
Hierarchical Dynamic Goal Management for IoT Systems

Axel Jantsch1, Arman Anzanpour2, Hedyeh Kholerdi1, Iman Azimi2, Lydia C. Siafara1,

Amir M. Rahmani1,3, Nima TaheriNejad1, Pasi Liljeberg2, Nikil Dutt3

1 TU Wien, Vienna, Austria
2 University of Turku, Finland

3 University of California, Irvine, USA

Abstract— As the Internet of Things (IoT) penetrates ever
more application domains, many IoT-based systems are in-
creasingly becoming more complex, versatile and resource-rich,
and need to serve one or more applications with diverse and
changing goals. These systems face new challenges in dynamic
goal management due to a combination of limited shared re-
sources, and multiple goals that may not only conflict with each
other, but which may also change dynamically. We motivate
the need for hierarchical, dynamic goal management for this
class of complex IoT systems and substantiate our arguments
with case studies from two application domains: patient health
monitoring and Cyber-Physical Production Systems (CPPSs).

I. INTRODUCTION

Goal management may be necessary if a system has to

pursue more than one goal, and it is necessary in one of two

situations: either the system has several conflicting goals,

or it has several non-conflicting goals, but limited resources
force it to prioritize some goals over others.

A. Resource management

Goal management is distinct from, but tightly intertwined

with resource management. In many IoT based systems

dynamic resource management is a hard problem, because

the problem space is vast even if only few resources are

considered, and because time and other resources are very

limited for the management task itself. Consequently, dy-

namic resource management is almost always handled with

heuristics because optimal solutions are elusive. As a case in

point Rahmani et al. [21] consider the mapping problem in

a many-core SoC, and show that researchers have proposed

a variety of different heuristics, with none of them being

superior in all cases. One heuristic maximizes the overall

system throughput [11], one maximizes throughput under

given thermal constraints [16], and a third maximizes the

system’s lifetime [10]. In IoT systems the problem is even

harder because an SoC is only one among many components

and due to their distributed nature which makes centralized

solutions infeasible. Moreover, consider the diversity of

resources that have to be managed: computing devices like

CPUs and DSPs, interface HW like antennas and MAC

modules, special purpose engines for encryption, video,

image and audio processing, memories and buffers, etc.

These resources are typically allocated to a task under tight

constraints depending on the availability of liquid resources
such as energy, power, bandwidth, computing time, storage

capacity, etc. Liquid resources are either given as bounds

not to to be crossed, or are optimization objectives to be

minimized or maximized.

Goals are, explicitly or implicitly, derived from application

requirements and are orchestrated through resource manage-

ment strategies. Examples of application goals are maximiza-

tion of task throughput, meeting real-time requirements, or

minimization of power consumption. Very often goals are

combinations of the above like meeting deadlines, maxi-

mizing throughput while minimizing power consumption.

These combinations can be considered attempts to reconcile

conflicting goals at design time by formulating heuristics that

balance these goals. This avoids dynamic goal management

but may still require dynamic resource management because

the system may change state dynamically, e.g., tasks com-

mence and end dynamically, resources are depleting, etc.

B. Dynamic Goal Management

Reconciling all application requirements into one balanc-

ing goal at design time avoids the run-time burden but may

cause inefficient over-design, because it cannot take into

account information only available during system operation.

If application requirements are diverse and poorly pre-

dictable, dynamic goal management is often preferable. For

instance Roca et al. [22] describe a generic, fog based

infrastructure that serves multiple IoT applications. Their

targets are Ultra Large Scale Systems (ULSS) such as

smart cities [1], and autonomous terrestrial, aerial or marine

vehicles [9]. In these scenarios applications dynamically

come and go and different applications have different goals.

Dynamic goal management usually means that general prin-

ciples are applied that guide the resolution of application

goals that either are in conflict or that compete for shared re-

sources [22]. For instance, such a principle may be to support

applications to meet their respective goals while minimizing

energy consumption and maximizing system lifetime. To

facilitate the resource arbitration process, Aazam et al. [2]

develop a resource estimation technique, that dynamically

predicts the applications’ need for resources to improve the

resource allocation process.

The dynamics of applications is one motivation for dy-

namic goal management; another reason is the change of

states during the lifetime of a system. Specifically, aging,

wear out and the occurrence of permanent HW faults lead

to decreasing performance and reduced availability of re-

sources. Adapting goal and resource management strategies

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 370 19th Int'l Symposium on Quality Electronic Design

to the lifetime phases can greatly improve the utility. For

instance Haghbayan et al. [10] demonstrated a doubling of

system lifetime due to a sensible core allocation algorithm

that models aging effects.

C. Hierarchical Goal Management

Goals can be divided into sub-goals, which can be pursued

in parallel or in sequence. E.g. For instance if a system

has the overall goal to meet requirements for each incoming

application, this overall goal is naturally broken down into

sub-goals, one for each application, with a higher level goal

manager to coordinate these subgoals.

Another break down of goals into sub-goals is based on the

observation that goals can be achieved in different ways. For

instance to obtain the position of a node, GPS coordinates

can be requested or sequences of acceleration data can be

tracked. Only one of these goals needs to be achieved, but we

do not know in advance, which one can deliver the necessary

information with the required precision or on time, both goals

may be spawned. If both goals complete successfully, their

results can be combined to obtain a precision or reliability,

which is beyond the ability of each individual method.

In the domain of autonomous agents goal models and

strategies for planning have been extensively studied, which

we briefly outline in section II. We argue that this also

becomes relevant for a class of IoT systems, that

• host and serve a set of applications which are diverse

and are not known at design time; or

• have a number of shared resources and constraints on

their usage; or

• there are choices on how to accomplish the applications’

and the system’s goals.

In Section III and IV we substantiate this claim with exam-

ple cases from the domains of patient health monitoring and

production systems. The examples illustrate the presence of

various goals which are hierarchically organized, and which

in some cases conflict with each other. The conflict arises

either due to limited resources (in the patient monitoring

case) or due to inherently conflicting local and global goals

(in the distributed production system case).

II. BACKGROUND AND RELATED WORK

Goals and hierarchical goal structures are key in driving

problem solving, comprehension, and learning, making them

essential for autonomous and self-aware systems [7]. In

this context, Goal-Following Autonomy (GFA) is defined as

hardware/software agents that can agree to take a goal from a

user (or another entity) and can automatically accomplish the

goal by carrying out a sequence of actions in its environment

[7]. Goal-Driven Autonomy (GDA) goes beyond the abilities

offered by GFA and is defined as a “reflective model of

goal reasoning that controls the focus of an agent’s planning

activities by dynamically resolving unexpected discrepancies

in the world state, which frequently arise when solving tasks

in complex environments” [14]. Goal Formulation (GF) and

Goal Selection (GS) are the essential components of GDA.

GF is defined as the ability to generate new goals considering

the discrepancies and explanations, while GS decides on

which goals the system will pursue next. There are two

prerequisites for these functions: Discrepancy Detection and

Explanation; where the former is in charge of monitoring

the system and the environment for anomalies, and the latter

attempts to generate explanations for detected discrepancies

[14].

Research on goal formulation and management has been

done in the context of artificial agents [6], [18], [25] which

mainly focus on providing the capability to nominate top-

level goals, and managing the nominated goals by prioritizing

them. However, requirements and restrictions of resource-

constrained IoT devices necessitate customized, light-weight,

and minimally conflicting approaches which consider the

priority, significance, objectives and requirements of each ap-

plication, while holistically coupling the overlapping and/or

contradicting objectives of different applications to satisfy

the system constraints.

There have been also attempts in the system-on-chip (SoC)

resource management domain to exploit the concept of self-

awareness [15] and its embodied goal management property

through presenting light-weight autonomous resource man-

agement methods. In [8], Dutt el al. study the concept of

self-awareness in SoCs and present the key properties of

self-aware systems such as desirability scale, goals, purpose,

expectations, etc. The Autonomic SoC platform (ASoC) [5]

is an example of attempts in the smart SoC domain which is

based on the organic computing paradigm, however, in this

platform, the desirability scale and the goals are implicitly

coded in the rules, and an explicit dynamic goal manage-

ment mechanism is not deployed. The same shortcoming

applies to the other platforms in the same domain such

as CyberPhysical Systems-on-Chip (CPSoC) [23] and SElf-

awarE Computing framework (SEEC) [13]. In CPSoC, the

goal hierarchy and goal management is in a very primitive

form and the desirability scale is implicitly encoded within

the goals. In SEEC, the goal formulation and management

is assigned to the application.

III. IOT-BASED HEALTH MONITORING

As a first example to demonstrate the significance of

dynamic goal management, we present IoT-based health

monitoring systems, where a certain level of Quality of

Experience (QoE) is required, posing dynamic conditions

under heterogeneous constraints. These monitoring systems

consist of three main layers: sensing layer, fog/edge layer

[19] and cloud layer (see Figure 1) [20], for which various

objectives such as energy, accuracy, or bandwidth should be

met. However, such objectives are contradictory in certain

circumstances due to limited shared resources. In the follow-

ing, two conflicting goals at the sensor layers (i.e., fog-sensor

cross-layer) and two conflicting goals at fog layer (fog-cloud

cross-layer) are studied.

Fig. 1. IoT-based health monitoring architecture

A. Resource Allocation at Sensing Layer (Fog-Sensor Inter-
play)

In remote patient monitoring systems (which are tar-

geting mostly out-ot-hospital patients), the sensory part

often consists of a wearable sensor network attached to

the patient body for collecting and transmitting biomedi-

cal signals wirelessly. A gateway device in the fog layer

receives patient’s data and performs some local operations

(e.g. filtering, fusion, compression, encryption, local stor-

age/diagnosis/notification) and then transfers the necessary

parts to the cloud server for long-term storage and pro-

cessing. The limitations in size and weight in wearables

necessitate these sensors to be powered by small and light-

weight batteries which consequently limits the available

energy at the sensor layer. In IoT-based remote patient mon-

itoring, the continuity/frequency of monitoring, detection,

and notification services depends on the available energy at

the sensor layer, making sensing and transmission energy-

efficiency a crucial challenge.

A prevalent solution for this problem is adjusting sensor

device parameters (e.g., sampling rate, sensor selection,

device sleep duration) according to patient/context/system

situation. In such solutions, sensor device has several work-

ing modes where each mode has its own power consumption

profile. The most power-hungry mode provides the highest

accuracy and resolution for the recorded data, while other

modes consume less power by lowering the sampling rate

and/or putting the device into sleep mode for certain peri-

ods of time. The following are two approaches among the

existing resource management approaches for managing the

resources at the sensor layer:

1) Accuracy-aware Monitoring:
Problem and Objective: For out-of-hospital patients,

the monitoring of health status is needed to be prioritized

according to the significance of medical/activity events. The

system needs to pay the highest attention to most adverse

events and consider the highest priority for most efficient

and accurate measurement mode in the sensor node. It should

also meet the acceptable accuracy level when the patient is

in the most medically stable situation.

Solution: A health monitoring system is proposed by

Anzanpour et. al. [3] that uses a personalized model to tune

system parameters to achieve a precise view of patient state.

The self-awareness core is implemented in the fog layer to

update an Attention core to prioritize the attention value

according to patient health status and patient context/activity.

Fig. 2. Accuracy-aware IoT-based health monitoring

In their solution, the Attention core shares more resources

for highest accuracy when the patient is at higher emergency

levels, and when the patient is in the safe and stable condition

it updates system configuration to stay at minimum sampling

frequency mode without compromising the accuracy (See

Figure 2).

This system only considers the situation of the patient as

a goal for enhancing the accuracy of the monitoring system,

while other states of the system (e.g., current available

battery/energy budget at sensor nodes) are not considered.

2) Energy/Availability-aware Monitoring:
Problem and Objective: Power failure in sensor nodes

due to limited available energy resources causes a failure

in the health monitoring system and possibly irreversible

damages for risky patients. Several system-driven parameters

should be enhanced while data is exchanged between the

sensor layer and the fog layer. The system not only needs

to consider the accuracy and precision of the monitoring

process, but also should keep track of the available level

of energy and accessibility to alternative energy sources in

view. For instance, if the battery level of a sensor node is low

and it is not possible to recharge/replace the battery for the

next couple of hours, the system may choose to prioritize the

availability of the service by compromising the frequency of

data sampling and transmission (higher accuracy vs. longer

availability of the service).

Solution: An energy/availability-aware monitoring solu-

tion can provide system-driven enhancements by paying

more attention to system-related events and assigning a

higher priority to these working modes which keep the

system in the most stable state. The attention core updates

system configuration for higher recording resolution and

shortest system sleep time when the system has more energy

at hand and closer to alternative energy sources. It also

prioritizes battery endurance in the sensor node by switching

the system to more low-power working modes when the

battery is going to be exhausted or other energy sources are

out of patient’s reach.

The goal of such system would be increasing the duration

of monitoring availability while the frequency/accuracy of

health monitoring signals needs to be compromised.

B. Resource Allocation at Fog Layer (Fog-Cloud Interplay)

Bandwidth optimization and Quality of Service (QoS)

guarantee are two fog-cloud cross-layer goals which may

Fig. 3. Hierarchical IoT-based health monitoring system with cloud-fog
bandwidth optimization

potentially conflict in certain circumstances due to limited

shared resources.

1) Bandwidth Optimization:
Problem and Objective: Disconnection from cloud

servers and bandwidth variations are prevalent issues in fog

devices, interrupting continuous health monitoring applica-

tions. These problems cause negative impact in health mon-

itoring applications where high communication latency may

lead to irreversible damages for high-risk patients with time-

sensitive demands. Moreover, transmission of raw data to the

cloud burdens network resources and cloud storage capabili-

ties. To address this issue, health analytics are proposed to be

distributed into fog and cloud layers, enabling the fog layer to

independently operate in case of low bandwidth in particular

for mobile gateways with varying bandwidth availability. In

this architecture, the fog layer needs to adaptively alleviate

data transmission, while preserving accuracy and resolution

of the system.

Solution: A hierarchical computing architecture for IoT-

based health monitoring is proposed [4] to partition machine

learning methods into fog and cloud computing resources,

enabling fog-based data analytics in a standalone way (see

Figure 3). Therefore, health applications operate acceptably

in case of poor connection between the fog device and cloud

server. Moreover, this hierarchical architecture provides a

closed-loop technique to adaptively manage the data traffic

based on patients conditions while the accuracy is preserved.

As a result, the bandwidth is saved up to 83% by removing

unnecessary data transmission.

2) Quality of Service (QoS) Guarantee:
Problem and Objective: In fog computing, certain com-

putation tasks are offloaded to edge devices (e.g., smart

gateways), providing a high-level of punctuality, reliability

and availability. However, such a fog device faces issues

in delivering a satisfactory QoS, when massive number of

sensor nodes are assigned to them (e.g., several sensor nodes

enter their coverage region due to their mobile nature). In

such scenario, response time becomes highly unpredictable

and decision making is significantly delayed. Therefore, there

is a need for solutions to guarantee QoS in the fog layer

by optimizing computational resources utilization, mitigating

overloads, and subsequently minimizing response time.

Solution: An intelligent work allocation and load bal-

ancing algorithm can provide a tradeoff between fog and

cloud resource utilization, considering the connected sen-

sor nodes and data volume. As the number of connected

users increases, the fog device decreases local computation

activity and transfer the computations to the cloud layer to

preserve an acceptable processing time. Consequently, the

transmission rate is increased, transferring health analytics

and decision making to the cloud servers. This algorithm

guarantees a satisfactory QoS in the system as well as

reducing latency and improving power characteristics in

mobile fog devices.

There is a conflict between these two goals. The first

solution minimizes data transmission between the fog de-

vices and the cloud layer enabling local computation and

preserving the accuracy in case of poor connection. However,

the second goal guarantees QoS at the edge in case of

numerous connected users, mitigating fog-based overloads

by transferring data analytics to the cloud. This leads to a

higher data transmission between the fog devices and the

cloud server.

IV. DISTRIBUTED CYBER-PHYSICAL PRODUCTION

SYSTEMS

The second example to highlight the need for dynamic

resource management covers the use case of the Industrial

Internet of Things. The growing dominance of the Internet

has brought IoT to many industrial applications [17]. A

CPPS, a specific type of Cyber-Physical Systems, is built

upon the collaboration of software and physical components

which uses data processing, information and communication

technology as well as manufacturing technology to facilitate

the process of production in a given industry. Distributed

design solutions promise to overcome the challenges of cen-

tralized architectures and improve the robustness, flexibility

and efficiency of the future CPPSs [12]. In a distributed

manner, the concept of an Autonomous Cooperating Object

(ACO) is defined as a computational core attached to a group

of physical components, each of which has a legacy control

unit. An ACO and its respective physical components alto-

gether are called an entity which communicates with other

entities in a given CPPS through the network connection

[24].

Aside from enormous development in distributed CPPS,

some challenges are still in progress [24]. The first challenge

to name is self- and context-awareness for data acquisition

and interpretation of local situation. With the increasing

complexity of current and future CPPSs in both size and

functionality, the diagnosis, prognosis, monitoring and self-

maintenance are becoming more necessary to improve the

robustness of the system and reduce downtime. Autonomous

mitigation and decision making is another challenge when

the complexity of the system is increasing and effective real

time actions are required. The third challenge here is dy-

namic entity clustering and self-configuration which enables

the current system to adapt to the changing environment and

network and communication errors. All these challenges need

to be addressed to manage the goals of the CPPS efficiently

and reliably. In the rest of this section, we review some of the

example problems and how hierarchical goal management

can resolve these issues optimally.

A. Resource Allocation

Entities which operate on the shop-floor interconnected

with scalable IoT-based integration middleware carry in-

formation about themselves, monitor locally their environ-

ment and communicate with each other to run dynamic

production processes. The large system is a community

of self-configurable interacting ACOs which need to form

clusters dynamically and allocate their resources pursuing

their individual goals and the global goals of the system as

defined by the Manufacturing Execution System (MES).

1) Autonomous anomaly mitigation:
Problem and Objective: Each individual ACO in the

large system shall monitor and maintain its health status

by diagnosing and mitigating anomalies. Examples of such

anomalies are the wearing out of a physical component, the

failure of an entity, changes in the speed of a entity, missing

products, false positive product detection, and communica-

tion link failure. In case of a detected anomaly the ACO

should find in real-time a policy to mitigate the problem,

while minimizing the impact on the large performance of

the large system. However, goals and available resources at

the ACO with the anomaly may not be in-line with the goals

of the overall system.

Solution: The ACO evaluates the priority of the problem

periodically and decides whether it should allocate resources

for solving it. The options of actions in the decision-making

unit are represented hierarchically, which enables efficient

problem-solving using reasoning in higher levels of abstrac-

tion. The ACO evaluates the high-level options of actions

under the constraints which the global system goals set on

its resource allocation. Once a compliant option is found, the

ACO retrieves the necessary actions to take by looking at the

lower levels of the action hierarchy.

2) Self-configuration:
Problem and Objective: For several reasons an ACO or a

number of ACOs in the cluster may change their operational

configurations which affects other ACOs. In this case, each

ACO should be able to adapt to changes in its environment

reallocating its resources in collaboration with other ACO to

meet common system goals.

Solution: When an ACO plans an operational change,

e.g., reducing its speed, it performs dependency check and

passes this information to the other ACO of the cluster which

are affected. However, this operational change may be in

conflict with the individual goals of the other ACOs. In such

a case, negotiation is initiated within the cluster to ensure the

optimal operation (i.e., fulfilment of the goals) of the larger

system through communication between the involved ACOs.

B. Conflicting Goals

Under some circumstances, the proposed CPPS is trapped

between local and global conflicts in which the hierarchical

goal management has been defined to improve the efficiency

and robustness:

1) Decision Making:
Problem and Objective: The cognitive and decision

making unit in an ACO attempts to use methods for matching

existing actions to newly detected problems and their causes.

Following this local goal sometimes reduces the safety of the

ACO or the system if an unexpected action is taken.

Solution: In case of confusing in this situation, some

action may be taken from the provided list of MES which

is not in contradiction with other ACOs’ operational goals.

The Hierarchical Goal Management helps decision making

unit to follow its local functionality goals, however it forces

it to consider the global safety goals during the emergency

situations.

2) Negotiation:
Problem and Objective: In case of an operational change,

an ACO could independently make a decision suitable for its

own efficiency as a local goal. The problem with this gaol

fulfilment is the possibility of instability for other ACO(s) or

the global system; for example, increase in the throughput

of an entity may result in traffic jam of items in the next

entity.

Solution: Hierarchical Goal Management necessitates the

negotiation with other ACOs, in which a chain of negotia-

tions from the negotiation-initializer ACO starts toward the

potentially affected ACOs. Finally, the result of negotiation

shows the condition in which the initializer ACO is allowed

to operationally change. This type of management may

reduce the efficiency of some ACOs, however it prevents

the system from severe deficiency.

V. SUMMARY, VISION AND RESEARCH DIRECTIONS

With the ubiquitous deployment of IoT systems across

a wide range of application domains, we are increasingly

frequently faced with challenges of managing multiple, and

often conflicting, goals that change dynamically. Hence,

contemporary approaches that addresses isolated goals are

insufficient for this emerging class of IoT systems that

must dynamically manage complex, competing goals while

addressing heterogeneous models of IoT systems. Goal man-

agement for these systems therefore require new strategies,

models, and algorithms to efficiently coordinate overlapping

and conflicting goals, while meeting desired Quality of

Experience (QoE) for the IoT system.

We believe a hierarchical goal management approach can

manage conflicting and complementary goals to ensure a

satisfactory QoE, handling IoT complexity and resources in

sensing, fog and cloud layers. Such an approach performs

a hierarchy of goals to plan an effective system execution,

considering dynamic runtime changes for goal priorities

and an optimization mechanism to evolve over time. The

approach presented in the two use cases includes: 1) A

predefined subset of goals and subgoals which are dynam-

ically modified, created or removed. 2) A set of dynamic

priorities indicating the importance of each goal at runtime.

3) An update period to periodically fine-tune priority of goals

over time. 4) An inspection function to determine how the

goals and subgoals are satisfied. 5) A goal function planning

the goals overtime with respect to inputs from inspection

function, systems and users condition. The approach outlined

in this paper is a step towards realizing hierarchical dynamic

goal management for many complex IoT systems, and lays

the foundation for active research to address this challenging

problem.

ACKNOWLEDGEMENTS

We acknowledge financial support from the Marie Curie

Actions of the European Union’s H2020 Programme, the

US National Science Foundation (NSF) through grant

CNS-1702950, and that of Austrian Government through

BMVIT/FFG under the action ICT of the Future in the

project SAMBA (contract number: 855426).

REFERENCES

[1] Gerhard P. Hancke 1, Bruno de Carvalho e Silva, and Gerhard
P. Hancke Jr. The role of advanced sensing in smart cities. Sensors,
13:393–425, 2013.

[2] Mohammad Aazam, Marx St-Hillaire, Chung-Horng Lung, Ioannis
Lambaris, and Eui-Nam Huh. IoT resource estimation challenges
and modeling in fog. In Amir Rahmani, Pasi Liljeberg, Jürgo-Sören
Preden, and Axel Jantsch, editors, Fog Computing in the Internet of
Things, chapter 2. Springer, 2018.

[3] A. Anzanpour, I. Azimi, M. Gotzinger, A. M. Rahmani, N. TaheriNe-
jad, P. Liljeberg, A. Jantsch, and N. Dutt. Self-awareness in remote
health monitoring systems using wearable electronics. In Design,
Automation Test in Europe Conference Exhibition, 2017, pages 1056–
1061, 2017.

[4] Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala,
Marco Levorato, Pasi Liljeberg, and Nikil Dutt. HiCH: Hierarchical
Fog-Assisted Computing Architecture for Healthcare IoT. ACM Trans.
Embed. Comput. Syst., 16(5):174:1–174:20, 2017.

[5] Abdelmajid Bouajila, Johannes Zeppenfeld, Walter Stechele, Andreas
Bernauer, Oliver Bringmann, Wolfgang Rosenstiel, and Andreas Herk-
ersdorf. Autonomic system on chip platform. In Christian Müller-
Schloer, Hartmut Schmeck, and Theo Ungerer, editors, Organic Com-
puting - A Paradigm Shift for Complex Systems, Autonomic Systems,
chapter 4.7, pages 413–425. Birkhäuser, 2011.

[6] D. Choi. Reactive goal management in a cognitive architecture. Cogn.
Syst. Res., 12(3-4):293–308, 2011.

[7] Michael T. Cox. Goal-driven autonomy and question-based problem
recognition. In Second Annual Conference on Advances in Cognitive
Systems, pages 29–45, 2013.

[8] Nikil Dutt, Axel Jantsch, and Santanu Sarma. Toward Smart Embed-
ded Systems: A Self-aware System-on-Chip (SoC) Perspective. ACM
Trans. Embed. Comput. Syst., 15(2):22:1–22:27, 2016.

[9] Mario Gerla, Eun-Kyu Lee, Giovanni Pau, and Uichin Lee. Internet
of vehicles: From intelligent grid to autonomous cars and vehicular
clouds. In IEEE World Forum on Internet of Things, 2014.

[10] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and
H. Tenhunen. A lifetime-aware runtime mapping approach for many-
core systems in the dark silicon era. In Design, Automation Test in
Europe Conference Exhibition (DATE), pages 854–857, March 2016.

[11] Mohammad-Hashem Haghbayan, Anil Kanduri, Amir-Mohammad
Rahmani, Pasi Liljeberg, Axel Jantsch, and Hannu Tenhunen. MapPro:
Proactive runtime mapping for dynamic workloads by quantifying
ripple effect of applications on networks-on-chip. In Proceedings
of the International Symposium on Networks on Chip, Vancouver,
Canada, September 2015.

[12] M. Hermann, T. Pentek, and B. Otto. Design principles for industrie
4.0 scenarios. In System Sciences (HICSS), 2016 49th Hawaii Int.
Conf., pages 3928–3937. IEEE, 2016.

[13] Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto
Leva, and Anant Agarwal. Seec: A framework for self-aware com-
puting. Technical Report MIT-CSAIL-TR-2010-049, MIT, Cambrige,
Massachusetts, October 2010.

[14] Ulit Jaidee, Héctor Muñoz Avila, and David W. Aha. Integrated
learning for goal-driven autonomy. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence -
Volume Volume Three, pages 2450–2455, 2011.

[15] Axel Jantsch, Nikil Dutt, and Amir M. Rahmani. Self-awareness in
systems on chip – a survey. IEEE Design Test, 34(6):1–19, December
2017.

[16] Anil Kanduri, Mohammad-Hashem Haghbayan, Amir-Mohammad
Rahmani, Pasi Liljeberg, Axel Jantsch, and Hannu Tenhunen. Dark
silicon aware runtime mapping for many-core systems: A patterning
approach. In Proceedings of the International Conference on Com-
puter Design (ICCD), pages 610–617, New York City, USA, October
2015.

[17] László Monostori. Cyber-physical production systems: Roots, expec-
tations and R&D challenges. Procedia CIRP, 17:9–13, 2014.

[18] J Powell, Matt Molineaux, and David W Aha. Active and interactive
discovery of goal selection knowledge. In Proceedings of the Twenty-
Fourth Florida Artificial Intelligence Research Society Conference,
2011.

[19] A.M. Rahmani, P. Liljeberg, J. Preden, and A. Jantsch. Fog Computing
in the Internet of Things - Intelligence at the Edge. Springer, 2017.

[20] Amir M. Rahmani, Tuan Nguyen Gia, Behailu Negash, Arman An-
zanpour, Iman Azimi, Mingzhe Jiang, and Pasi Liljeberg. Exploiting
smart e-health gateways at the edge of healthcare internet-of-things:
A fog computing approach. Future Generation Computer Systems,
78(Part 2):641 – 658, 2018.

[21] Amir M. Rahmani, Axel Jantsch, and Nikil Dutt. HDGM: Hierarchical
dynamic goal management for many-core resource allocation. IEEE
Embedded Systems letters, 2017.

[22] Damian Roca, Rudolfo Milito, Mario Nemirovsky, and Mateo Valero.
Tackling ultra large scale systems: Fog computing in support of
hierarchical emergent behaviors. In Fog Computing in the Internet
of Things, chapter 3. Springer, 2018.

[23] S. Sarma, N. Dutt, P. Gupta, N. Venkatasubramanian, and A. Nico-
lau. Cyberphysical-system-on-chip (CPSoC): A Self-aware MPSoC
Paradigm with Cross-layer Virtual Sensing and Actuation. In Proc. of
the Design, Automation & Test in Europe Conference, pages 625–628,
2015.

[24] Lydia C. Siafara, Hedyeh A. Kholerdi, Aleksey Bratukhin, Nima
TaheriNejad, Alexander Wendt, Axel Jantsch, Albert Treytl, and Thilo
Sauter. SAMBA: A self-aware health monitoring architecture for
distributed industrial systems. In The 43rd Annual Conference of the
IEEE Industrial Electronics Society, 2017.

[25] M. Wilson, M. Molineaux, and D. W. Aha. Domain-independent
heuristics for goal formulation. In Proceedings of the Twenty-Sixth
Artificial Intelligence Research Society Conference, pages 160–165,
2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

