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SAMBA - an architecture for adaptive
cognitive control of distributed
Cyber-Physical Production Systems based

on its self-awareness

L. C. Siafara, H. Kholerdi, A. Bratukhin, N. Taherinejad, A. Jantsch

Factories in Industry 4.0 are growing in complexity due to the incorporation of a large number of Cyber-Physical System (CPSs)
which are logically and often physically distributed. Traditional monolithic control and monitoring structures are not able to address
the increasing requirements regarding flexibility, operational time, and efficiency as well as resilience. Self-Aware health Monitoring
and Bio-inspired coordination for distributed Automation systems (SAMBA) is a cognitive application architecture which processes
information from the factory floor and interacts with the Manufacturing Execution System (MES) to enable automated control and
supervision of decentralized CPSs. The proposed architecture increases the ability of the system to ensure the quality of the process by
intelligently adapting to rapidly changing environments and conditions.
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SAMBA - eine Architektur zur adaptiven kognitiven Kontrolle verteilter cyber-physischer Produktionssysteme basierend
auf Self-Awareness.

Industrie 4.0-Fabriken nehmen rasch an Komplexitédt zu aufgrund der Einbeziehung einer groBen Anzahl von cyber-physischer Syste-
me (CPS), die logisch und oft physisch verteilt sind. Traditionelle monolithische Kontrolle und Uberwachungsstrukturen sind nicht in
der Lage, den steigenden Anforderungen hinsichtlich Flexibilitdt, Betriebszeit und Effizienz sowie auch Belastbarkeit gerecht zu wer-
den. ,Self-Aware Health Monitoring and Bio-inspired coordination for distributed Automation systems” (SAMBA) ist eine kognitive
Anwendungsarchitektur, die Informationen von der Fabrik verarbeitet und mit dem Manufacturing Execution System (MES) zur auto-
matisierten Kontrolle und Uberwachung von dezentralen CPS interagiert. Die vorgeschlagene Architektur erhéht die Fahigkeit eines
Systems, durch intelligente Anpassung an eine sich schnell verdndernde Umgebung bzw. Bedingungen die Qualitit des Prozesses zu
gewadhrleisten.
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1. Introduction

Highly efficient production requires high degrees of flexibility, adap-
tiveness, and responsiveness in order to achieve high quality and
versatility of manufacturing processes [1]. To reduce lead time, previ-
ous approaches have focused on rigid and deterministic automated
production environments, which minimize disturbances during op-
eration [2]. However, the increasing structural complexity of produc-
tion systems, due to the growing number of CPSs and distributed
heterogeneous components in the loop, decrease the determinis-
tic nature of production processes and require agile controls capa-
ble of prediction and timely reaction to disturbances [3]. To achieve
flexibility while enhancing system performance, real-time informa-
tion from the shop floor shall be integrated into the control system.
Moreover, the optimal reaction should be decided with respect to
the system goals, which may themselves change during the oper-
ation. To further assure quality, an important task is the continu-
ous measurement of individually varying product properties in early
stages [4]. In view of these requirements, researchers have proposed
various methods of intelligent sensing, self-organization, and self-
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optimization and a number of sophisticated cognitive architectures
[5, 6].

Even though the developments of technology have improved
the robustness and resiliency of Cyber-Physical Production System
(CPPSs) in comparison to conventional automation systems, new
expectations such as self-diagnosis and prognosis, self-repair, self-
discovery and self-configuration, predictability as well as safety [7]
are rising. We categorize these expectations into three different
challenges. (i) The first challenge is the self-aware health monitoring
which means self-observation and fault diagnosis. (i) The second
challenge regards the complication of the decision-making process
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required for autonomy, robustness, and safety in the system. (iii) Fi-
nally, the third challenge regards the communication and decentral-
ized existence of information in a distributed system, operating in
known or unknown environments.

In this paper, we propose an architecture designed to address
these individual challenges in an integrated and comprehensive
manner in order to meet the expectations of modern production
systems. Therefore, the proposed system aims at the dynamic ob-
servation of the environment, data abstraction, and distributed ne-
gotiation. They serve each unit of the system in detecting the faults
and anomalies independently but collaboratively. Each unit uses self-
configuration to achieve dynamic clustering of the system for the
purpose of communication between units. Finally, the system at-
tempts to go beyond using the existing actions for known prob-
lems and to mitigate new anomalies and problems to guarantee the
safety of the whole system.

It should be born in mind that the proposed architecture is work
in progress and not yet completely implemented. We have sim-
ulated the SAMBA architecture in the nxtStudio based environ-
ment and verified its main functionality, which we present here.
We have implemented a portion of Self-Aware Health Monitoring
(SAHM), namely health monitoring of an injective function black
box using contextual information, which we tested on an AC-
motor case study [8]. Moreover, we have recently studied the util-
ity of SAMBA features in the context of hierarchical goal manage-
ment and found encouraging preliminary results for their use in
autonomous anomaly mitigation, self-configuration and arbitration
between conflicting goals [9]. Although we are encouraged by the
results so far, the main challenge will be to demonstrate that SAMBA
leads to a measurable improvement in overall reliability and opera-
tional efficiency of the production system. That is the target of an
ongoing FFG funded project with TU Wien, Danube University Krems
(DUK), nxtControl, and AVL (Anstalt fur Verbrennungskraftmaschi-
nen List) as partners.’

This paper first reviews the state of the art in the areas of
self-aware monitoring, cognitive systems and dynamic clustering in
Sect. 2. In Sect. 3, it explains how these methods are integrated into
the SAMBA architecture and presents the modules of the solution
and their interfaces. Next, in Sect. 4, it goes through an exemplary
scenario with disturbances to elaborate how the system handles the
problem and presents a high-level simulation of the system using
IEC 61499 function blocks. Finally, it discusses potential benefits of
the proposed architecture and draws conclusions.

2. State of the art

2.1 Self-aware monitoring

Recent attempts to improve the efficiency, collaboration and re-
silience of automated systems in industry highlight the importance
of the self-awareness in such systems. Self-awareness enables a sys-
tem to monitor itself and its own environment to assess its situation
better and make more appropriate decisions. An architecture for
cyber-physical manufacturing system based on Industry 4.0 has been
proposed by Lee et al. [10]. The authors studied a unified 5-level ar-
chitecture. The first level deals with the data acquisition and then
the self-awareness is used in the second level to monitor the health
degradation of the system. In another study, self-representation for
monitoring automation systems using a multi-agent structure was

TSAVE (Self-monitoring-based process Adaptation for quality assurance in het-
erogeneous VErsatile manufacturing), funded by FFG under contract 864883.

studied by Kaindl et al. [11]. An agent is defined as a combination
of hardware and software components which represents itself and
its relations to its environment in an explicit symbolic manner. The
proposed system is used for self-configuration as well as monitoring
and failure detection. However, no cause detection was considered
in that work.

Self-monitoring has been implemented also as a hierarchical
agent in a Systems-on-Chip (SoC) [12]. The proposed structure fa-
cilitates the process of monitoring parallel many-core SoCs. Cyber-
Physical System-on-Chip is another platform where self-awareness
has been explored [13]. There, the authors described self-awareness
as the ability of a system to monitor its own internal and external be-
havior in order to make appropriate decisions. The superiority of the
hereby proposed architecture of self-aware health monitoring over
the state of the art is its ability to interpret the reliability of the data,
measure the confidence of its processes, use attention for more ef-
ficient resource utilization, and perform predictions to provide more
information for the decision-making process.

2.2 Cognitive systems

Flexible and reliable operation in many automated processes is
achieved by the inclusion of the human operator in the loop [14].
Cognitive abilities enable humans to solve problems under uncer-
tainty and despite the changes in the environment and tasks. Al-
though such capabilities are common in humans, they are rarely
found in industrial systems. The goal of cognitive architectures is
to define a framework for designing systems with human-like intel-
ligence; they provide a structure which enables a system to develop
over its lifetime by embedding the mechanisms of perception, rea-
soning, action, and learning [15]. Different cognitive architectures
have been applied for realizing cognitive tasks, for example, SOAR
[16], LIDA[17] and ACT-R [18].

To address limitations related to incomplete sensing of the envi-
ronment and inability to individually carry-out global tasks, cogni-
tive systems often exhibit social behavior, which entails communica-
tion and cooperation or negotiation. Such an approach is adopted
in cognitive radio networks, where multiple distributed sensors col-
laborate selectively to enhance their spectrum sensing performance
and the utilization of the radio frequency spectrum [19]. Distributed
cognitive systems have been studied also for the control of robots
[20], and building environmental control [21]. In industrial appli-
cations, the cognitive production systems refer to highly intercon-
nected devices with improved sensing, reasoning, learning and plan-
ning capabilities, which use knowledge-based and learning mod-
els to assess and expand their capabilities [1]. The cognitive system
design paradigm provides a promising approach towards the dy-
namic adaptation of the processes and the continuous optimization
through learning by observation of the environment and reasoning
for mitigating errors and finding improved operation strategies.

A more recent cognitive architecture is the Simulation of Mental
Apparatus (SIMA) [22], which has previously been applied for cog-
nitive control in building automation [23]. SIMA focuses on func-
tions that generate human behavior and implements the underly-
ing mechanisms (e.g., drives, emotions) which drive a system to
exhibit a certain behavior. This behavior is thereby defined by the
internal state of the system, which on its turn depends on the feed-
back returned by the environment on the system’s actions, rather
than being explicitly defined by the environmental state. Although
this approach requires a higher engineering effort in the beginning
due to the need for implementing the underlying driving behavioral
mechanism, it can achieve a lower system complexity since the states
under which a behavior is exposed do not need to be defined ex-
plicitly [24]. The SIMA theory is used as basis for the design of the
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cognitive module in SAMBA, which is discussed in detail in the next
section.

2.3 Dynamic clustering

A key to an efficient performance in distributed systems is commu-
nication among system components. The concept of clustering was
devised in conjunction with the need to adapt to high complex-
ity and the dynamic nature of emerging manufacturing control sys-
tems. It originated from the Holonic Manufacturing Systems (HMS)
concept [25] and the MetaMorph approach of HMS [26], based on
the idea of expanding problem-solving clusters. Each cluster is a dy-
namically created community of intelligent system components that
cooperate with each other to obtain enough information to solve a
problem. Each member of a cluster has a set of algorithms which
enable recognition of a problem and finding a solution. A flexible
structure is one of the advantages of a distributed clustering con-
cept that allows solving complex problems in a scalable manner.
Clustering has found its use in a variety of industrial applications
such as mitigating the complexity of production orders [27], knowl-
edge propagation of thermal modeling [28], ad-hoc wireless net-
works [29] for optimizing the routing protocol [30], and in other
concepts based on swarm intelligence [31, 32].

The proposed architecture uses the concept of distributed clus-
tering for establishing relevant connections between independently
acting entities in the system. Similar to [27], it establishes connec-
tions between the system components according to the production
order structure. In this case, however, the goal (rather than decision-
making) is more relevant to knowledge propagation [28] and there-
fore, the architecture presents a novelty over the current state of
the art.

3. Proposed architecture

Figure 1 illustrates the architecture of SAMBA and its major mod-
ules. The logical unit of an entity is an Autonomous Cooperating
Object (ACO). The ACO learns locally the specifics of the environ-
ment and the actions it can take. Further, it exhibits social behavior,
since it interacts with other ACOs located in the same environment.
To decide on its agenda, it takes into consideration its own goals,
the environmental context and the requests from other ACOs. The
global behavior emerges out of the interactions among the ACOs.

3.1 System architecture

Each ACO consists of three SAMBA-specific functional units in addi-
tion to the operation module: Operation Module serves as the inter-
face to the hardware. It connects to the plant controller and forms a
major part of the by providing symbolized sensor data and receiving
actuator ACO commands. Often, this unit sits on the legacy con-
troller. SAHM monitors the system operation and in case of anoma-
lies, it proposes possible causes. To this end, SAHM performs fault
diagnosis and data abstraction. As each ACO is observing only its
local environment, other ACOs can request or may be requested
to provide further information through the external manager. Inter-
nal Manager is the decision-making entity of the system. It receives
health status information from SAHM and external requests from
other ACOs through the external manager. At a certain state, there
might be conflicting action requests and the internal manager shall
decide which goal is prioritized. External Manager provides an im-
plicit connectivity among the relevant ACOs via distributed cluster-
ing based on the production order structure and the physical layout
of the shop floor. It facilitates transparent negotiations between one
ACO and other ACOs in the cluster. In the rest of this section, we
discuss the main functionalities of each module.
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Fig. 1. The architecture of SAMBA depicting the structure of one En-
tity

3.2 Self-aware knowledge extraction and representation
SAHM aims at parallel data abstraction and health status analysis
(anomaly detection) to provide the system with a suitable observa-
tion required for self-awareness [33]. The data is abstracted in a
normal situation when the sensors’ functionality is correct. How-
ever, when some of the sensors are faulty, the intention is to request
the equivalent data from adjacent entities. The health status analysis
approach mostly relies on the self-observation, however, sometimes
negotiation with other entities increases the knowledge of an entity
regarding an anomaly. Therefore, the proposed self-aware system
monitors various health parameters in a distributed manner. These
parameters are used to classify the health status of the entity into a
predefined state. The input parameters are the data of the sensors
that have been abstracted. These sensors may belong to an entity
itself or to other entities.

The goal of abstraction is to reduce the size of data as well as
to extract knowledge which is beneficial for the further processes
in SAHM, the internal manager, or other entities. It deals with the
sensor data and also other specifications about the hardware part
of the entity, including the nominal range and the reliability of each
component. Abstraction has several functional states, e.g., abstrac-
tion of sensor data, providing a response to the internal manager's
request for specific data as well as providing specific data to the
external manager, or processing the data provided from another ex-
ternal manager.

The goal of health status analysis is to detect the anomaly (as
well as its characteristics, causes, and effects), and to inform the
internal manager. It also deals with the requests from the external
manager regarding the health and operational status of the entity.
Health status analysis includes anomaly detection, anomaly specifi-
cation, cause diagnosis and prediction blocks. The abstracted data
first enters the anomaly detection. The type of anomaly and the
value of the reliability are the outputs which are forwarded to the
other three blocks. The detected anomaly triggers the anomaly spec-
ification block which estimates the features of this anomaly, such
as the rate of wear-out deterioration. Cause diagnosis detects the
reason(s) of the anomaly. This block requires the abstracted data,
type of anomaly and features of the anomaly (if they exist) as well
as complementary information from other ACOs. If the health status
analysis suspects the existence of an external cause, a data request is
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sent to the external manager, which can ask for the data and health
status of the other involved ACOs. Another output of this block is
the new value of specification for the reliability of the components
which is transferred to the abstraction block. Finally, the prediction
block receives the abstracted data, type of anomaly, its features, and
cause(s), and predicts the future effect of the anomaly on the entity
or the system.

The frequently updated reliability information of the data and
components provided from MES as well as the confidence value
at the end of each step are all interpreted as metrics to measure
the level of uncertainty. Different approaches are used depending
on where the uncertainty is flagged. For example, if the abstrac-
tion unit faces unreliable data, a negotiation with the neighboring
ACO(s) starts to request data from them. A self-aware Multiple Clas-
sifier System (MCS) based on the rankings of each individual clas-
sifier similar to [34] can be used to improve the performance of
anomaly detection and cause diagnosis through analysis of a col-
lecting of results and thereby choosing the optimal one to reduce
the uncertainty. Cause detection can be built using a MCS whose
inputs are the type of anomaly, meta-data and anomaly parameters.
Multiple learning algorithms interpret the inputs and provide the re-
sult with a value of confidence. If an external cause is probable to
obtain relevant external data, negotiation with other ACOs is initial-
ized. The new external information is fed as an input to the system
and a new analysis starts.

3.3 Cognitive decision-making

To select the most suitable actions with regard to the goals of an
ACO, decision-making takes place on the basis of data inputs from
the SAHM and the external manager. SAHM provides information
regarding the current state of the ACO and its environment, whereas
the external manager provides information regarding the state of
other ACOs and their environment. Two input types are defined:
drives and percepts. Drives are the (initial) motivations of the system
and therefore, the source of the system goals. Their intensity rep-
resents the deviation from a desired goal state: the higher a drive
intensity, the more urgent the goal represented by this drive. Sym-
bols from the environment constitute the percepts of the ACO. Once
percepts are generated for the current state, similar states from the
memory are activated. Emotions are the internal evaluation mech-
anism of the system and are generated based on the current state
of drives and the stored activated memories from the past. All these
processes form part of the primary process of the system, which is
characterized by the lack of reasoning functions. The primary pro-
cess regulates the reactive behavior of the system and proposes
actions that are able to solve urgent problems in a reactive man-
ner [35].

In the secondary process, social rules which reward or penal-
ize a behavior are tested on the current state; they represent user
preferences and guide the policies that the system should comply
with them. The rewards, which represent the external evaluations,
along with the emotions, which are the internal evaluations, en-
rich the current perceived state. The enriched perceived state and
the drives, which indicate goal priorities, are the inputs to the goal
selection process, where it is decided which goal the system shall
pursue. Next, sequences of states (episodes) similar to the current
episode are activated using case-based reasoning. From the acti-
vated episodes, sequences of actions (policies) that managed to re-
duce the drive intensities in the past are then picked as potential
options. The policy with the best performance is used to select the
current action to execute. The new episode is saved in the memory
by the learning process, which is responsible for the tasks of updat-
ing the memory with new episodes while it removes episodes that

have not been activated for a long time. Decisions of the Internal
Manager (IM) are evaluated and their effects are updated over time
in order to account for the changing dynamics of the environment,
therefore, maintaining an implicit model of the environment.

3.4 Adaptive collaboration

To compensate for the lack of a global overview due to the dis-
tributed nature of the proposed system, the concept of dynamic
clustering is applied. Dynamic clustering introduces a flexible way
to integrate global objectives while allowing encapsulation of core
functionality of the ACO, hence, providing transparency for the
decision-making. The challenge is to form clusters regarding the
functional requirements of the shop floor and manufacturing in-
structions. Currently, there is no methodology to formalize produc-
tion order ontology in relation to the anomalies. Instead of pre-
defined rules of the existing solutions, the External Manager (EM)
defines dynamic methods using learning algorithms (e.g., neural
networks, and reinforcement learning) to automatically discover the
cluster formation rules based on the production order, the physical
layout of the shop floor, and network communication structure. A
set of generic classifiers which operate on non-application-specific
characteristics are defined and used by the EM to determine es-
sential connections in the cluster and establish weighted links be-
tween ACOs based on the prioritized set of control parameters.
These weighted connections are updated at runtime using back-
propagation according to feedback from the evaluation of the com-
munication and the execution of decisions.

As a result, the system achieves implicit connectivity among the
relevant ACOs and facilitates transparent negotiations between
SAHM and the internal manager of different ACOs in a cluster. The
External Manager bases its technique on a non-deterministic rele-
vance of connection between individual ACOs regarding a particular
event. The outputs of the External Manager are used to check possi-
ble implications of local decisions on other ACOs in the community.
By adjusting the relevance of the connections over time, such de-
pendencies are dynamically adapted based on the consequences of
actions.

3.5 System dynamics and interface

Communication between the units of an ACO and also between dif-
ferent ACOs of a cluster is necessary to achieve the functionality of
the larger system described in Fig. 2. This figure highlights the wiring
and content of data exchanges between units in Fig. 1. The environ-
ment consists of the yellow blocks on the top, exchanging informa-
tion with the Operation Module in the ACO, and other ACOs shown
at the bottom. Types of information transferred between units inside
the ACO are also specified and depicted in Fig. 2. Finally, the ACO
is connected to the External Manager of other ACOs, which form
the other part of the environment. Note that this figure illustrates
the minimum possible connections in the proposed system. Each re-
quest and its reply are labeled by an ID to simplify the process of
handling them. To focus on the main system functionality, it is as-
sumed that no communication errors occur.

The connection between the Internal Manager and the Operation
Module is established for transferring the estimated set-points after
the decision-making process. There is only a one-directional data
flow from the Operation Module to SAHM to push all data from
sensors to SAHM.

Several communication messages are separately sent from SAHM
to the Internal Manager including a value representing the health
status of the ACO, information on anomalies and their cause, ex-
tra data in response to Internal Manager's requests, and the action

273



274

I Actuator
A

Sensors | |

v | | wes |
J ) A A
raw sensor data Visual colmmands report orders

v v

L »| Operation Module

T
operating data state

SaHM

T
health status, health parameters
cause, prediction, data request,
data response, action proposal

data request
action request

data request
data response

Internal Manager

data request

decision, action request,
data response

action proposal, action confirmation

A

External Manager

data request, data response
decision, action request
action proposal, action confirmation
h 4

External Manager

Fig. 2. Communication flow within the ACO and with other ACOs of
the cluster

proposal. The action proposal responds to a request made by the
Internal Manager and indicates the operational range within which
the ACO can adapt its operational settings. Data and action requests
are sent from the Internal Manager to SAHM. Action requests are
sent to SAHM upon receipt of an action request from the external
manager, in order to ask for the nominal operational range of the
ACO.

The Internal Manager establishes a connection to the External
Manager when the decision it makes impacts the operational pa-
rameters of another ACO. An action request is also sent when the
Internal Manager decides to change an operation parameter and the
negotiation needs to be initiated. Moreover, in response to an estab-
lished negotiation from other ACOs, the Internal Manager sends a
confirmation message to the requesting ACO in case of an agree-
ment.

The messages from SAHM to the External Manager include data
requests when SAHM detects an anomaly and needs to contact
another ACO for additional information. Similar messages are ex-
changed in the opposite direction too. The communication mecha-
nisms between External Managers of different ACOs are similar to
the ones between the External Manager and the Internal Manager.
In addition, External Managers exchange data requests to establish
clusters.

4. Exemplary use case

4.1 Definition/description

To explain how the system behavior emerges out of the interactions
among the individual components of the ACOs as well as through
communication with other ACOs, consider an exemplary scenario
with detection of a missing product. Figure 3 illustrates a poten-
tial configuration of the system; an assembly line consisting of four
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conveyor sections supplying two robotic arms with objects. includes
three different types of entities, i.e., the conveyor sections, which
transport the products, the product sorters, which sort the products
by type for further processing, and the robotic arms, which process
the products. Each entity consists of the hardware part (i.e., mo-
tor, sensors, and other equipment), and the logic unit (the ACO),
which monitors and, if necessary, adjusts its operation. The system
monitors the existence of all items in its environment. If an ACO is
expecting to receive an item at a specific time but it does not, the
system shall try to find the root cause of the event. To this end, it
uses the observations from entities responsible for previous (or next)
tasks in the process and analyzes the available information to find
out if the item is missing or the sensor is not working. Afterwards,
the system needs to decide whether it can adjust the settings and
resolve the problem, or the operator needs to be notified.
The following tasks take place:

1. The SAHM detects the event and tries to diagnose the problem.
That is, to find out whether the problem is caused by a faulty sen-
sor or a missing product. It informs the internal manager about
the event.

2. The external manager, upon notification from the internal man-
ager, asks for sensor information from the previous/next ACOs in
the process.

3. The SAHM receives the information from the other related ACOs,
and analyzes all information to find out if the item is missing or
the sensor is not working. This action will continue in a sequence
until the source of the problem (product missing/stuck or sensor
failure) is found.

4. If the problem is due to erroneous sensor data, the SAHM notifies
the internal manager for this event to take the necessary actions
to handle the problem.

5. If the problem is that the product is missing, due to unsynchro-
nized speed settings of the source entities, the SAHM notifies
the internal manager and the latter takes the necessary actions
to handle the problem.

6. If the problem is that the product is lost, then the internal man-
ager informs the human operator about the fault and asks for
intervention.

4.2 Feasibility verification of communication architecture

To verify the feasibility of the communication architecture, we ran
a simulation experiment which we present in the rest of this sec-
tion. The simulation was performed in the nxtStudio runtime envi-
ronment which uses the IEC 61499 standard. The standard is based
on the event-driven concept of function blocks. Function blocks are
independently acting components that encapsulate local function-
ality and communicate with each other via events and associated
data. Each block implements a set of algorithms and triggers events
upon completion. The main benefit of the IEC 61499 model lies in
its flexibility to integrate complex systems and adapt them even at
runtime.

The main goal of the simulation was to establish a communication
infrastructure for testing the synergy of the individual SAMBA com-
ponents. For each node in the production line of the use case (Fig. 3),
a corresponding ACO was created. The general structure of an ACO
is shown in Fig. 4; the ACO is represented as a composite function
block with SAHM, IM, EM and OM as basic function blocks. Event
inputs and outputs with associated data were defined and the com-
munication algorithms were implemented. The resulting simulation
provides a flexible environment for testing the underlying algorithms
of SAMBA that can be used as an application independent runtime
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Fig. 3. Shop floor configuration in the missing product use case
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Fig. 4. ACO function-block structure

environment. Due to the modular nature of the IEC 6149 standard,
a variety of use cases and algorithms can be integrated and tested
to analyze the optimal configuration of algorithms and parameters
for a particular application. The simulation results showed the sat-
isfying level of scalability and flexibility of the proposed architecture
and its ability to integrate required algorithms for data acquisition
and decision-making.

5. Discussion

SAMBA is an architecture for CPPS that monitors the production
process and reacts to deviations, either through automatic compen-
sations or by informing the operator. It is designed to operate as a
middleware on the top of existing (legacy) systems adding a layer
of intelligence to the CPPS. Intelligence in this specific context is
defined as the ability of the system to be context-aware and self-
aware, to be proactive and social, acting within a certain degree of
autonomy in a changing environment. To this end, SAMBA builds
upon the concept of the ACO, as presented above. The behavior of
the large system emerges out of the cooperation of individual ACOs,
which dynamically form clusters and collaborate on demand while
pursuing their own goals as well as the goals of the global system. To
compensate for the lack of central supervision, on one hand, ACOs
communicate with each other to enhance their knowledge and un-
derstand the context of their observations. On the other hand, they
negotiate to align their actions in order to efficiently achieve the
global system goals.
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The design of SAMBA addresses following challenges which mod-
ern industrial production process faces:

1. Increased adaptivity and reduced engineering effort: to interpret
the context of operation with minimum a priori knowledge avail-
able, semantic enhancement of the available information is used.
This is enabled by self- and context-awareness concepts such as
confidence, attention, data-reliability, and history, combined with
intelligent data analysis, such as data abstraction and scattered-
data fusion.

2. Quality assurance and resilience enhancement through fault
diagnosis and prognosis: in a distributed system no single
(sub)system knows the complete state of the overall system.
Communication with other ACOs takes place to enhance local
information, and to increase confidence about local knowledge.
This also helps the system to obtain awareness of the bigger
context in order to detect, analyze, predict, and mitigate errors,
faults, and failures.

3. Enhanced autonomy and intelligence for mitigation of anomalies
in operation: in complex manufacturing systems (such as CPPSs)
thorough and precise modeling of the system and its environ-
ment is challenging. Cognitive systems are adept at making deci-
sions efficiently despite the lack of a complete or precise model.
Cognitive decision-making improves the efficiency of the system
in using extracted knowledge about each ACO, its neighbors in
the cluster, the overall system, and possible courses of action, to
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re- or pro-actively change the CPPS, regarding the timing con-
straints at hand. Especially by mitigation of failures, degraded
health, or anomalies, it ensures the quality of the product and
process in adaptive heterogeneous manufacturing systems.

4. Dynamic clustering based on environment discovery: dynamic
cluster building concepts which take into account the produc-
tion orders parsing allow effective negotiation and propagation
of mitigation measures. They also enable representation of the
overall production environment beyond its locally accessible in-
formation.

SAMBA aims to introduce a new design paradigm in the industrial
environment which, thanks to the generic nature of the proposed
architecture, allows integration of legacy systems in manufacturing
with considerably less effort compared to the state of the art. The
generic nature of the architecture makes it possible to apply it inde-
pendent of the specifics of the entities it controls. It is expected to
reduce the downtime and frequency of maintenance interventions
by health monitoring, predictive analysis and mitigation of behav-
joral deviations. Next steps in the development of SAMBA include
the detailed design of the algorithms for the modules of the ar-
chitecture and testing of the emergent system performance. In the
planned follow-up project, SAVE, the challenge will be to demon-
strate — quantitatively — that SAMBA improves the overall system
performance in terms of reliability and operation efficiency.

6. Conclusion

In this paper, we presented SAMBA, an architecture for versatile
heterogeneous CPPS with focus on predictive analysis, autonomous
health monitoring, and error mitigation in industrial manufacturing
processes. The synergies provided by these functionalities reduce
system reaction time and engineering efforts through adjustment
of production steps to compensate for the deviations. SAMBA in-
creases the ability of the system to assure the quality of the product
and the process by intelligently adapting to rapidly changing envi-
ronments. The architecture is mainly developed for distributed CPPS,
however, its generic and modular design enables its future applica-
tion to different industrial systems with minimum effort for adapta-
tion.
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