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cDepartment for Integrated Sensor Systems, Danube University Krems, Wiener Neustadt, Austria; dDepartment of Computer Science, University of
California, Irvine, CA, USA

ABSTRACT
Computational Self-awareness can improve performance, robustness, and adaptivity of a system. As a key
element of self-awareness, observation quality is critical to gain a correct and comprehensive understanding
of the system, its own state, and the environment. This is of more importance in systems, where contextual
information plays a crucial role in the functional operation of the system. In this paper, the authors introduce
confidence as a quality metric of observation and leverage it to improve the correct identification of states of
a system. To evaluate the impact of this factor on the context-awaremonitoring system at hand and to show
the generality of the approach, we conduct a series of tests with and without confidence for condition
monitoring of an industrial AC motor and an experimental water pipe system. Our experiments show that
confidence not only improves the quality of system performance but also simplifies the system architecture
and enhances its robustness. These findings support the recent initiatives of paying more attention to
observation as an important factor in self-awareness and, consequently, the performance of systems. The
proposed system facilitates condition monitoring of various industrial systems and is easily deployable as it
does not require a deep domain knowledge.

ARTICLE HISTORY
Received 2 June 2018
Accepted 13 March 2019

KEYWORDS
Industry 4.0; monitoring;
model-free; context-
awareness; self-awareness;
confidence

1. Introduction

In industrial systems, manual maintenance and adjustment are
often undesirable due to the high costs or the limited time
available for adaptations. Increasingly, self-adaptiveness and self-
awareness are desirable characteristics of many embedded and
cyber-physical systems. They need to adapt to dynamic applica-
tions’ phasic behaviour, changing environments and their own
changing state due to phenomena such as ageing as well as the
occurrence of faults. In many application domains, assessing the
status of a system is commonly called condition monitoring,
which serves diverse purposes such as early detection of faults,
operation optimization, or planning of preventive maintenance.

In the early 2000’s IBM formulated a vision of autonomic sys-
tems which called for self-adaptation and self-awareness (Kephart
and Chess 2003). At the same time, Intel put forward a vision for
proactive computing asking humans to get ‘out of the loop’
(Tennenhouse 2000), meaning that embedded systems should
become more independent, autonomous and self-adaptive.
A prerequisite for these ambitious goals is a detailed assessment
of the state of a system and its environment. This assessment
depends heavily on measuring relevant physical properties with
sensors which is a part of Industry 4.0 (Alexopoulos et al. 2016).
Many works on autonomous and adaptive systems assume the
availability of correct measurements and their accurate interpreta-
tion. However, the quality of measurements and observations is
not always easy to guarantee or assess. Hence, recently this chal-
lenge has received more attention (TaheriNejad, Jantsch, and
Pollreisz 2016; Götzinger et al. 2017a; Anzanpour et al. 2017;
Götzinger et al. 2016).

In this work, the authors focus on one of the observation
aspects, namely confidence, and show how it can smoothen
decision-making functions. Our concept of confidence is based
on the work by TaheriNejad, Jantsch, and Pollreisz (2016) but
differs from the confidence levels assignment used in other works,
e.g. by Liu et al. (2008). To demonstrate this effect, we use this
concept to enhance a black box monitor which we first intro-
duced in (Götzinger et al. 2017b). This monitor distinguishes
three different states (healthy, drifting, and broken) of the system
it monitors. We demonstrate our approach bymeans of two case
studies to illustrate its generality and application to different
fields: an AC motor as in Götzinger et al. (2017b) and a water
pipe system used as a model for condition monitoring in
Heating, Ventilation and Air Conditioning (HVAC) systems
(Glatzl et al. 2016). Extending our previous work (Götzinger
et al. 2017b), we introduce the confidence metric and use fuzzy
logic for its computation and for the decision-making process.
We demonstrate that our proposed method improves the cor-
rect identification of motor states (i.e. increases robustness),
reduces the dependency on system parameters such as thresh-
old values (i.e. reduces sensitivity and increases robustness) and
reduces the need for pre-processing of the sensory data (i.e.
simplifies the architecture).

It is noteworthy that, with the growing prevalence of
Industry 4.0 concepts and the increase in the number of cyber-
physical systems and their associated sensors and actuators,
monitoring has gained a growing importance while becoming
more challenging. Model-free monitoring helps tackling this
challenge from different angles. It can be applied to many
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different systems with substantial differences in their nature
(e.g. as presented in this paper to condition monitoring of
motors and water pipes) without requiring the deployment
engineer to have a deep knowledge of the application field.
Moreover, thanks to the fuzzy confidence evaluation proposed
in this paper, it requires minimum or no adjustment of para-
meters, which saves a significant amount of time and
resources otherwise necessary for implementing model-
based monitors for a given application.

We introduce Confidence-based Context-Aware condition
Monitoring (CCAM) with the following main contributions:

(1) We propose a fuzzy logic-based confidence metric for
the quality assessment of systems under monitoring,

(2) we demonstrate the feasibility of the proposed monitor
using two case studies: an industrial motor and a water
pipe system,

(3) we demonstrate that CCAM gives equally good or bet-
ter results than the similar system (Götzinger et al.
2017b), which does not use a confidence metric, and

(4) we demonstrate the robustness of the system by pro-
viding a sensitivity analysis of parameter settings and
by showing that CCAM with confidence is better in
identifying the correct system health status compared
with a system without confidence. This is particularly
notable when detecting drift situations in both the AC
motor and the water pipe case studies.

After reviewing relevant related work in Section 2, we introduce
confidence and describe our use of fuzzy logic in Section 3. In
Section 4 we describe our proposed model-free condition mon-
itoring approach that uses confidence to identify system states
correctly. Section 5 shows and discusses results from our case
studies, and Section 6 concludes the paper.

2. Background and related work

Measurements and processing of sensory data are relevant in
a wide range of domains, like industrial processes, environmental
monitoring, and medical applications. In all these areas the
quality of measurements and observations are critical, however,
less studied. Recently this aspect has come into the focus of
research by characterizing various aspects (TaheriNejad,
Jantsch, and Pollreisz 2016) and by demonstrating concrete
benefits of using a nuanced and more realistic approach to
observation (Götzinger et al. 2016; Anzanpour et al. 2017;
TaheriNejad, Shami, and Manoj 2017). Götzinger et al. (2016)
proposed data confidence to improve the reliability of patient
monitoring in medical applications and Götzinger et al. (2017a)
show that the usage of the plausibility of sensor values and value
changes improves the robustness of the assessment of the
health condition of a person.

AC motors are widely used in various industrial applica-
tions, and monitoring their health status is of interest to the
industrial sector. A wear-out or other malfunctions in a motor
may result in severe cracks or breaks in the rotor, stator or
bearings, and can finally lead to reduced performance or –
even worse – a failure (Ballal et al. 2007). Given the associated
cost of these problems, non-invasive fault detection and

preventative maintenance are important concerns in the
industry (Gao, Cecati, and Ding 2015). It is known that during
normal operation, the nominal range of outputs (e.g. current
and speed) follows the nominal range of inputs (e.g. frequency
or voltage). However, when the motor is free running in the
presence of wearing out phenomena, some output signals
deviate from the expected nominal values while the inputs
remain unchanged. This can be used to detect wear-outs and
certain other faults and failures. Various methods have been
applied to the analysis of motor signals to detect faults (Kande
et al. 2017). These monitoring systems mostly use methods
such as current analysis (Féki, Clerc, and Velex 2013), tempera-
ture monitoring (Gao, Habetler, and Harley 2005), and vibra-
tion and noise analysis (Bellini et al. 2001); and they apply
techniques such as hidden Markov modelling (Hatzipantelis
and Penman 1993), thresholds (Mehala 2010), pattern recogni-
tion and neural networks (Bazan et al. 2017).

Condition monitoring in HVAC systems serves not only for
fault detection, but also for optimizing control in order to reduce
energy consumption (Massieh 2010). More generally, for the
monitoring of water pipes, a wide variety of mostly distributed
sensing principles is in use depending on the spatial extension of
the network (Sadeghioon et al. 2018). For economic reasons,
however, many monitoring systems rely on pressure and flow
monitoring (Mounce et al. 2015), an approach we also apply in
our case study in that we monitor the water flow.

With respect to data analysis, different methods have been
proposed used for automated fault detection and diagnostic
(FDD). These methods can be subdivided into quantitative model-
based, qualitative model-based and process history-based meth-
ods (Katipamula and Brambley 2005). Process history methods are
further differentiated in black-box and grey-box methods, and
within the black-box methods, we distinguish between statistical,
artificial neural network and other pattern recognition techniques.
For example, Hyvrinen and Kärki (1996) present a fuzzy model for
fault detection in HVAC systems. However, most of thesemethods
require application-specific assumptions ormodels. Shun andWen
(2014) use Principal Component Analysis (PCA) and combine it
with a Pattern Matching method to correctly identify the beha-
viour of the system without any additional knowledge of the
system. While their work uses PCA’s as well as distance similarity
factors, we use confidence only based on fuzzy functions to detect
the behaviour of the system correctly.

One generic method without detailed assumptions or
a model of the system under observation is Context-aware
Health Monitoring (CAH) (Götzinger et al. 2017b), which has
been tested for monitoring industrial AC motors. CAH is
a monitoring system that recognizes normal state changes as
well as misbehaviour of the observed system. It accomplishes
this task without a priori knowledge, and only through con-
textual information. However, two assumptions exist: first, the
observed black box is in a steady state. Second, it is a bijective
function, meaning that a unique input data set corresponds to
one and only one output data set – and vice-versa. Thus,
a change of the input inevitably is reflected in a change of
the output and vice-versa. Otherwise, the observed system
works incorrectly. We use CAH as the basis of our design
and improve it using the concept of confidence to offset
some of its major drawbacks, which are as follows: (i) A state-
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full system, where current outputs depend on current inputs
and the internal state of the system, cannot be reliably
assessed; (ii) The signals of the observed system have to be
smoothed through a filter; (iii) Despite filtering, the system
performance is very sensitive to changes in signal values, e.g.
due to normal transitions, noise, or instabilities; (iv) The thresh-
olds used in CAH have to be set meticulously and accurately,
otherwise, the system may not perform as expected, and
hence, for each application tedious adjustment and tuning
are necessary. Our proposed system addresses shortcomings
(ii), (iii), and (iv), but shares the limitation (i) with CAH, as
CCAM also can reliably assess only stateless systems.

3. Confidence

3.1. Definition of confidence

Confidence is a measure of the reliability of a system,
a function, an analysis, or a process. Confidence can be
defined as ‘the extent to which a procedure may yield the
same results on repeated trials’ (TaheriNejad, Jantsch, and
Pollreisz 2016). Hence, confidence can improve the self-
awareness of a system regarding its subsystems and functions,
and to what extent it can rely on the result each of them
produces (Götzinger et al. 2016; Kholerdi, TaheriNejad, and
Jantsch 2018).

To create a better and universal understanding of this
concept, we formalize this definition in the following: Let us
assume that f is an ideal function defined over X ¼ hx0; . . . ; xni
and g is the unideal function at hand, also defined over X . We
define the confidence of gðxiÞ; xi 2 X as the inverse of
a distance function Δðgðx:Þ; fð:ÞÞ, which captures the
distance1 between f and g based on some application specific
distance metric:

cðgðxiÞÞ ¼ 1
ΔðfðxiÞ; gðxiÞÞ : (1)

The overall confidence of g (i.e. confidence of the function/
system in general, as opposed to its confidence at each point)
is hence calculated as the average

CðgÞ ¼ 1
n

Xn
i¼0

cðgðxiÞÞ: (2)

We note that 0 � cðgÞ; CðgÞ � 1 ¼ cðfÞ ¼ CðfÞ.
The implementation of a method to calculate c, however, is

case dependent. In many cases, the ground truth (f ) is not
available and therefore, the distance cannot be calculated. In
consequence, a function is often devised to estimate Δ. In the
rest of this paper, we define and use heuristics as confidence
functions without further reference to a distance metric.

3.2. Association assessment and confidence

As described in Section 2, the CAH system assumes to monitor
a bijective function and hence, the relationship between the
input and output data sets. Therefore, one of the main tasks is
to assess the relationship of new data with previously
observed data. For example, whether a new sample fits any
of the recorded data in the history of the system or not. Thus,

it is critical to make correct decisions as they affect the system
performance, and it is important to know the confidence with
which such decisions are made.

Let i be a variable of interest, for example, the voltage from
a sensor or an abstracted observation after preprocessing.
Further, let vhi;j be the jth value in the history of that variable hi
(i.e. j constitutes the position of the value in the history), and let
vi;new be a new incoming value of this variable. Our task now is to
assess whether the new sample belongs to the same group as
the old sample(s) in the variable’s history, and to provide
a confidence value for our assessment. We use relative distance2

di;j ¼
vi;new � vhi;j

vi;new

����
���� (3)

as a metric for this assessment and for computing the following
confidence values.

Two different properties define how well a new value vi;new
matches an existing data set: howmany values of the existing data
set are close to vi;new, and how close they are. For the latter,
inspired by fuzzy logic, we define four points and three
intervals3 for determining the membership of the new value (see
Figure 1(a)). If the new value vi;new is in the interval ½db; dc�, it
belongs to the same set of data as vhi;j with certainty. If it falls in
one of the intervals ½da; db� or ½dc; dd�, it may or may not belong to
that group; otherwise, it does not. Then, we define csv (‘similar
value’) as the confidence of vi;new belonging to the same data set
(group of values) as vhi;j , and we compute it as follows

csv;i;j ¼

da�di;j
db�da

if da < di;j < db
1 if db � di;j � dc
dd�di;j
dd�dc

if dc < di;j < dd
0 otherwise:

8>><
>>:

(4)

where the relative distance is calculated by Equation (3).
The counterpart of csv is cdv (”different value”), the confi-

dence of not belonging to the same data set, and we compute
it as follows

cdv;i;j ¼

db�di;j
db�da

if da < di;j < db
0 if db � di;j � dc
di;j�dc
dd�dc

if dc < di;j < dd
1 otherwise:

8>><
>>:

(5)

where the relative distance di;j is also calculated by
Equation (3).

If the intervals of the functions csv and cdv are identical, the
computation of cdv can be simplified to cdv;i;j ¼ 1� csv;i;j.

The other factor, which determines whether a new value
vi;new matches an existing data set, is the number of values in
the existing data set that are close to the new value. The more
samples in close proximity, the likelier the new data fits the
existing data set. Therefore, there are fuzzy functions such as
the ones shown in Figure 1(b), in which, if a new sample vi;new
does not match any of the existing data, the confidence css;i of
vi;new being a member of the existing data set is 0, and the
confidence cds;i of vi;new not being a member of the existing
data set is 1. If there are at least sa samples in the vicinity of
the new data, the new sample certainly fits the existing data
set (css ¼ 1 and cds ¼ 0). The function
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css;i;k ¼ 1 if k � sa
k
sa

if 0 � k< sa

�
(6)

estimates the confidence for a new sample belonging to the
existing data set, and

cds;i;k ¼ 0 if k � sa
sa�k
sa

if 0 � k< sa

�
(7)

estimates with what confidence the new sample does not
belong to the existing data set.

If the intervals of the functions css;i;k and cds;i;k are identical,
the computation of cds;i;k can be simplified to cds;i;k ¼ 1� css;i;k .

To make a final decision on whether the new value, vi;new,
belongs to the existing data set, the two factors (the confidences
csv;i;j and css;i;k) above have to be combined, leading to the overall
confidence cb;i. Hence, cb;i (for vi;new belonging to an existing
data set) is composed of the confidences csv;i;1 . . . csv;i;k (Equation
(4)) calculated by the comparisons of vi;new with k values of the
existing data set, and the confidence css;i;k (Equation (6)). For this
purpose, we propose to use the conjunction ( ^ ) operator as
follows

cb;i ¼ ðcsv;i;1 ^ � � � ^ csv;i;kÞ ^ css;i;k ¼ ð ^k
j¼1

csv;i;jÞ ^ css;i;k (8)

because the new sample vi;new belongs to the existing data set
only if vi;new is sufficiently similar to all k values (and k should be
a large enough number). A conjunction in fuzzy logic is equal to
a minimum function (Ross 2009). Hence, this operation results in
the minimum of all k calculated csv;i;j’s. Since the result of all k
disjunctions is disjunctioned with css;i;k , which is based on the
number of comparisons, the confidence cannot be larger
than css;i;k .

The overall confidence of vi;new not belonging to an existing
data set (cn;i) is composed of all k confidences, cdv;i;1 . . . cdv;i;k,
and cds;i. For this purpose, we propose to use the disjunction
( _ ) operator as follows

cn;i ¼ ðcdv;i;1 _ � � � _ cdv;i;kÞ _ cds;i;k ¼ ð _k
j¼1

cdv;i;jÞ _ cds;i;k (9)

because the new sample vi;new does not belong to the existing
data set if vi;new is different to at least one of the k values or
the number of values k is too low. A disjunction in fuzzy logic
is equal to a maximum function (Ross 2009). The result of this
computation is equal to the maximum of all k cdv;i;j, limited by
cds;i;k which is based on the number of comparisons.

In a last step, to determine the chances of the new sample
belonging to the existing data set, we compare the calculated
confidences. Only if cb is larger than cn, we declare the new
value as belonging to the existing data set.4

4. Confidence-based context-aware condition
monitoring

In this section, we present the details of the proposed CCAM
system, in particular, the fuzzy operations. Thanks to the benefits
of the fuzzy logic-based confidence concept, in CCAM there is no
need for filtering, except for one case in the motor case study. In
Section 5.4, we show this in detail. Note that the task of pre-
processing is application specific andmay differ from case to case.
Some signals are not directly usable by the CCAM system because
CCAM works only with steady states. Alternating signals, such as
AC current and AC voltage will never be in a steady state. Hence,
the pre-processing unit of the proposed system (shown in the
green frame in Figure 2) abstracts the alternating signal into
a non-alternating form. In the rest of this section, we first present
a brief generic description of the state handler, and then move to
part showing how different states and potential malfunctions are
recognized. We end this section by presenting how the overall
confidence of the system regarding its recognition is assessed.

4.1. State handler

The heart of the CCAM system is the State Handler (SH) which is
shown in the blue frame in Figure 2. The SH detects when the
System under Observation (SuO) i) is in a steady state, ii)
changes its state, or iii) is not working correctly. For this reason,
the SH saves information about these SuO states in C++ objects

0

distance [%]

similar

da db dc dd

csv

0

distance [%]

da db dc dd

1

different

cdv

different

1

(a) Confidences of a new sample be-
ing similar (csv) and being different
(cdv) to an existing datum, based on
the of distance between them.

css

0 sa

Number of samples

1

similar

cds

0 sa

Number of samples

1

different

(b) Confidences of a new sam-
ple being similar (css) and be-
ing different (cds) to an existing
data set, based on the number
of samples.

Figure 1.: Fuzzy functions showing the confidence of the system for considering a new sample fitting an already existing data set.
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which are – for the sake of convenience – called states. These
states contain a sliding history for each signal of the SuO. In the
following, we describe the main tasks of this unit.

4.2. Recognizing states and detecting state changes

The SH (shown in the blue frame in Figure 2) saves informa-
tion about every SuO state detected in a sliding history h.
More precisely, one history exists for each variable i (input and
output signals) of the SuO hhii. Whether a state is valid or not
is reflected by two confidence values: the confidence cval
which indicates whether a state is valid and the confidence
cinv when a state is invalid. Similar to the decision whether
a new sample set fits a state (see Section 3.2), the less the
deviations between the sample values saved in a state and the
higher the number of sample sets in this state, the higher is
the confidence of detecting a valid state. Conversely, large

deviations between the samples or only a few samples
inserted in the state indicate that the suspected state is
most likely not a real state (e.g. a transient state). A state is
considered as a valid state when cval is higher than cinv . In this
case, the SH saves the respective state in the state vector. How
these two confidence values are calculated is explained is
detail in Section 4.4.

To observe regular state changes or an unwanted malfunc-
tion, the SH examines whether an incoming data set, consisting
of the different signals hvi;newi of the SuO, fits the actual state,
termed active state (shaded in purple in Figure 2). Therefore, the
SH calculates both, the confidence cb (Equation (14)) for deciding
that the new data set matches the active state and the confi-
dence cn (Equation (15)) which indicates that the new data set
does not belong to the active state. Based on the confidence
value, the SH decides whether the set of samples matches the
active state.

Abstraction

Filtering

Pre-processing

Create a new 

active state

Does 

an active state 

‚

exist?

Make that 

state active

Is the active 

state valid?

Discard the

active state

Yes

Update the

active state

C
o

n
fi

d
e

n
c

e
-
b

a
s
e

d

Output: 

“BROKEN“

Output: 

“BROKEN“

Output: “OK“

Get a data set 

([Input],[Output])

No

Does 

only [In-

put] or [Out-

put] match one 

or more other 

states?

Does 

the actual 

data set match 

any other

state?

Does 

the actual 

data set match 

the active

state?

Choose the one 

that matches best

Does 

this inequality 

persist already 

for a long

time?

Is any signal 

drifting?

Output: 

“DRIFT“

Output: 

Confidence

Yes

No

No

Yes

Yes

No

No

Yes

Yes

NoNo

Yes

Is the 

state 

valid?

Is the 

state 

valid?Yes

Yes

No

No

State Handler

Figure 2. Flow chart of the CCAM system proposed here.
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How these two confidences are computed is shown in
detail in Section 4.3). If cb is higher than cn, the data is inserted
into the active state, i.e. the data is saved in the sliding
window history of it. This observation is indicative of a well
functioning system, unless the average value of any signal of
the state is not drifting. How the SH observes a possible
drifting of a signal is described in Section 4.6.

If the newdata setmismatches the active state, a state change
is identified. This can be either a normal state change or
a malfunction. If both, input and output data sets mismatch the
active state, a regular state change has happened. When the SH
observes such a behaviour, the actual samples are compared to
all states saved in the state vector. The state towhich the samples
are fitting is selected as the new active state. If the samples do
not match any of the saved states, the SH creates a new active
state. Regardless of whether the actual data set is compared with
the active state or with any other state, the function of calculat-
ing the confidences cb and cn are the same. Afterwards, the
actual samples are inserted into the new active state.

If exclusively one (either input or output) data set matches
the actual state and the other one does not, a malfunction is
detected, which is described further in Section 4.5.

4.3. Ascertaining a set of samples matches a state

To determine whether the new sample set matches a state, as
a first step, a confidence value cb;i is computed for every new
signal sample vi;new (e.g. voltage, current, etc.) by Equation (8).
As described in Section 3.2, this confidence depends on both,
the number of samples of the existing data in close proximity
(see Equation (6)) of vi;new and how close they are (see
Equation (4)). To compute the confidence whether the new
sample set matches a state, the best fitting subset (size k) of
history values is chosen. The new sample fits to the state if it is
similar to a high number of history samples while at the same
time the distance to all of the history samples is low. However,
these two requirements can compete, particularly, in the case
of history values with both lower and higher distances to the
new sample. Furthermore, since belonging to a set is not
determined by fixed thresholds, it is not trivial to decide
whether the distance between the samples is close enough
or how many samples have to be in each others’ proximity to
form a state. To find the best and – at the same time – the
biggest matching subset of a variable’s history, hhii, all possi-
ble cases of comparisons are computed; from subset size 1 to
n, whereas n is the size of the history. These computations,
based on Equation (8), are computed as follows

case 1 : cb1;i ¼ csv;i;1 ^ css;i;1
case 2 : cb2;i ¼ ðcsv;i;1 ^ csv;i;2Þ ^ css;i;2

..

.

case n : cbn;i ¼ ðcsv;i;1 ^ � � � ^ csv;i;nÞ ^ css;i;n

(10)

where n denotes the size of the history (number of samples
saved in the history), and csv;i;j � csv;i;k ; "j � k.

Next, the SH chooses the best possible case with a subset
of size k of Equation (10) (corresponding to Equation (8)) for
vi;new belonging to the data set hvhii as follows

cb;iðvi;new 2 hvhiiÞ ¼ _n
j¼1

cbj;i: (11)

The confidence of not belonging (cn;i) is also calculated in
a similar fashion, but by using the disjunction operator for all
n cases. That is,

case 1 : cn1;i ¼ cdv;i;1 _ cds;i;1
case 2 : cn2;i ¼ ðcdv;i;1 _ cdv;i;2Þ _ cds;i;2

..

.

case n : cnn;i ¼ ðcdv;i;1 _ � � � _ cdv;i;nÞ _ cds;i;n:

(12)

where n denotes the size of the history (number of samples
saved in the history), and cdv;i;j � cdv;i;k; "j � k.

Finally, the lowest confidence with which we can consider
vi;new not belonging to hvhii is calculated using

cn;iðvi;new ’ hvhiiÞ ¼ ^n
j¼1

cnj ;i: (13)

After the confidences cb;i and cn;i have been calculated for
every variable i, the confidence of the whole sample set
belonging to the considered state, cb, is calculated by

cb ¼ ^m
i¼1

cb;i (14)

because a new data set belongs to a given state only if the
new samples of all variables match previous values of respec-
tive variables in that state. Its counterpart, the confidence of
the whole sample set not belonging to the considered state,
cn, is calculated by

cn ¼ _m
i¼1

cn;i (15)

because the data set does not belong to a state if one or more
samples do not match the existing values of the variables of
that state. In both equations m is the number of variables.5

We note that the confidence functions in Equations (6) and
(7) are adaptable in a way that the boundary sa is equal to the
number of the already saved values in the state, bounded by
the history length n. Without this adaptive property, due to
Equations (11) and (13), the confidence cn for each variable
would be inevitably higher than cb for any new state with few
recorded values.

4.4. Validate a state

When an actual signal sample is added to a state, it is com-
pared with all history values of this signal, saved in the state
(Figure 3). From all these comparisons both, the confidences
csl;i (lowest csv;i;j) for being similar and cdh;i (highest cdv;i;j) for
being different are saved in the history in addition to the
actual value. That is,

csl;i ¼ ^n
j¼1

csv;i;j (16)

and

cdh;i ¼ _n
j¼1

cdv;i;j (17)
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where n is the size of the history.
To validate the state, the confidences cval of having found

a valid state is calculated by

cval ¼ ð ^m
i¼1

csl;iÞ ^ css;i;n (18)

because a state is valid if it contains many samples, and all of
them are similar to each other. Its counterpart cinv is calculated by

cinv ¼ ð _m
i¼1

cdh;iÞ _ cds;i;n (19)

because a state is invalid if it contains only a few samples, or at
least one of these samples is different. In both equations, m is
the number of variables and n is the size of the history. The
confidences css;i and cds;i are calculated by Equation (6) and
Equation (7). These confidences depend on the number of
comparisons (i.e. length of the history), but it makes no differ-
ence which variable i is taken for css;i;n (Equation (18)) and cds;i;n
(Equation (19)) because the history of every signal has the same
length. This algorithm is similar to evaluating whether a sample
set belongs to a state (in Section 4.3) with the difference that the
comparison is done with all of the history values and not only
with a subset of them (i.e. k samples). A state is only valid if the
confidence cval is higher than its counterpart cinv , whether both
confidences are low or high.

We note that the historical information is not limited only
the n values in the history. Some information of the previous
values are saved in a more abstracted form. The reason being
that the confidences of older history values contain informa-
tion also about history values that are already out of the
sliding window.

4.5. Recognizing a malfunction

Since the monitored system is treated as a bijective function,
a change of only one data set (input or output exclusively) can
indicate an anomaly. If the input and output data sets are or are
not belonging to the active state is separately calculated
through Equations (14) and (15). Since different systems show
different delays to reflect a change in the output due to an input
change, a small time gap between the two shall be allowed. In
other words, if the other (unchanged) data set follows within
a short time, the system still works correctly. Therefore, two
other confidences cbrk and cok are calculated similarly using

cbrk ¼ 1 if st � sa
st
sa

if 0 � st < sa

�
(20)

and

cok ¼ 0 if st � sa
sa�st
sa

if 0 � st < sa

�
(21)

where st 2 Z�0 is the time gap (in samples) between the
change of the two data sets (input and output), thus, the
time which the output needs to react on a change in the
input. The more time elapses, the more likely the SuO is
broken; reflected in cbrk is becoming higher and cok is becom-
ing lower. In this case, CCAM signals that the SuO is broken
but only if the actual state is valid. Otherwise, this discrepancy
is most likely because the SuO is in a transient state. In this
case, the SH just discards the active state, creates a new one
and saves the actual samples in the new state.

We note that if the SuO changes back into an already known
state, css;i;n of Equation (18) and cds;i;n of Equation (19) denote
the number of samples which were inserted into the state after
re-entrance into it. This is necessary because the signals may still
be unsteady after a change and cause a wrong recognition of
the state. Therefore, the new active state should not be consid-
ered as valid directly after re-entrance. Once there have been
enough number of samples similar to an already existing state,
we can recognize that state as reactivated.

If the intervals of the functions cbrk and cok are identical, the
computation of cok can be simplified to cok ¼ 1� cbrk and the
condition cbrk > cok becomes equal to cbrk > 0:5.

4.6. Recognizing a signal drift

A system under observation can have another condition
besides broken or healthy. When one or more signals are
drifting (changes continuously but very slowly) characterizes
another abnormal operation. In other words, a series of values
of a signal belong to the same state, but the signal is gradually
deviating outside its normal expected range. This very slow
change is indistinguishable in the sliding history window of
the state because the samples saved in the history change as
the signal is drifting. Therefore, the task of inserting sample
values to the active state is more complex than just saving
them in the history (shaded in green in Figure 2). The SH
additionally calculates Discrete Average Blocks (DABs) the
average values of a certain number of sample values (DABsize)
inserted in the state (Figure 4). The more different the actual

Sample history:

Lowest confidence 

of being similar:

Highest confidence 

of being different:

vi,new

csl,i

csh,i

. . .vh ,1
i

vh ,2
i

vh ,n
i

. . . csl,i,ncsl,i,2csl,i,1

. . . csh,i,ncslh,i,2cshl,i,1

Figure 3. A graphic demonstration of a new value being compared to the values in the history. This figure shows also the storage of respective confidences of
belonging and not belonging.
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DAB to the first DAB, the more likely a signal is drifting.
However, only completed DABs are compared with each
other. An incomplete DAB could lead to a false result because
of an outlier sample. The determination whether a signal is
drifting happens after the new sample set was inserted into
the active state. The confidences cdft and cstb, which indicates
that the signal is drifting, respectively, stable, are calculated by

cdft ¼

db�ddft
db�da

if da < ddft < db
0 if db � di;j � dc
ddft�dc
dd�dc

if dc < ddft < dd
1 otherwise:

8>><
>>:

(22)

and

cstb ¼
ddft�da
db�da

if da < ddft < db
1 if db � ddft � dc
dd�ddft
dd�dc

if dc < ddft < dd
0 otherwise:

8>><
>>:

(23)

where ddft is the relative distance between the two compared
DABs. That is,

ddft ¼ vavg;DABfirst � vavg;DABnew
vavg;DABfirst

����
���� (24)

where vavg;DABnew is the average value of the latest (completed)
DAB, and vavg;DABfirst is the average value of the state’s first DAB.

If ddft is higher or equal than dstb, the SH of CCAM signals
that the active state is drifting but only if the actual state is
valid. Otherwise, this discrepancy is most likely because the
SuO is in a transient state.

If the intervals of the functions cdft and cstb are identical, the
computation of cstb can be simplified to cstb ¼ 1� cdft and the
condition cdft � cstb becomes equal to cdft � 0:5.

4.7. Overall confidence of the CCAM system

The CCAM system outputs, besides the assessed health
condition of the SuO, how confident it is about its assess-
ment. This confidence c is case dependent and calcu-
lated by

c ¼
ðcn;in _ cn;outÞ ^ cbrk ^ cval ; if broken ð25Þ
ðcb;in ^ cb;outÞ ^ cdft ^ cval ; if drifting ð26Þ
ððcb;in ^ cb;outÞ _ ðcn;in ^ cn;outÞÞ

^cok ^ cstb ^ cval ; if normal ð27Þ

8>><
>>:

where cb;in, cb;out , cn;in, and cn;out are calculated by Equations
(14) and (15) for input and output variables, respectively.

5. Evaluation

In this section, two case studies are investigated: an AC Motor
and a water pipe system. First, we describe data and experimen-
tal setup used for testing of our proposed CCAM system. It is
noteworthy that the configuration of CCAM is the same for both
case studies. That is, a down sampling rate of 50, ½da; db; dc; dd� ¼
½�14%;�1%; 1%; 14%� (Equation (4)), sa ¼ 10 (Equation (6)),
DABsize ¼ 10, ½da; db; dc; dd� ¼ ½�30%;�10%; 10%; 30%�
(Equation (22)), and sa ¼ 20 (Equation (20)). Next, we discuss
the results and compare them with CAH (Götzinger et al.
2017b). The results of our sensitivity analysis, where we evaluate
the effect of variations in configuration parameters on the per-
formance of the system, is also presented.

5.1. Motor case study

We have used the simulation results from (Götzinger et al.
2017b) for comparison with our simulations of CCAM. Free
running, change of speed and change of load behaviours
have been simulated to cover normal states and state
changes. For abnormal behaviour, the drift has been modelled
applying an increase to the mechanical torque. The broken
state, instead, has been provided by Bessous et al. (2018) from
a real experiment on a motor with broken bearings. To eval-
uate the system more extensively, we added longer and more
complex test scenarios simulated with the same simulation
tools we used in Götzinger et al. (2017b). The motor is a single
squirrel-cage, three-phase, 380 V, 50 Hz, 3 kW induction motor
with four poles whose parameters are based on asynchronous
machine model using the SI dialogue box in MATLAB®. The
input and output signals are voltage, current, torque, and
speed. For the broken state, the vibration signals have been
collected in addition.

Is the 

active DAB 

empty?

Is the

previous DAB 

completely 

filled?

Delete the

previous DAB

Is the 

active DAB 

already full?

Insert the sample 

in the active DAB

Create a new DAB

Yes

No

Yes

No

No

Yes

Update the

active state

Save the sample in 

the state history

Figure 4. Block diagram of the state updating task of the proposed CCAM system. Discrete Average Blocks (DABs) are also created and kept in this procedure.
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The CCAM system is modelled in C++ and fed with CSV-
files containing data sets of the AC motor. The alternating
signals such as AC voltage and AC current were abstracted
beforehand to their amplitudes using MATLAB®. Table 1 out-
lines the various scenarios used in our AC motor experiments.
In the following, we explain some example scenarios in more
details and show how CCAM successfully classifies them.

5.1.1. Normal operation
A normally working SuO can remain in a given state or
change its state. We successfully tested the proposed CCAM
system in various scenarios (Table 1). In the following, two of
them will be discussed in detail. Figure 5(a) shows the sce-
nario explained first (scenario 3 in Table 1). The motor was
turned on, in the beginning, followed by two state changes
caused by external load changes. The CCAM system continu-
ously tries to identify the state of the system. When the
motor is turned on, the output signals oscillate considerably
for a relatively long time. Without detected state, it is not
possible to determine whether only the input or the output
data sets have changed. Because of this unsteady state, the
CCAM system does not trust the system in the beginning of
its first state, that is, the confidence is close to 0 (c � 0). Then,
around 1.8 seconds the SuO settles to a steady state which is
reflected in an increased confidence (c � 1). At 2s, the exter-
nal load is changed from 0 to 10Nm. Therefore, all output
signals start to change again; accompanied by an oscillating
phase. Because of the relatively small change in the input

signals, the period in which the SuO is unsteady is shorter.
Around 0.5s after the external load has been changed, the
CCAM system is confident about the recognition of
the second state and the good health condition of the SuO.
The same can be seen at 4s when the external load changes
again. The scenario explained second (scenario 4 in Table 1)
is similar but more complex. Figure 6 shows that the motor
was turned on, followed by 21 times external load changes
(with six different loads). CCAM detected all the six distinct
states of the system and its 21 state changes.

5.1.2. Wear-out
As shown in Figure 7(a), because of the oscillating signals (in
scenario 7 of Table 1), in the beginning, it takes the CCAM
system around 1.8s until it is confident that it has recognized
a steady state. Shortly afterwards, the confidence of the CCAM
is again falling because a drift is detected. Around 2s, the
CCAM system changes status and raises the drift alarm. At
around 3s, the system is highly confident about this decision.
This circumstance lasts up to the end of the experiment.

Table 1. Various experiments (test scenarios) performed with an AC motor.

#
AC motor
condition

Record
length

Sampling
frequency Events in the scenario

1 OK 6 s 10 kHz The motor was turned on in the
beginning and remained without any
state changes during the experiment.

2 OK 20 s 1 kHz The motor was turned on in the
beginning, followed by one state
change caused by a change of input
voltage and frequency.

3 OK 6 s 10 kHz The motor was turned on in the
beginning, followed by two state
changes caused by external load
changes. All three states differ from
each other.

4 OK 60 s 1 kHz The motor was turned on in the
beginning, followed by 21 state
changes caused by external load
changes. This results in six different
states for the motor.

5 OK 120 s 10 kHz The motor was turned on in the
beginning, followed by 51 state
changes caused by external load
changes. This results in seven
different states for the motor.

6 OK 3600 s 1 kHz The motor was turned on in the
beginning, followed by 383 state
changes caused by external load
changes. This results in seven
different states for the motor.

7 Drift 10 s 10 kHz The motor was turned on in the
beginning and remained without any
state changes. Because of a wear-out
of the motor signals are drifting very
slowly.

8 Broken 10 s 12.5 kHz The motor was abnormally running from
the beginning without any state
changes.

Figure 5. Comparison of CCAM and CAH which does not consider confidence.
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5.1.3. Anomaly
In the case of a bearing defect, scenario 8 of Table 1 shown in
Figure 8, the vibration and the current signals start to change
significantly which leads to many peaks. These changes and peaks

in the output signals of the SuO result in the CCAM system
recognizing the SuO as broken. Due to the fact that the records
of the broken motor lack data of the motor working well in the
beginning, the CCAM system can find a state in this unsteady data

Figure 6. Proposed CCAM system output during many state changes of the AC motor. The legend shows the inputs of the SuO with dotted lines and the outputs
with dashed lines.

Figure 7. Monitoring drift in the AC motor case study. Comparison of CCAM and CAH.
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(1s) and themean of the confidence is rising. However, the output
of CCAM changes between ‘OK’ and ‘Broken’ over and again,
which signifies the broken condition. In future work, we will
study if such unstable assessment could be automatically analyzed
further and expressed explicitly and reliably as one broken alarm.

5.2. Water pipe system case study

In this case study, a pump is driving water through a pipe
system. The system is controlled with a Raspberry Pi in com-
bination with Arduino Uno. The desired velocities are set via
a python script and all sensor values are logged. The input
signal is a DAC output (normalized voltage) of the Raspberry
Pi which ranges from 0.3 to 1.0, corresponding to the pump
voltage range of 3 V to 10 V. The output signals are the water
temperature as well as several volumetric flows. The tempera-
ture in the pipe system is measured with two temperature
sensors (Pt1006 at different positions) and the volumetric flow
is measured with four flow sensors at different positions. The

main part of the experimental setup is depicted in Figure 9.
On the left side of this Figure, the sensors of Dynasonic and
Riels are not displayed. Three different types of flow sensors
are used to show that the system is able to work in
a heterogeneous sensor system. The first type of sensors are
in-situ ultrasonic sensors (Two Sharky FS 473 – SharkyS and
SharkyB are their corresponding acronyms in the figures and
in the rest of the paper). The second type is a clamp-on
ultrasonic sensor (Dynasonics TFX Ultra), and the last one is
another clamp-on ultrasonic sensor (Riels RIF600P). SharkyS
and SharkyB are placed parallel to each other whereas the
sensors Dyna and Riels are in series to each other and to the
other two. The data of the Riels is not used for these experi-
ments since the sensor was not set up correctly for this type of
measurement. All measured values, actuator and sensor values
are stored in CSV-files on the Raspberry Pi and later post-
processed on another computer (because of the limited per-
formance of the Raspberry Pi). Table 2 outlines several scenar-
ios used in our experiments. In the following, we explain some
of them in more details and show how CCAM classifies them
correctly.

5.2.1. Normal operation
The CCAM system successfully detects different normal opera-
tion scenarios, with and without state changes. Two of these
scenarios are discussed in detail in the following. Figure 10 shows
scenario 3 of Table 2, where the voltage is increased two times
after the water pump has been started. The temperature remains
constant during the entire experiment. The valve before sensor
SharkyS is closed, which means the sensors SharkyB and Dyna
measure the entire water flow. The sensors SharkyS and Dyna
need about 4 seconds of setup time until a steady state is
reached allowing an accurate flow measurement. The CCAM
system is able to detect all three states correctly. It needs
25–30 seconds to reach a high confidence in the state, and
then remains high until the input is changed. As expected, the
health status is also recognized as OK.

Figure 10(b) shows scenario 4 of Table 1 which is very
similar to the previous scenario but the first and the last SuO
states are the same. As we see in Figure 10(b) the voltage was
increased first and then decreased again to its initial state.
CCAM detected both state changes, recognized that the SuO

Figure 8. CCAM behaviour in the case of the bearing defect. Since the system is
broken from the beginning, CCAM cannot identify a correct and stable state.
Thus, it oscillates between broken and okay in its assessment and never
converges. This oscillation represents the anomalous behaviour of the SuO.
The legend shows the inputs of the SuO with dotted lines and the outputs
with dashed lines.

Figure 9. Parts of the water pipe system and schematics of the most important used elements. Dyna and Riels sensors are outside the picture (they would have
been at the left side of the current frame of the picture) .
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changed again back to the first state, and classified the health
status of the system correctly.

5.2.2. Wear-out
Figure 11(a) shows the input voltage of the pump is set to
a constant value throughout the entire experiment. We note
that the sensors SharkyS and Dyna deliver correct flow values
only after about 4 seconds. After about 350 seconds the
system starts to drift (mimicked by an opened valve that is

not observed by CCAM) and both sensors detect a slowly
rising water flow.

The CCAM system first detects correctly the stable state
and then it detects the drifting behaviour of the system. The
health status changes from OK to Drifting until the end of the
experiment. The confidence in the state is rising again after
the discovery of the deviation.

5.2.3. Anomaly
CCAM is also able to detect the break down of the system, and the
results are shown in Figure 12. In this case, the pump voltage is set
to a constant value for the entire experiment. At the beginning of
the experiment, the entire water flow is in the pipe which is
monitored from the sensor SharkyB but then the valve for this
pipe is closed, and the valve of the pipe of sensor SharkyS is
opened to simulate a hole in the other pipe.

In this case, the system detects the state, the confidence
and the health status correctly at the beginning. After about
310 seconds it changes the health status to broken, which is
the expected behaviour. The confidence drops significantly at
the beginning of the broken state, and it needs about 30
seconds to return to a high confidence value.

5.3. Sensitivity analysis

As mentioned, the proposed system benefits from an
enhanced robustness of the recognition of states and
a decreased dependence on parameter settings which reduces
deployment time. To demonstrate these effects, we performed
a sensitivity analysis where the impact of changing the value
of certain parameters on the correct classification of the mon-
itored system states is investigated. We studied the sensitivity
of assessment results of CCAM on a set of data from the motor
and water pipe system use cases. Tested parameters are the
intervals of the fuzzy functions defined by Equation (4) and
Equation (7), denoted by the points da, db, dc, dd , and sa. In
addition, various downsampling rates (DSR), DAB sizes and sa
from Equation (20) as well as da and dc from Equation (22) are
tested in the course of our sensitivity analysis. These para-
meters and their intervals are listed in Table 3. The high

Table 2. Various experiments (test scenarios) using the water pipe system.

#
HVAC system
condition

Record
length

Sampling
frequency Events in the scenario

1 OK 649 s 30.5 Hz The pump was started in the
beginning and remained without
any state changes during the
experiment.

2 OK 625 s 30.5 Hz The pump was started in the
beginning, followed by one
voltage increase, resulting in two
different states during the
experiment.

3 OK 627 s 30.5 Hz The pump was started in the
beginning, and afterwards, the
voltage was increased two more
times, resulting in three different
states during the experiment.

4 OK 638 s 30.5 Hz After the pump was started in the
beginning, the voltage was
increased once and changed
back after some time. This
resulted in two different states
during the experiment.

5 Drift 629 s 30.5 Hz The pump was started in the
beginning and remained without
any state changes during the
experiment. However, signals
start to drift in the middle of the
experiment.

6 Broken 626 s 30.5 Hz The pump was started in the
beginning and remained without
any input changes during the
experiment. However, in the
middle of the experiment
a change happens (only) in the
output, showing a broken system
status.

Figure 10. CCAM output during state changes of the water pipe system. The legend shows the inputs of the SuO with dotted lines and the outputs with dashed
lines.
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number of tested values led to 2.2 million experiments for
each recording which took about 20 days to run on two
computers running in parallel on 32 and 24 cores.

Many configurations7 led to results similar to those reported
in the experiments above. More precisely, the classification of the
well-being of SuO was correct, but the timing of the recognition

and raising the alarms may differ to some extent. However, the
focus was on the correct recognition rather than the time it takes
before the states and their changes are detected.

It has to be noted that some of the parameters affect each
other. Thus, not every theoretically possible combination of all
these parameter values work. However, we found at least 1987
configurations which worked for all scenarios of both case
studies. This includes our original configuration which was
set – heuristically and with minimum effort – prior to this
sensitivity analysis. In the following, we present and discuss
the behavioural dependencies of various parameters based on
the sensitivity analysis made for the water pipe system case
study; that is, all scenarios of Table (2).

Figure 13 shows a small selection of the results of our sensi-
tivity analysis. In these figures, each axis shows the range of the
swept parameter and each dot shows the combination of those
parameters which led to a correct classification (i.e. combination
which did not function properly are not shown on the figure). In
a closer look, in Figure 13(a) we observe that a lower Down-
Sampling Rate (DSR) only works with higher sa of css;i;k , and
a higher DSR needs the sa of css;i;k to take a lower value. It can
be also seen that sa of css;i;k is rather independent of the DSR
setup, whereas a higher DSR requires a lower sa of cbrk .

Figure 13(b) shows that a lower sa of css;i;k leads to
a functional system with a larger set of values for the
other two parameters, namely jdbj, dc of csvj and jdaj, dd
of csvj . The relation between the latter two parameters is
similar too; A lower jdbj and dc of csvj leads to a larger range
of possible values for jdaj and dd of csvj . This is true the
other way around too; lower jdaj and dd of csvj leads to
a functional system with a larger set of configuration values
for jdbj and dc of csvj.

The most interesting finding, which clearly shows the advan-
tage and importance of using fuzzy logic, can be seen in Figure
13(c). The lower jdbj and dc of csvj , the broader the range of
acceptable jdaj and dd of csvj . Whereas, a higher value of jdbj
and dc of csvj leads to the necessity of having a lower jdaj and dd
of csvj . A low jdbj and dc of csvj in this context, constitutes a flat
fuzzy membership function (see Figure 1(a)), whereas the oppo-
site constitutes a steep fuzzy function. A steep fuzzy function

Figure 11. Monitoring of drifting phenomena by CCAM and CAH. The legend shows the inputs of the SuO with dotted lines and the outputs with dashed lines.

Figure 12. Proposed CCAM system outputs when observing the water pipe
system showing anomalies. The legend shows the inputs of the SuO with dotted
lines and the outputs with dashed lines.

Table 3. CCAM configuration parameter ranges used in the sensitivity analysis.

Parameter Test Range
Test
Steps

Working Range
AC Motor

Working Range Water
Pipe System

da of csv;i;j [−20%, −2%] 1% [−17%, −5%] [−17%, −7%]
db of csv;i;j [−10%, −1%] 1% [−9%, −1%] [−8%, −1%]
dc of csv;i;j [1%, 10%] 1% [1%, 9%] [1%, 8%]
dd of csv;i;j [2%, 20%] 1% [5%, 17%] [7%, 17%]
sa of css;i;k [5, 40] 5 [5, 10] [5, 40]
da of cdft [−50%, −20%] 10% [−50%, −20%] [−50%, −20%]
db of cdft 10% const. – 10% 10%
dc of cdft 10% const. – 10% 10%
dd of cdft [20%, 50%] 10% [20%, 50%] [20%, 50%]
sa of cbrk [10, 200] 10 [10, 200] [10, 200]
DSR [25, 200] 25 [50, 200] [25, 200]
DABsize [5, 15] 5 [5, 15] [5, 15]
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behaves very similar to a traditional threshold cut-off approach
which we used in (Götzinger et al. 2017b). Therefore, the steeper
is the fuzzy function (that is, more similar to a threshold function),
the less flexible is the system (it functions with a smaller number
of configuration values).

Based on the above analysis, we conclude that the system
is in general very reliable, robust and not very sensitive to
small changes of configurations with respect to those para-
meters studied above. In particular, the proposed method is
more robust compared to CAH (Götzinger et al. 2017b) which
does not use fuzzy logic or confidence.

5.4. Comparison with the context-aware health
monitoring system

In this section, we compare our newly proposed CCAM system
with CAH (Götzinger et al. 2017b) (which does not use confi-
dence), under comparable conditions and using the same data.

Both, Figure 5(a) and 5(b) and 4 show the same scenarios (the
same motor data) in which the external load changes. However,
the curves of themotor signals appear different in the two figures.
That is because Figure 5(a) shows unfiltered motor signals and

Figure 5(b) shows filtered signals. This fact points to the first
significant difference in the performance of the two systems.
Whereas CAH needs the motor signals to be filtered in a pre-
processing step, CCAM is less affected by signal instabilities and
can handle unfiltered signals.8 However, due to the unfiltered
signal, CCAM requires more time than CAH to recognize the first
state.While CAH recognizes the first valid state after 1s (Figure 5(b),
CCAM needs around 1.8s for this. However, when CCAM analyses
signals that are filtered, the first valid state is recognized after 1s.

The second difference is that CAHhas a binary decision-making
process based on fixed thresholds, whereas CCAM bases all deci-
sions on confidences calculated with fuzzy functions. Therefore,
the configuration of CCAM fuzzy parameters is less sensitive than
the thresholds of the CAH system. In other words, the fuzzy func-
tions increase the robustness. This partial independence of accu-
rate adjustment also leads to a better recognition when the SuO
drifts. We simulated 12 different wear-out scenarios with the dete-
rioration rate of the speed signal from 0:0025 to 0:022 RPM. CAH
detected the signal drift in 4 of these 12 cases (33% success) and
switched after some time from drift- to broken alarm (as shown in
Figure 7(b) too). In contrast, the CCAM system shows that the SuO
is drifting in 100% of those cases and maintains its decision all

(c) Possible combinations of |da |, |db|, dc , and dd
of csv j , with those CCAM classifies the condition
of SuO correctly.

(a) Possible combinations of down sampling rate,
sa of css,i,k , and sa of cbrk , with those CCAM
classifies the condition of SuO correctly.

(b) Possible combinations of |da |, |db|, dc , and dd of
csv j sa of css,i,k , and sa of cbrk , with those CCAM
classifies the condition of SuO correctly.

Figure 13. Sensitivity analysis for the different parameter combinations of CCAM. Each point on the charts represents a parameter combination which led to
a correct classification of the SuO condition.
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along (see Figure 7(a) as an example). The same unsteadiness of
decision-making can be also seen when CAH monitors the water
pipe system. Figure 11(b) shows that CAH detects a drift in the
signals of SuO after � 400 s. However, after again � 25 s, CAH
changes its decision and states that SuO is broken. In contrast to
that, CCAM maintains its decision until the end.

The third major difference in performance is that whereas
CCAM has been successfully tested for various down-sampling
rates between 25 and 200, the CAH raises wrong alarms in
some scenarios when the down-sampling factor is less
than 50.

In summary, the results show that confidence, based on
fuzzy functions, (i) simplifies the system, (ii) improves the
quality of the system performance, and (iii) enhances its
resilience.

6. Conclusions and future works

We present a Confidence-based Context-Aware condition
Monitoring (CCAM) system which monitors the health con-
dition of a bijective function black box system, without
making further assumptions. In particular, CCAM is model-
free and thus uses only contextual information to identify
whether the observed system works correctly, is broken, or
shows symptoms of wear-out. The advantages of such
a system are the ease of deployment in a variety of appli-
cations, even those which are considerably different. The
proposed system requires neither in-depth knowledge of
the field, nor cumbersome effort to adjust the parameters
to the given application. We are particularly pleased that
CCAM – as we showed here – can monitor and assess
proper working conditions of such diverse systems as
a motor and water pipe system without model building
or other customization.

The decision-making process of the proposed system uses
confidence (which is a self-awareness property) computed
using fuzzy logic. In our experiments, we ran a series of tests
with and without confidence on an industrial AC motor as well
as a water pipe system to show that the proposed system
detects all of these behaviours correctly and more reliably
while being simpler than a comparable monitor system with-
out confidence. The proposed monitoring system is reliable as
it does not depend on manually provided fixed threshold
values; instead, it uses fuzzy set member functions that are
robust against small variations of parameter settings.

In summary, in this paper,

(1) we introduced a fuzzy logic confidence metric for the
condition monitoring of the state of a system,

(2) we demonstrated the feasibility of the proposed moni-
tor using two case studies: an industrial motor and
a water pipe system,

(3) we showed that the proposed system (CCAM) gives equally
good or better results than the system without confidence
(CAH) even though it does not pre-process the signals

(4) we demonstrated the robustness of our CCAM system by
providing a sensitivity analysis showing that the system is
robust against small variations of parameter settings.

6.1. Future work

In our experiments, we show that our proposed system is
robust against small variations of parameter settings, and
that it correctly detects/classifies state changes as well as the
health status of the SuO. However, currently, CCAM uses
a single fuzzy function for all signals of the SuO. This may
lead to a wrong classification if the amplitude of the changes
is significantly different among various input signals, output
signals, or between input and output signals. For example,
when a very small change in the input of the SuO causes
a much larger change in the output. Therefore, in the future,
we plan to have one fuzzy function setup for each signal of
the SuO. However, that would lead to a larger number of
parameters to tune. To circumvent a higher effort in setting
up the parameters of CCAM, it is necessary that CCAM is able
to learn from the signals themselves autonomously setup the
fuzzy functions. This procedure will lead to an even easier and
more effortless usage of CCAM.

In addition to that, we will study if an unstable assessment
which we could see in the anomaly scenario of the AC motor
could automatically be analyzed further and recognized expli-
citly and reliably as a single broken state. Detecting unsteady
(transitory) states could be another important addition.
Furthermore, CCAM should be able to detect patterns in
case of a repeating sequence of state changes. A sudden
change in a repeating sequence of SuO states could denote
a malfunction too.

Notes

1. Distance means a difference which can be of any dimension such
as performance or success rate difference, geometrical distance,
time difference, difference in absolute values, and so forth.

2. We note that the relative distance, di;j , is not to be confused with
Δ0. While di;j is the distance of a sample to another sample, Δ0

denotes the confidence that a membership assessment is correct.
3. There can be more than four points and three intervals. The fuzzy

functions could be much more complex. However, the currently
chosen shape has led to satisfactory results in our tests.

4. In fuzzy logic, the complement (negation) of a conjunction is not equal
to a disjunction of complemented operands. Hence, in a generic case,
cb�cn, although in some specific instances they may be equal.

5. We note that if input or output of the SuO is considered indepen-
dently from each other, m constitutes the number of input and
output variables, respectively.

6. ‘Pt’ stands for platinum and ‘100’ shows the resistance at 0�C in
ohms.

7. The smallest number of configurations which worked for all experi-
ments of both case studies was 1987 sets.

8. We note that one scenario constitutes the exception: the anomaly
(bearing defect). However, we believe that it would also work unfil-
tered if we hadmotor datawhichwould show themotor workingwell
in the beginning and before breaking. Unfortunately, we only have
records of the broken motor, and therefore, the vibration signals are
changing throughout the recording period. Thus, it is impossible for
the SH to recognize a valid state, and the SH only raises an alarm if
a valid state was found.
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