy, precision, and truthfulness. For the
case, a sample (a sensor value) is not very accurate, two
different possibilities exist. If the real vital sign value (the
ground truth) is somewhere in the middle of a score range

5The reliability module in our implementation limits the cross-validity
reliability, r ′

cro,i,j , to a value between 0 to 1, although theoretically, a
coefficient less than 1 can lead to an r ′

cro,i,j higher than 1. The standard
value of pcro,i,j is 1.

of Table 1 and the sensor’s inaccuracy is not very high,
the abstracted score will most likely be equal to the ground
truth. In contrast, a wrong score abstraction could result out
of a ground truth value very close to a boundary of such a
range or a highly inaccurate sensor.

To overcome this issue, the abstraction process in the
lower hierarchical level is not merely based on a simple
lookup table as in Table 1, the boundaries of the different
score ranges are intersecting which means that the score
ranges are partly overlapping. Figure 3a shows an example
for the vital sign abstraction, with four different fuzzy mem-
bership functions; for each score, one fuzzy membership
function.

In similar fashion to the reliability fuzzy functions,
various intervals describe the confidence fuzzy membership
functions. Because the fuzzy membership functions are
an extension of Table 1, the intervals can vary between
different vital signs. While heart rate and systolic blood
pressure are symmetrical in a way that each score higher
than 0 is available for the vital sign’s value is either too low
or too high. In contrast, respiratory rate, body temperature,
and blood oxygen saturation are unsymmetrical; some
scores are missing on one side or both sides. In the case of a
symmetrical segmented vital sign (Fig. 3b), the confidence
functions of abstracting the actual value of a vital sign to a
score si , cs,i are calculated by

cs,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

va,i−pa

pb−pa
if pa < va,i < pb

1 if pb ≤ va,i ≤ pc
va,i−pd

pd−pc
if pc < va,i < pd

va,i−pe

pf −pe
if pe < va,i < pf

1 if pf ≤ va,i ≤ pg
va,i−ph

ph−pg
if pg < va,i < ph

0 otherwise

(21)

where s ∈ {1, 2, 3} is one of three possible scores the actual
value, va,i , of the vital sign can have.

Fig. 3 Example for fuzzy membership functions to assess the
confidence of the abstraction of a vital sign
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Because score 0 of each vital sign has only one range in
Table 1, the confidence function of abstracting a vital sign’s
actual value to score 0, c0,i is calculated by

c0,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

va,i−p0,a
p0,b−p0,a

if p0,a < va,i < p0,b

1 if p0,b ≤ va,i ≤ p0,c
va,i−p0,d
p0,d−p0,c

if p0,c < va,i < p0,d

0 otherwise.

(22)

In the configuration of the proposed system, the interval
of the ramp of a fuzzy membership function is congruent
with the interval of the ramp of the next fuzzy membership
function (e.g., pc and pd of c0,i are equal to pa respectively
pb of c1,i). This approach leads to the possibility of
abstracting a vital sign value to two different scores with
certain confidences. As an example, let us assume that the
actual value of a vital sign, va,i , is the interval between p0,c

and p0,d (which is equal to the interval p1,e and p1,f ). In
this case, the vital sign will be abstracted to score 0 with
c0,i = va,i−p0,d

p0,d−p0,c
and to score 1 with c1,i = va,i−p1,e

p1,f −p1,e
.

However, the high-level agent evaluates various confi-
dences. Similar to Eq. 20, cross-validity confidence, ccro,i,j ,
is calculated based on a patient’s individual correlations of
the various vital signs; e.g., Eq. 20 does not reflect the truth
if a patient - in normal health condition - has tachypnea,
hypertension, or another vital sign which leads to a score
higher than the scores of the other vital signs. Based on
the frequency of various occurring score differences, SDi,j ,
between the two vital signs vsi and vsj , a patient profile
is established which gives information about the likelihood
of a score difference between two different vital signs. For
this purpose, the patient (situated in normal condition) is
monitored for the period T (the time of n samples). After n

samples have been recorded, four different quantities, qSDi,j

for all four possible score differences SDi,j ∈ {0, 1, 2, 3},
are known. With the knowledge of these quantities, the
cross-validity confidence between the two vitals signs svi

and svj , ccro,i,j is calculated by

ccro,i,j = qSDi,j

n
. (23)

4.3 Functional description of the system

Figure 1 shows the system architecture we propose in this
work. At the bottom are five sensors which monitor the
five different vital signs (Table 1) and transmit the raw
data to their dedicated agents in the lower hierarchical
level. Figure 4 shows a simple schematic of the whole
procedure for one low-level agent; the others are just faded
out. The functional principle of both, the agents of the lower
and the higher hierarchical, is explained in detail in the
following.

Fig. 4 Functional description explained for one vital sign

4.3.1 Lower hierarchical level of computation

Each of these five low-level agents abstracts the actual
value (got from its dedicated sensor) by calculating the
confidences for every possible score, cs,i for s = 0, 1, 2, 3,
by Eqs. 22 and 21. As shown in Fig. 4, each low-level agent
also receives score suggestions from the high-level agent.
Each of these suggestions consists of a score and its relia-
bility, r ′

sug,s,i . Their calculation is based on Eqs. 20 and 23
but Section 4.3.2 will show the exact procedure of genera-
ting these suggestions. Additionally, the input reliability,
r ′
in,i of the corresponding vital sign is calculated by Eq. 19.
In a next step, the output reliability of each possible

score, rout,s,i is calculated by

r ′
out,s,i = rin,i ∧ cs,i ∧ r ′

sug,s,i (24)

because the score is reliable if the vital sign value is reliable,
the abstraction is done with high confidence, and if it
correlates with the other vital signs (based on the suggested
scores).

After every possible score has been calculated, the
low-level agent chooses the one with the highest output
reliability and saves it in a history if the reliability is higher
than a certain threshold.6 In the next step, the low-level
agent sends the last saved score and its output reliability to
the high-level agent. In other words, if the reliability of the
actual score is higher than the set threshold it is sent to the
high-level agent; otherwise, the previous score is sent.

6If the history is empty (e.g., right after the EWS system has been
started), the score and its reliability are saved in the history regardless.
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4.3.2 Higher hierarchical level of computation

The high-level agent calculates the EWS and its overall
reliability, r ′. For this purpose, the agent reads all low-level
scores and their output reliabilities, r ′

out,i,s . However, these
reliabilities are - from the perspective of the high-level agent
- input reliabilities, and therefore, they are called r ′

in,i . The
EWS is just the sum of all five vital sign scores, and thus,
calculated by

EWS =
5∑

i=1

si . (25)

With all five input reliabilities, r ′
in,i , the combined input

reliability, rin is calculated by

r ′
in = r ′

in,1 ∧ · · · ∧ r ′
in,5 =

5∧

i=1

r ′
in,i . (26)

For two vital sign scores, the cross-validity reliability is
calculated by Eq. 20, and the personalized cross-validity
confidence by Eq. 23. After the calculation of both of
these metrics, the personalized cross-validity reliability,
r ′
per,cro,i,j , can be calculated in different ways. We decided
to use the disjunction (∨) operator because the correlation
is plausible if it is according to our general rule (20) or
matches the personalized body functions of the patient
(23). Therefore the personalized cross-validity reliability,
r ′
per,cro,i,j , is given by

r ′
per,cro,i,j = r ′

cro,i,j ∨ ccro,i,j (27)

where the fuzzy disjunction is equal to a maximum
function [40].

The overall reliability of the calculated EWS is composed
of all input reliabilities and all personalized cross-validity
reliabilities, r ′

per,cro,i,j . All r ′
per,cro,i,j for this purpose are

combined together to the combined cross-validity reliability,
r ′
per,cro, by

r ′
per,cro =

5∧

i=1

(

5∧

j=1

r ′
per,cro,i,j ) (28)

where the cross-validity reliabilities for i = j are not
calculated because they will be 1 one for sure (20).

In further consequence, the overall reliability, r ′, is given
by

r ′ = r ′
in ∧ r ′

per,cro (29)

and constitutes, besides the EWS (25), the output of our
proposed system.

As mentioned in Section 4.3.1, the high-level agent
makes also score suggestions which are sent to each low-
level agent. For this purpose, theoretically personalized
cross-validity reliabilities are calculated for each possible
score (s ∈ 0, 1, 2, 3) with that a vital sign could be

classified. In particular, the four theoretically possible
scores of one agent are calculated by Eq. 27, whereas the
score difference is based on the comparisons with the real
scores from the other four low-level agents. The reliability
of the theoretically possible score (the suggested score) is
calculated by

r ′
sug,s,i =

5∧

j=1

(r ′
cro,i,j ∨ ccro,i,j ) (30)

for each possible score s ∈ 0, 1, 2, 3. Whereas the
comparison of one vital sign with itself is not performed.

This procedure is repeated for all of the five vital signs,
and the results (the four possible scores and their theoretical
cross-validity reliability) is sent to the dedicated low-level
agent.

5 Experimental results

In this section, we describe our experimental setup as well
as the validation method of our proposed system. We also
discuss the experimental results in detail.

5.1 Experimental data

The data collection was performed on eight different
participants aged from 23 to 37 (see Table 2). Half of the
participants were male, and the other half were female.

As listed in Table 3 and shown in Fig. 5, we recorded and
abstracted the vital signs with different sensors respectively
in different ways. A set of sensors provides a high-accuracy
source, and another set of sensors provides a low-accuracy
source for normal and fault-emulated signals. As the high
accuracy sensor set, we use (i) a chest strap heart rate
monitor for recording Electrocardiogram (ECG) signal, (ii)
a sensitive temperature sensor attached to the subject’s
nose for recording the airflow signal, (iii) an accurate

Table 2 Participants who participated in our experiments

Person Sex Age Test scenario(s)

P1 Male 37 S1, S2, S3, S4

P2 Female 23 S1 (twice)

P3 Male 29 S1, S2, S3, S4

P4 Male 25 S1 (twice)

P5 Female 23 S1 (twice)

P6 Male 30 S1 (twice)

P7 Female 23 S1 (twice)

P8 Female 28 S1 (twice)
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Table 3 Details of the sensors used for data collection

Vital sign Reference vital sign / source Test vital sign 1 / source Test vital sign 2 / source

Heart rate HRr Chest strap (Polar T31C) HRt1 PPG sensor (MAX30100) HRt2 PPG sensor (MAX30102)

at 24mA at 3.5mA

Respiration RRr Temperature sensor used RRt1 PPG sensor (MAX30100) RRt2 PPG sensor (MAX30102)

rate as airflow sensor (MCP9808) at 24mA at 3.5mA

Blood Oxygen SpO2,r PPG sensor(MAX30100) SpO2,t1 PPG sensor (MAX30102)

saturation at 24mA at 3.5mA

Skin STr Temperature sensor STt1 Temperature sensor

temperature (MCP9808) (TMP102)

Blood BPr Arm-type blood pressure BPt1 Wrist-type blood pressure

pressure monitor (iHealth BP7) monitor (Beurer BC32)

temperature sensor attached to the armpit (axilla),7 (iv) an
upper arm blood pressure monitor, and (v) a high-fidelity
Photoplethysmogram (PPG) sensor for recording infrared
and red PPG signals.8

The low-accuracy sensor set consists of (i) another PPG
sensor which consumes less power and records PPG signal
with lower Signal-to-Noise Ratio (SNR, (ii) a temperature
sensor with lower sensitivity is attached to armpit (axilla)
measures skin temperature, and (iii) a wrist-type blood
pressure monitor measuring an estimation of blood pressure.
Table 3 shows the details of the sensors in each set.
All continuously recording sensors9 were connected to an
ATMEGA328P microcontroller which reads the sensors
values with a sampling frequency of 50 Hz. Finally, an
Android phone, connected to this microcontroller via a
USB-to-Serial converter, recorded the data.

In the next step, these recorded signals were analyzed
to extract the vital signs. As listed in Table 3, we use
two sets of PPG signals to obtain two sources of heart
rate, respiration rate, and SpO2 values (i.e., low-accuracy
and high-accuracy values). First, a filter-based method is
used to extract respiratory and heartbeat signals. In this
method, the cut-off frequencies are selected based on
Power Spectral Density (PSD) of the PPG signals [42–44].
Note that an acceptable SNR is needed in this method,
as high noise level influences the PSD of the signal and
subsequently interrupts cut-off frequency selection. Next,
the respiration rate and heart rate values are determined
via a peak detection method. Moreover, the SpO2 value is
calculated from the PPG signals using two light sources

7Because Table 1 shows the body core temperature, the measured skin
temperature had to be converted to an estimated core temperature. This
was done as Richmond et al. state it in [41].
8As shown in Table 3, the MAX30100 PPG sensor was used as
accurate source for monitoring SPO2 and as one of the inaccurate
sources for monitoring heart rate and respiratory rate.
9The two blood pressure devices were manually operated and were not
continuous.

with different wavelengths (i.e., red which has 660 nm and
infrared which has 880 nm) [45, 46]. In addition to the PPG
signals, another high-accuracy heart rate and respiration rate
values are determined by using the two other sources (i.e.,
ECG and airflow signals). Similarly, we use peak detection
methods for the detection of these two vital signs. In total,
we extracted three heart rate, three respiration rate, two
SpO2, two skin temperature, and two blood pressure signals.

5.2 Validation of the EWS systems

Table 4 shows the different scenarios in which the partici-
pants were monitored. In Scenario S1, the participants were
sitting without performing any physical activity. P1 and P3
were also monitored during three additional scenarios in
that errors were induced in some of the low accuracy sensor
setup (Scenarios S2, S3, and S4). Six participants were mon-
itored two times, and the other two participants four times
(Table 2), resulting in 20 measurements in total.

As mentioned in Section 5.1, we recorded and abstracted
the vital signs of each scenario (listed in Table 4) with

Fig. 5 Data collection sensors
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Table 4 Scenarios of measurements

Scenario Scenario description

S1 The person was sitting and no additional error

was induced during the measurement.

S2 The person was sitting and the temperature

sensor was temporarily detached.

S3 The person was sitting and contracted his/her

biceps for a period of the measurement.

S4 The person was sitting and the temperature

sensor was temporarily detached. In addition,

the person contracted his/her biceps

for a period of the measurement.

different sensors, respectively, in different ways (Table 3).
All various combinations of the twelve vital signs (varying
in quality) reveal a total number of 72 different signal setups
for each measurement. The 20 measurements and the 72
different ways of monitoring/abstracting the vital signs lead
to 1440 different experiments.

All these data sets were then processed with both,
the conventional EWS system without any self-awareness
properties and our proposed SA-EWS system. The output
of these systems is the EWS signal of the same length
as the experimental data sets (one EWS value for each
vital sign sample set). To have a common benchmark for
comparing both systems, a ground truth for each of the
20 measurement10 is needed. Due to the lack of a real
ground truth, we took the data set of each experiment, which
matches the ground truth the most. These Ground Truth
Datasets (GTDSs) consists of the vital signs HRr , RRr ,
SPO2,r , STr , and BPr of Table 3. To ensure that the GTDSs
are as close as possible to the real ground truth, all of these
signals were additionally filtered11 to remove noise. Due to
corrupted measurements of the vital signs of participant P5,
no valid ground truth could be established. Therefore, this
participant was excluded from our analysis. This exclusion
leads to a reduction of the number of measurements from
20 to 18, and in further consequence, reduced the number
experiments: 1296 instead of 1440.

The EWS Ground Truth Dataset (EGTDS) was then
created with the GTDSs processed by the conventional
EWS system. The EWS system is used for this purpose
because it does not - in contrast to the SA-EWS system -
manipulate the output leveraging the self-aware properties.
However, because the conventional EWS system generated
the EGTDSs, it is possible that, if the vital signs of the
GTDSs still contain some noise or errors, the SA-EWS

1020 measurements is the sum of all test scenarios in that the
participants were monitored (Table 4).
11A Savitzky-Golay filter with the window size of 53 samples and a
polynomial order of 3 was used.

system assessment is tagged as erroneous whereas, in
reality, the error is in the EGTDS.

We use various metrics to compare these two systems.
The Root-Mean-Square Deviation (RMSD) calculation,
which indicates how close two different signals are to each
other is given by:

RMSD =
√∑n

i=1(EWSGT,i − EWSi)2

n
(31)

where EWSGT,i is the ith EWS value of the EGTDS and
EWSi the ith outputted EWS value of the system that is
compared with the EGTDS.

However, the RMSD is not the best way to compare
the two systems. A signal that deviates slightly (e.g., a
deviation of only one score) for a long period may have
a worse RMSD than a signal that shows a much larger
deviation but only for a short time. While the former signal
will most likely not result in a false or missing alarm, the
latter signal will raise problems. Another metric, namely
the maximum absolute error (εmax) which gives information
about the highest deviation that occurs in signal compared
to the ground truth, is more relevant in this context. It is
calculated by:

εmax = max(|EWSGT,i − EWSi | : i = 1, . . . , n) (32)

where EWSGT,i is the ith EWS value of the EGTDS and
EWSi the ith outputted EWS value of the system that is
compared with the EGTDS.

The last metric is the number of false and missing
alarms. As mentioned in Section 2, the calculated EWS
shows low-, medium-, or high-medical risk of a patient. If
the classification of the calculated EWS deviates from the
classification of the ground truth EWS, a false or missing
alarm is indicated. For example, if the ground truth EWS
has a value which belongs to the low or medium risk class
but the EWS of the system is in one of the higher classes,
a false alarm is raised. In contrast, a calculated EWS in a
lower class than the ground truth EWS leads to a missing
alarm, which means an alarm should be raised, but it was
missed. As a third option, both, the ground truth, as well as
the calculated EWS, are in the same class. In this case, there
is neither a false nor a missing alarm.

5.3 Results

Table 5 shows the vital signs which are corrupted � )

and which are uncorrupted (�) in various experiments.
To evaluate which of these signals are either correct or
are containing errors, the output of the conventional EWS
system processing an experiment was compared with the
EGTDS of the same experiment. If a vital sign score
abstracted from the vital sign (e.g., RRt1) deviates, at any
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Table 5 Signals with errors are marked with a , while signals that are correct are marked with�

point during the measurement, from the value, it should
have according to the EGTDS, this vital sign (in the
considered experiment) is classified as erroneous.

Based on the number of different vital signs, 72 different
combinations (setups) of vital sign sets are possible. Such
a setup can now contain some correct and some erroneous
vital signs. An important factor is how many vital signs are
showing an error at the same time for an experiment. The
second column of Table 6 shows this number, which ranges
from 0 to 4 errors at the same time. For this purpose, all 1296
experiments (18 measurements with 72 different setups)
have been processed by the conventional EWS system, and
the results were compared to their dedicated EGTDS. Based
on the number of simultaneous vital sign errors, the EWS
and the SA-EWS system are compared for each participant.
In other words, all experiments performed on each person
with different vital sign setups were separated in groups
regarding the number of vital sign errors that occurred at
the same time. Each row in Table 6 shows the performance
of the two compared systems in the form of the minimum,
average, and maximum RMSD of all calculated EWS values
which are in the same group of the number of vital sign
errors. Additionally, and more importantly, the maximum
absolute error, εmax , is shown for each group.

As it can be seen, in most of the cases, our proposed
system performed equally good or considerably better than
a conventional EWS system without self-awareness. For a
better understanding of the table, here, we discuss the results

using participant P1 as an example. In the experiments
where no vital sign showed any error, both systems pro-
duced an output in that the calculated EWS did not deviate
any single time (εmax = 0). In these setups, the calculated
EWS signal was exactly identical to the ground truth EWS
signal (RMSD = 0). In these experiments, both system
performances were equal.

In contrast, the conventional EWS system performed
much worse than our proposed system when setups were
used in which three of the vital signs contained errors at
the same time. One of these experiments is shown in Fig. 6.
Whereas Fig. 6a shows the ground truth vital signs and the
corrupted signals, Fig. 6b presents the ground truth EWS
as well as the outputs of both systems. As it can be seen,
the difference between the EWS of the conventional system
with the ground truth is large (up to 7 scores), whereas the
SA-EWS shows only absolute errors of 1 or 2 in the worst
case.

The RMSD values of all considered experimental
results show that the output of the SA-EWS system was
significantly closer to the ground truth. However, the
maximum error shows the real importance of an intelligent
EWS system. Participant P5 was excluded from these
experiments because of corrupted measurements, which led
to an invalid ground truth.

In the four cases of P3, P7, and P8 in Table 6, the
conventional EWS system performed slightly better. Some
of the participants were sometimes slightly uneasy, which
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Table 6 The minimum, average, and maximum RMSD as well as the maximum error of both systems compared on the base of the various
participants and the number of vital sign errors occurring at the same time

Green color highlights the system with better performance

led to temporally irregular breathing. As mentioned, we
removed the majority of such noise from the GTDS.
However, if there were some noise left, the EWS system
may have an advantage over the SA-EWS system because
the conventional EWS system generated the EGTDSs.

When comparing the RMSD and the maximum error, the
SA-EWS system performed in eleven cases better than the
conventional EWS system. In nine cases, the performance
was equal, and only in four cases, the conventional EWS
system performed slightly better. However, in the latter
cases, the performance difference between the two systems
was very small and did not lead to any additional false or
missed alarms. As a matter of fact, the number of false
alarms or missed alarms was always equal or less in the
SA-EWS system. Table 7 shows how often both systems

missed to raise an alarm or raised a false alarm. As
mentioned, the EWS itself can be classified into three
different classes, namely low-, medium-, and high risk. If
the class of the system’s outputted EWS deviates from the
class of the ground truth EWS, it causes a false or missing
alarm. In all cases, our proposed system performed better
(marked in green in Table 7) or equal to the EWS system.

The wrong and missed alarms were counted based on
the number of samples which deviate from the ground truth
and based on the number of times (events) an alarm was
incorrectly raised (false positive) or incorrectly not raised
and was missed (false negative). Event-based means when
two or more samples of the same event (samples in a row)
deviate from the ground truth, the wrong/missed alarm is
counted only once. In the example of participant P8, four
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Fig. 6 A experiment of participant P1 in scenario S4 with a vital sign
setup in that three vital sign errors simultaneously occur

and eight false alarms were raised by the SA-EWS system.
However, each of these false alarms had the length of only
one sample. That is why the number in both rows (samples
or events) are the same. We can argue that if a doctor
monitors a patient’s vital signs and obtains an unrealistic
result, he/she tries to redo the measurement. A logical
consequence of this could be ignoring alarms of a length of
only one or few sample(s), which corresponds to one second
in time. However, this is out of the scope of this paper and
serves only as an additional note. Therefore, we did not
discount any alarms, even if they were very short.

Figure 7 shows the occurrence frequency of absolute
error in different sizes for all experiments combined. Both

systems have almost the same number of absolute errors in
the size of 0 and 1. Overall, except for having an error of 1
score, the proposed system is always better (including when
the system has made no false recognition, i.e., 0 on Fig. 7).
In particular, the SA-EWS system less often produces larger
errors compared to the EWS system. We can see that the
SA-EWS system never produce absolute errors larger than
5 (whereas the conventional EWS system experiences them
more than a thousand times) and it produces significantly
(approximately one order of magnitude) fewer errors in
sizes of 4 and 5. This is particularly important since larger
errors imply a deviation from the ground truth risk class,
which is more important with regard to false or missing
alarms. Altogether, Fig. 7 indicates that the proposed SA-
EWS system is more reliable (less error-prone) than its
conventional counterpart.

6 Conclusion and future work

Self-awareness has proven to be advantageous in many
applications, and here we show its benefits for wearable
medical devices. In particular, we showed how using basic
observation elements such as history, data reliability and
confidence can lead to reliable results without incurring
massive processing loads that conventional Artificial
Intelligence (AI) algorithms impose on systems. From the
application point of view, we demonstrated that - even
using less reliable, low-quality sensors (which are cheaper)
- our system is able to calculate the EWS properly and
comparable to a system with highly reliable, high-quality
sensors (which are more expensive). We also showed
that our proposed system shows good resilience against
intentionally introduced measurement errors.

In summary, our contributions are; (a) formalizing
data reliability, confidence, and history, (b) proposing
function for aforementioned self-awareness properties, in
particular for combining data reliability and confidence,
(c) performing extended experiments with a large number
of sensors and test scenarios, and (d) improving reliability
of EWS assessment using cheaper sensors and despite
adversities in real life measurements.

We note that many of the proposed functions are designed
heuristically. Therefore, other functions could be proposed
and studied, which lead to further improved results. We
leave that for future works. Moreover, in some cases, we
have tried alternative parameter settings and chose the
better ones; however, these studies were not systematic or
comprehensive. Mainly due to the extensive time that it
takes to process all combination of sensors and errors using
single setup values. That is, therefore, another future work.



Mobile Netw Appl

Table 7 The number of missing and false alarms of both systems compared on the base of the various participants and the number of vital sign
errors occurring at the same time

Green color highlights the system with better performance

Fig. 7 Occurrence frequency of absolute errors of different sizes
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Maximilian Götzinger1,2 · Arman Anzanpour1 · Iman Azimi1 · Nima TaheriNejad2 · Axel Jantsch2 ·
Amir M. Rahmani3,4 · Pasi Liljeberg1

Arman Anzanpour
armanz@utu.fi

Iman Azimi
imaazi@utu.fi

Nima TaheriNejad
nima.taherinejad@tuwien.ac.at

Axel Jantsch
axel.jantsch@tuwien.ac.at

Amir M. Rahmani
a.rahmani@uci.edu

Pasi Liljeberg
pasi.liljeberg@utu.fi

1 Department of Future Technologies, University of Turku,
Turku, Finland

2 Institute of Computer Technology, TU Wien, Vienna, Austria
3 Department of Computer Science, University of California Irvine,

Irvine, CA, USA
4 School of Nursing, University of California Irvine, Irvine,

CA, USA

https://www.maximintegrated.com/en/products/sensors/MAX30102.html
https://www.maximintegrated.com/en/products/sensors/MAX30102.html
http://orcid.org/0000-0002-1112-141X
mailto: armanz@utu.fi
mailto: imaazi@utu.fi
mailto: nima.taherinejad@tuwien.ac.at
mailto: axel.jantsch@tuwien.ac.at
mailto: a.rahmani@uci.edu
mailto: pasi.liljeberg@utu.fi

	Confidence-Enhanced Early Warning Score Based on Fuzzy Logic
	Abstract
	Introduction
	Background and related work
	Self-awareness properties
	Data reliability
	Formal definition
	Plausibility
	Consistency
	Cross-validity

	Confidence
	Formal definition

	Combination of data reliability and confidence
	Formal definition

	History
	Formal definition


	System architecture and implementation
	Fuzzified reliability assessment
	Fuzzified confidence-based decisions
	Functional description of the system
	Lower hierarchical level of computation
	Higher hierarchical level of computation


	Experimental results
	Experimental data
	Validation of the EWS systems
	Results

	Conclusion and future work
	Funding Information
	Open Access
	References
	Publisher's Note
	Affiliations


